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Abstract
Classification image and other similar noise-driven linear methods have found increasingly wider
applications in revealing psychophysical receptive field structures or perceptual templates. These
techniques are relatively easy to deploy, and the results are simple to interpret. However, being a
linear technique, the utility of the classification-image method is believed to be limited. Uncertainty
about the target stimuli on the part of an observer will result in a classification image that is the
superposition of all possible templates for all the possible signals. In the context of a well-established
uncertainty model, which pools the outputs of a large set of linear frontends with a max operator, we
show analytically, in simulations, and with human experiments that the effect of intrinsic uncertainty
can be limited or even eliminated by presenting a signal at a relatively high contrast in a classification-
image experiment. We further argue that the subimages from different stimulus-response categories
should not be combined, as is conventionally done. We show that when the signal contrast is high,
the subimages from the error trials contain a clear high-contrast image that is negatively correlated
with the perceptual template associated with the presented signal, relatively unaffected by
uncertainty. The subimages also contain a “haze” that is of a much lower contrast and is positively
correlated with the superposition of all the templates associated with the erroneous response. In the
case of spatial uncertainty, we show that the spatial extent of the uncertainty can be estimated from
the classification subimages. We link intrinsic uncertainty to invariance and suggest that this signal-
clamped classification-image method will find general applications in uncovering the underlying
representations of high-level neural and psychophysical mechanisms.

Keywords
classification image; reverse correlation; spatial uncertainty; invariance; nonlinearity

Introduction
If a system responds linearly to its input by correlating it with a single template (by taking the
dot product), then this template can be recovered by presenting the system with samples of
white noise and averaging those noise samples that led to the same response. Since the 1980s,
this simple form of reverse correlation, also known as spike-triggered averaging, has been
routinely applied to map the receptive fields of neurons in the early stages of the sensory
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systems (e.g., de Boer & de Jongh, 1978; de Boer & Kuyper, 1968; Jones & Palmer, 1987).
When applied to visual psychophysics, where the stimulus noise is in the form of an image (or
a movie), the technique is often referred to as the “classification-image method” (Ahumada
2002; Beard & Ahumada, 1999), which owes its roots to the early work of Ahumada and
colleagues in auditory psychophysics (Ahumada & Lovell, 1971; Ahumada & Marken,
1975).

In recent years, classification image and similar techniques have been applied to study vernier
acuity (Beard & Ahumada, 1999), stereopsis (Neri, Parker, & Blakemore, 1999), illusory-
contour perception (Gold, Murray, Bennett, & Sekuler, 2000), identification of facial
expression (Adolphs et al., 2005; Gosselin & Schyns, 2003), and surround effect on contrast
discrimination (Shimozaki, Eckstein, & Abbey, 2005), to name a few. We can divide these
applications into two broad categories. In one category, the primary goal of the investigation
was to discern from where in the stimulus an observer extracts information. For example, Gold
et al. (2000) found that when an observer was asked to judge whether the shape of an illusory
square was “thin” or “fat,” observers often based their decision on the left and right illusory
edge, while ignoring the top and bottom ones, which are equally informative. Adolphs et al.’s
(2005) work, showing that a patient’s failure to use information in the eye region of faces
impaired the perception of fear, is another example of this category. In the second category,
the main purpose of using the classification-image method was to infer the “perceptual
template” used by an observer to perform a given task. For example, Beard and Ahumada
(1999) showed with classification images that vernier discrimination was mediated by an
orientation-tuned mechanism, as had been previously suggested.

The method of classification image can recover a mechanism’s template if the mechanism is
equivalent to a linear noisy correlator (Ahumada, 2002). Murray, Bennett, and Sekuler
(2002) argued that this requirement can be relaxed to include observer models that have an
additive noise whose variance is proportional to the contrast energy of the input (as opposed
to being a constant) and to models with nonlinear transducer functions when tested over a
narrow range (for a more precise description of the requirements regarding nonlinear transducer
functions, see Neri, 2004). Even with these generalizations, the range of observer models for
which the classification-image method is valid for inferring the perceptual template appears to
be restricted. Physiologists have long maintained that spike-triggered averaging (identical to
classification image) is of very limited use for uncovering the receptive field structures of
higher order visual neurons. Various higher order techniques, such as spike-average covariance
(de Ruyter van Steveninck & Bialek, 1988; Rust, Schwartz, Movshon, & Simoncelli, 2004,
2005), are used to augment spike-triggered averaging. Neri and Heeger (2002) recently
extended the classification-image method to include the analysis of covariance. Despite its
theoretical limitation, the linear version of the classification-image method has been applied
to increasingly complex visual tasks, such as face recognition and object categorization,
yielding intriguing results.

A simple yet ubiquitous form of nonlinearity generally believed to pose a severe problem to
the method of classification image is uncertainty. Murray et al., (2002) described this problem
succinctly:

One type of nonlinearity that does pose a problem for the noisy cross-correlator1
model is stimulus uncertainty. Even when observers are told the exact shape and
location of the signals that they are to discriminate between, they sometimes behave
as if they are uncertain as to exactly where the stimulus will appear or what shape it
will take (e.g., Manjeshwar & Wilson, 2001;Pelli, 1985). We can model spatial
uncertainty by assuming that the observer has many identical templates that he applies
over a range of spatial locations in the stimulus, but the effects of this operation are
complex, and it is not obvious precisely how a classification image is related to the
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template of such an observer, or how the SNR of the classification image is related
to quantities such as the observer’s performance level or internal-to-external noise
ratio. If an observer is