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Abstract
For over 75 years it has been clear that the number of spikes in a neural response is an important part
of the neuronal code. Starting as early as the 1950’s with MacKay and McCullough, there has been
speculation over whether each spike and its exact time of occurrence carry information. Although it
is obvious that the firing rate carries information, it has been less clear as to whether there is
information in exactly timed patterns, when they arise from the dynamics of the neurons and
networks, as opposed to when they represent some strong external drive that entrains them. One
strong null hypothesis that can be applied is that spike trains arise from stochastic sampling of an
underlying deterministic temporally modulated rate function, that is, there is a time-varying rate
function. In this view, order statistics seem to provide a sufficient theoretical construct to both
generate simulated spike trains that are indistinguishable from those observed experimentally, and
to evaluate (decode) the data recovered from experiments. It remains to learn whether there are
physiologically important signals that are not described by such a null hypothesis.

Introduction and background
The brain is easily regarded as an information-processing machine, with single neurons acting
as the basic information processing elements (Moore et al., 1966; MacKay, 1968). The activity
of single neurons arises from the integration over inputs. For long distance (> 0.5 mm or so)
communication, a series of spikes is generated. This sequence of impulses presumably
represents some weighted combination of the information on the inputs. In this view
information is encoded in both the number and sequence of action potentials. Thus for learning
how information is processed, the spike train is a signal of interest.

This information processing view provides a context for studying the brain as the substrate for
behavior. This view immediately bringing up the question whether there is a neural code, and
what its make up might be. The genetic code is a striking example of a code in biology.
However, we cannot really connect the code we observe here to genetic codes. The genetic
code has a fixed coding frame length, 3 base pairs, and a virtually universal meaning (with
small redundancies and occasional reading errors). The coded material is always present in the
DNA of the nucleus (or wherever the DNA is found), so it is structural, allowing it to be read
over and over again. Finally the mechanisms responsible for reading the genetic code to make
RNA and protein are now known with a striking degree of accuracy. Studies in molecular
biology focus on when and what parts of the genome are going to be read, a really different
set of problems from those in reading neuronal responses.

In contrast, a neural response unfolds in time and is evanescent, in that once a spike train has
gone by, the exact same spike train seems unlikely ever to reappear. Furthermore, the meaning
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of a spike train is intimately connected to the neuron that is generating it. The organization of
the brain with regions of functional localization or specialization is a fundamental aspect of
brain function that has been known for well over a century. The response of every neuron is
interpreted in this light, for example, we envision a visual system, an auditory system, a motor
system, a limbic system, etc. Considering this alone, it is clear that neurons need to be
considered as labeled lines, i.e., the neuron’s responses are interpreted in comparison to the
sensitivity profile or tuning. In general, we do not study area 17 of the monkey (V1) with
auditory stimuli (though there have been and continue to be specific reasons related to plasticity
when such results might be of interest).

A question that remains open to this day is the scale or precision with which the line labeling
needs to be known. This has a big impact on the manner with which we view neuronal activity.
We commonly identify different brain regions according to many variables, but in the end we
always ask what is different about the information in one brain region relative to the others, so
we assume that we can not just average across the whole brain. However, at what spatial scale
must we account for the information carried by single neurons? Can we average over neurons
within a brain area or within a subregion such as a functional column, that is, is there some
sort of simple population code based on averaging? Several popular techniques for studying
brain function, functional imaging and evoked potential analysis rely on an assumption of
averaging over local populations, while giving great weight to the differences in responsiveness
across functional brain regions. A code such based on tuning functions such as population
vectors takes averaging a step further (Georgopoulos et al., 1988; Salinas and Abbott, 1994).
Another possibility is that we must explicitly account for the differences in the responses in
each neuron, and to establish this relation requires the use of stimulating conditions that are
uncorrelated, or even independent(Gawne and Richmond, 1993; Gawne et al., 1996).

Addressing these issues requires knowing how and what has been encoded in the activity of
single neurons. Because the spike trains unfold in time it would be advantageous to monitor
the accumulation of information over time and make a decision when some criterion is met.
The strongest evidence that this might be the case is that reaction times often vary with the
exact instruction, where, for example, the trade-off between accuracy and speed can be
adjusted; this has been a major reason for the utility of signal detection theory for analyzing
both behavior and neural responses. From observing behavior where reaction times vary, we
can infer how much information a spike train must contain for the observed behavior to occur,
and we can infer the relative contributions of signal and noise from the task-to-task and trial-
to-trial variations (Shadlen et al., 1996). From such data, some estimate of the coding frame
length might be made. It is clear without much analysis that simple detection of a stimulus
takes less information than identification of which stimulus is present. That is, in so-called
simple conditions the reactions can be very fast, whereas for difficult discrimination or
perceptual recognition reaction times can be long. Sometimes the information encoded in the
early response is different than the information encoded later, which would further delay the
time at which a decision can be made (Sugase et al., 1999). Nonetheless, stimulus-related
information probably unfolds in a similar way over episodes, at least during early stages of
processing, e.g., when the same stimulus is presented repeatedly in the early visual system it
is usual to assume that each spike train carries about the same information about the stimulus
(Wiener and Richmond, 1999, 2003). Finally, some aspects of behavior interact with gathering
information for other aspects.

Neuronal code structure
Since the earliest recordings of single neurons, it has been clear that the number of the spikes
can be represented as a rate, and that rate can be regarded as one form of neural code (Fitzhugh,
1957; Kuffler et al., 1957). It was also recognized that the rate could vary. When FitzHugh
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analyzed ganglion cell firing taken from the cat he showed that a Poisson process was not
adequate. For most of his examples, a gamma process was suitable. He pointed out, though,
that one neuron in his study had a more complex firing pattern, perhaps the activity was
oscillating, that appeared when the briefly flashed spot that was used for a stimulus became
quite bright. Fitzhugh pointed out that this firing pattern would take techniques beyond
assuming a stationary firing rate. He left the consequences of this rate variation to be dealt with
in the future.

The observation pointed out by FitzHugh that a brief transient in a stimulus can lead to a neural
firing pattern outlasting the transient change in the stimulus by a considerable period illustrates
that intrinsic dynamics play an important role in information processing within the brain
(Fitzhugh, 1957). These dynamics give rise to firing patterns that probably carry information
beyond what is encoded by assuming a uniform firing rate (with variability, again see
FitzHugh’s seminal paper). MacKay and McCullough considered issues such as the duration
of a spike, the refractory period, and the speed and precision of synaptic transmission to
calculate an upper bound for information transmission (MacKay and McCullough, 1952).

The most convincing evidence that patterns of spikes affect the efficacy of information
transmission came from pioneering experiments using invertebrates. Following work showing
that the strength of crayfish claw contraction was sensitive to the spacing of spikes in time
(Wiersma and Adams, 1950), Segundo et al showed in a truly revolutionary report that the
pattern of the spikes has an important role on the activity of target neurons in the central nervous
system (Segundo et al., 1963). Given that the biophysical mechanisms underlying neuronal
activity and transmission of activity from one neuron to another seem to follow the same
principles in vertebrates, these findings can be taken as a strong indication that spike timing
patterns should play an important role in vertebrate neural coding, also.

In early stages of visual processing in monkey, when a stimulus is stepped on within the
receptive field of a neuron, the response begins after some delay (latency), thought to arise
from the transmission from the retina to the site at which the neuronal recording takes place.
So for example it is not unusual to see responses in the monkey lateral geniculate nucleus that
begin 30–40 ms after the stimulus appears, and the earliest responses seen in primary visual
cortex are on the order of 10 ms later. This timing can depend on the spatial configuration or
other parameters, for example, the contrast, of the stimulus (Figure 1).

As the response evolves over time, there are response patterns that seem stereotyped, even if
the number of spikes varies and the spikes are not seen at exactly the same time on repeated
trials. For example, in V1 there may be a large transient burst of firing at the beginning of the
stimulus-elicited firing, a feature that might be missing from the firing elicited by another
pattern even when the number of spikes is the same (Figure 2).

A straightforward approach to analyzing both the number and pattern in the spike train is to
take the principal components from the individual responses (Richmond and Optican, 1987).
These provide the optimal linear basis set in the signal power or variance accounted for by
each principal component; the principal components are ordered so that each principal
component represents more variance than any of the preceding ones. This guarantees that any
truncation will be the optimal linear representation. The coefficients of these principal
components make a neural code. Because of the nature of the principal components, i.e.,
ordered by variance explained, it is likely that the earlier ones represent more information than
the later ones, and this is generally the case.

When stimuli are abruptly stepped on and then remain on for a few hundred milliseconds, both
the number and timing of the spikes vary considerably across presentations of each stimulus,
i.e., on different trials the number and timing of the spikes is different (cf. Figures 1 & 2).
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Nonetheless, the responses appear to be similar, and when low-pass filtered, i.e., convolved
with Gaussian with standard deviation σ 3–5 ms; (Heller et al., 1995; Victor and Purpura,
1996). When the neuronal response variance across trials (either as the simple spike counts, or
for the coefficients of the first or first 2–4 principal components) is calculated across a large
number of stimuli and plotted as a function of the mean firing rates, the variance rises as a
function of the firing rate, as is to be expected of a point process (Figure 3; (Dean, 1981;
Tolhurst et al., 1983; Wiener and Richmond, 1999). The coefficients of the first principal
component are usually closely related to the number of spikes in the response, indicating that
the number of spikes is the strongest signal (i.e., accounting for the greatest variance) in the
response (Figure 4; (Richmond and Optican, 1987; Richmond et al., 1990). Thus, it should be
no surprise that the variance in the coefficients of the first principal component calculated on
a stimulus-by-stimulus basis is directly related to the means of the first principal component
(Figure 5A). Since the first principal component is strongly related to the spike count, the
second principal component, which is by construction orthogonal to the first (the coefficients
of the first and second are uncorrelated), must be related to some other feature of the responses,
i.e., a pattern of spikes that accounts for a substantial proportion of variance. The variance of
the second principal component is not very closely related to the mean of the second principal
component (for the given stimulus set). Instead, the variance of the second principal component
is also related to the means of the spike counts for the set of stimuli (Figure 5B). This shows
that a great deal of the variation in the timing of the spikes is related to the variation in the
spike count. If the patterns of spikes were just stochastically related to the spike count, i.e.,
when there are more spikes the number of spike patterns goes up, this is what we might expect
to see. Imagine that the data arise from a Poisson process. Then the numbers of spike patterns
observed will be related to the combinations of spikes that arise in such a Poisson process,

which is , that is, n choose k or  where the number of patterns that will arise from
chance with n identical spikes distributed randomly into k bins. This consideration makes it
seem entirely plausible that the variance in the second principal component, which is measuring
a rate fluctuation that is (nearly) orthogonal to the mean rate, is related to the mean firing rate.
This suggests that the number of patterns of spikes observed is arising from a process related
to the number of spikes available, a seemingly obvious relationship. This again weighs in favor
of the view that the spikes are stochastic samples of the underlying rate process.

There is one additional observation related to the principal components that raises the
possibility that the spikes arise from a stochastic process. When the coefficients of the second
principal components are plotted as functions of the coefficients of the first principal
component, the data fit into a cone (Figure 6). This shows that the number of spike patterns, a
parameter that is better related to the second principal component, increases as the spike count
increases, although the number of patterns grows somewhat more slowly (not shown; see
(Wiener and Richmond, 2003) than would be expected from a purely Poisson process (one
limitation is the refractory period).

Stochastic spike trains
The findings above support a hypothesis that the spike train is a stochastic sampling of some
underlying perhaps continuous distribution. Given the evidence, it is reasonable to develop and
investigate a description of spike trains in which spikes are stochastic samples of underlying
distributions, even if the trains are not Poisson, i.e., stochastic does not necessarily mean
Poisson.

Now let us generalize. We will no longer require either a constant firing rate, or even a time-
varying Poisson process. We will still require that the spikes arise from a stochastic renewal
process. What happens when the spikes are stochastic, but not necessarily Poisson, samples
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from a continuous, deterministic processes, i.e., from the rate function or spike density over
time (for example, continuous lines in Figure 1)? The intuition for our model is that the spike
train for the trials can be simulated as a simple rate-varying Poisson process, and the distribution
of spike counts is controlled so that they match the observed distribution of spike counts. To
obtain simulated spike trains that on average match our recorded data, we use the normalized
spike probability density over time, or peristimulus time histogram, to get a rate variation
function over time. Because we have shown that the deviations from a Poisson process can be
matched by matching the spike count distributions from our recorded data (Oram et al.,
1999), we then simulate spike trains and pick those that meet our requirements for the number
of spikes. We can even easily incorporate the absolute refractory period by only picking
simulated trials that have no intervals as short as 1 millisecond (1 bin in our simulations). Under
these conditions the numbers of spike patterns we observe are statistically indistinguishable
from those observed in the spike trains (Oram et al., 1999).

When the data from these simulated spike trains are analyzed, the numbers of triplets over the
set of two intervals (that is, the number of triplets for each pair of intervals is counted forming
joint-interval histograms) are indistinguishable from the ones seen in the real data. Thus, when
the spike count distributions of the data and simulation match, the distributions of spike timings,
i.e., the joint interval histograms, that are seen in the physiological data are compatible with
this constrained stochastic process. Furthermore, the numbers of patterns can have high
individual peaks for particular patterns (Figure 7). When the simulations are run again, the
highest peaks are related to different patterns than in the original simulations. On examination
of the simulated data, the numbers of preferred patterns seen in the data are within the numbers
that might be expected from a stochastic process (derived from the simulations), suggesting
that the preferred patterns seen in the physiological data could arise as a consequence of a
stochastic process.

This simple model does not provide a means to interpret what mechanisms contribute to the
deviation from a true Poisson process, but it does show that for data like those we have sampled
in the visual and motor systems, matching the spike count distribution to that seen from the
recordings is a strong enough constraint to create a stochastic model of the spike trains that is
indistinguishable from the data.

Order statistics for modeling and analyzing spike trains
These considerations lead to a model in which the pattern of the spikes over time arise as if
they were thrown down with probabilities given by the rate function, that is, they are stochastic
samples from a deterministic rate function. This simple model is described by order statistics.
Order statistics describes how a stochastic point process with n ordered points sample an
underlying distribution, here the normalized spike density over time (Arnold et al., 1992).
Specifically, the fundamental equation in order statistics describes the unconditional
distribution in time of when the kth of n spikes will occur when t=0 is the beginning of an
interval of interest, e.g., when a stimulus appears and disappears:

where F(t) is the cumulative probability distribution for the rate variation function (the
integrated spike density or PSTH), f(t) is the normalized perstimulus time spike density
(histogram), and hn,s(t) is the order statistic for the probability of a spike at time t in a train of
n spikes for stimulus s. This completely describes stochastic spike trains, and, therefore,
provides a strong null hypothesis for testing whether spike trains are stochastic, overcoming a

Richmond Page 5

Biol Cybern. Author manuscript; available in PMC 2009 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



potentially dangerous limitation of having to assume a Poisson process in particular. This order
statistic approach provides a straightforward, well-developed description that can be used to
make both a generative model for spike trains, and an interpretive (decoding) model (see
below).

The probability distribution for the first spike out of n spikes starting at some time, t=0, such
as the stimulus appearance, is:

Now summing over n, the probability of the first spike across the distribution of spike counts
(estimated from the data, or chosen from an a priori hypothesis) for the stimulus is:

where ps(n)is the probability of n spikes given the stimulus s. Furthermore, we recognize that
1 − hs (t) is the probability of stimulus s at time t when there is no spike. This provides the
machinery needed to decode spike trains, millisecond-by-millisecond, or to estimate the mutual
information. Now it is completely straightforward to apply Bayes theorem to decode
millisecond-by-millisecond:

So we have an expression that calculates the probability of each stimulus, given a spike at time
t, or when there is no spike. That is, p(s|t) can all be calculated for each stimulus at each time
step when there is no spike, or when there is a spike. When a spike does occur, the first order
statistics are recalculated using the time t as the new reference time, that is, a new t=0. The set
of p(s\t) at that point is used for the new prior probabilities, p(s), for all of the stimuli (Figure
8). Using this recursive relation, we can decode the stimulus as the response unfolds.

The algebra above depends on the assumption that the spike trains are stochastic samples using
the spike count distributions and the rate functions estimated from the data. This approach
seems to work well. Here are two brief examples, one taken from a V1 supragranular (layers
2 or 3) complex cell, where the baseline firing rate is just about zero (Figure 8), and the other
from LGN recordings where neurons have baseline (un-stimulated) firing rates of about 40 Hz
(Figure 9). This decoding strategy works well in both circumstances.

What has been shown above is that a model in which spike trains are treated as stochastic
samples provides a powerful tool for analyzing firing. A substantial number of experiments
have been carried out that seem to show remarkable reproducibility of spikes across
stimulations(Bryant and Segundo, 1976; Mainen and Sejnowski, 1995; Bair and Koch, 1996;
Buracas et al., 1998; Butts et al., 2007). The question is whether the order statistic approach
would work well in these situations. It would likely still work because the response features
are time-locked to the stimulus or other trial event. In many, if not all, of these experiments,
one can make the observation that the stimulus had some strong time-changing characteristic,
that is, there was strong motion or luminance steps(Williams et al., 2004). Also, whereas the
data from many of these experiments have been subjected to rigorous analysis, none of them
have been tested against an order-statistic based hypothesis. What would be expected under
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such conditions? For the hypothesis, the spike density and spike count distributions would need
to be measured. Then simulations would be made using these to determine whether the spike
trains in the recorded data fell outside of the confidence intervals for the simulated data, where
the confidence intervals are estimated from the variability arising from a large number of
simulation runs, e.g., 103 or 104.

Unsettled issues and conclusions
An unsettled issue is whether there are hidden patterns that are not time-locked to events in the
recordings, perhaps giving a clue to whether there are undetected processes underlying the
generation of spike trains. The strongest early hypotheses about the existence of such patterns
arose from the work of Abeles, and Lestienne and Stehler (Lestienne and Strehler, 1987; Abeles
and Gerstein, 1988; Abeles et al., 1993). This remains a fascinating area of work, that in a
manner of speaking harkens back to the original calculation done by Mackay and McCullough,
in that they had to suppose that all patterns were available for use in coding (MacKay and
McCullough, 1952). The order statistic hypothesis shows that processes deviating from a
Poisson process make significant differences in the numbers of patterns that are predicted to
arise in spike trains from stochastic processes (triplets above). The hidden pattern hypothesis
is based on the idea that the dynamics of the system favor the occurrence of specific spike
patterns arising when system architecture is appropriate,.e.g., synfire chains (Lestienne and
Strehler, 1987; Abeles and Gerstein, 1988; Abeles, 1991).

At this point, it is clear, as it has been for more than 75 years, that the strongest part of the
neural code is the spiking rate (Adrian and Bronk, 1928, 1929), with the single most critical
parameter generally being the mean rate. However, there is also strong evidence that temporal
encoding, at least in the form of rate variation, is also an important feature of the code. What
is established above is that the spike counts over moderate counting periods show considerable
variability. The pattern of the spikes over time is taken to arise as a stochastic sample of a
deterministic rate function. These two properties lead to a model in which spikes arise as if
they were thrown down with probabilities given by the rate function.

Because of the interaction between the number of spikes and sampling of underlying
continuous processes, patterns of spiking activity need to be interpreted with care, and many
details probably do matter in coming to conclusions about whether activity is stochastic or not.
Although not discussed here, the properties described above have important influences on the
relations between neurons, i.e., the peaks in cross-correlograms can arise from purely stochastic
considerations (Brody, 1998; Oram et al., 2001). Strong sensory signals can be reflected in a
temporal code that follows the driving rate, and while it has not been tested, it would not be
surprising to find that these also have the properties described above.

What is clear is that assuming that spikes arise as a stochastic, but not necessarily, Poisson
point process is a powerful null hypothesis, and because of the vast modern attention to the
properties of point processes using order statistics, the description provides a strong null
hypothesis that can be used in both generative and analysis (decoding and mutual information)
models. This approach does not require utilizing the exact timing of every spike, but rather
substitutes a connection between relatively simple measurements of neuronal responses, the
peristimulus time histogram, and estimates of its bandwidth (not discussed above except
implicitly with reference to rapid motion energy stimuli), the distribution of observed spike
counts, and the structure of spike trains. Because we are interested in functionality, not just
signal strength, the possibility must remain that some network properties of importance could
be signaled through the existence of seemingly nonstochastic patterns, such as triplets (Abeles,
1991). At this time, deviations from this order statistic model seem to be small, and therefore,
if considered in signal-to-noise terms, account for very little signal strength. Thus, the
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experimental evidence reviewed above suggests patterns of spikes are indistinguishable from
what would be expected from a stochastic point process, and modeling the trains from that
point of view is a powerful approach to describing them.
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Figure 1.
Orientation and contrast affect two different parameters in supragranular V1 neuronal
responses from rhesus monkey. The oriented bar at the top represents the stimulus flashed onto
the receptive field of this neuron. The average number of spikes during the stimulus
presentation changes with the orientation. As this example shows, the latency to response onset
is closely related to the contrast. This example shows that the latency and average response
strength can be independent, or nearly so. Thus, one important aspect of temporal coding,
latency to response onset conveys, or at least emphasizes, different information than that
conveyed by spike count. This example also demonstrates that counting spikes with respect to
a fixed reference for all examples might induce a correlation with contrast that is really due to
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the delay in the response onset for lower contrast stimuli. For the rasters each line of dots shows
the time of an action potential with reference to the stimulus appearance (vertical line at 0).
The continuous line is a spike density plot formed by the convolution of a Gaussian pulse (σ
= 3ms), converted to spikes/second/trial. The orientations of the two black bars are shown at
the top of each column, and the luminance contrast is on the right of each row. This neuron
shows the almost total absence of activity when there is no stimulus on the receptive field (to
the left of time = 0).
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Figure 2.
Equal strength responses from one supragranular V1 neuron with obvious differences in
temporal encoding for 2 different stimuli, one a solid bar and the other a speckled bar orthogonal
to the solid one, as shown above the responses.
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Figure 3.
Variance of spike count as a function of spike count for 174 stimuli from one supragranular
V1 neuron. On this log-log plot, the variance is linearly related (solid line) to the spike count.
The relation here is ‘supra’ Poisson, that is, the regression line is offset above the line for which
the variance equals the mean, which usually indicates some type of bursting. The stimulus set
consisted of black bars, white bars, Walsh patterns, and speckled bars (cf Figure 2). All of the
stimuli were presented, then the order was shuffled and they were presented again, for about
50 times (if the monkey broke fixation, which happened rarely, the response was not used
here).
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Figure 4.
A. Shapes of average response and first 5 principal components. The principal components are
mutually orthogonal. All are plotted as probability of spiking as a function of time after stimulus
appearance. The principal components are derived from low-pass filtered (3 ms σ Gaussian
pulse) and sub-sampled (every 6 ms) spike densities of each trial. These principal components
were calculated using all of the responses (~50 per stimulus) elicited by 174 stimuli (~8700
responses). As is standard, the average response was subtracted from each response before the
data domain covariance matrix was calculated (thus translating the reference point to the mean
of the data) which accounts for the negative values for some parts of some principal
components, and for some of the coefficients in panel B. Each stimulus was stepped on for 360
ms. B. Average principal component coefficients for the first 5 principal components for the
two stimuli shown in Figure 2. C. The reconstructed peristimulus spike densities (solid and
dotted lines, matching those in Fig. 2) using the first 5 principal components (plus the mean).
Because the mean response was subtracted from each response, each of the principal
components weighted by the coefficient in panel B has been added to the average. High
frequency components such as the low-level apparent oscillatory activity in the originals in
Figure 2 are reduced or eliminated because the higher principal components have been left out.
Thus, this reconstruction with only 5 principal components has the effect of additional low-
pass filtering (after the Gaussian convolution described above) the responses.
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Figure 5.
Mean variance relations between spike counts for each of the 174 stimuli (x-axis) and variance
of 1st (left panel) or 2nd principal components for the corresponding stimulus. This shows that
the variance of the coefficients of the 2nd principal component is linearly related to the mean
spike counts, just as is true for the spike count variance and 1st principal component variance.
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Figure 6.
Coefficients of second principal component vs coefficients of first principal component for
each stimulus presentation. The narrow distribution at the left is a consequence of the spike
trains being point processes. Because the first principal component is nearly the spike count,
the number of spikes available for patterns of activity increases from left to right, so the number
of patterns possible is small for low spike counts (left side of plot). Then numbers of spike
patterns represented by the second principal component increase quickly with the increasing
spike count, making for the cone-like structure in this plot. This shows that even though the
principal components are orthogonal, they are not independent; higher coefficients of the first
principal component lead to a larger range of values for the second.
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Figure 7.
Numbers of triplets arising in the data of one V1 supragranular neuron (upper panel), and the
numbers of triplets arising in two simulation runs of 104 each using the simple spike count
matching model with refractory period (see text). When the numbers of triplets in the data are
correlated with the numbers of triplets in the simulations over the stimuli, the linear correlation
is r > 0.99.
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Figure 8.
Decoding of example from Figure 2. A. Millisecond-by-millisecond decoding for two spike
trains with spike times shown as vertical lines. Because there are two stimuli in this example,
the probability for random guessing is 0.5. B. The overlaid spike densities from Figure 2. The
dashed line is the spike density for the speckled vertical bar and the solid line is for the
horizontal black bar. This helps to explain the decoding, which starts before a spike for the
black bar, because the decoder knows that if no spike has occurred by this time, the black bar
is more likely. The value of the decoder is that it points to this feature of the spike densities.
C. The decoding performance over the approximately 50 trials with each stimulus. The
decoding accuracy does not improve after 100 ms for this example.
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Figure 9.
Decoding examples for neurons that have ongoing activity as is often seen in monkey LGN
neurons. A. Decodings for 4 example responses (chosen to end correctly). The stimuli are
shown above. The vertical lines show the spike times. The lower-case letters a–g show the
probability that the response seen until the time examined was elicited by each stimulus seen
in panel B. The horizontal line shows the 1/6 prior probability assuming random guessing. B.
The rasters and spike density for the 6 different stimuli shown in this example. These were all
square spots positioned on the receptive field and flashed on for 250 ms each. Notice the off-
responses. C. The decoding performance for each of the stimuli at 3 different times during the
stimulus cycle. The decoding performance is different across the stimuli, and leads to the
conclusion that some stimuli are more easily mistaken (misidentified) for others. Also,
decoding improves with time, with the best average decoding occurring at 300 ms after stimulus
appearance.
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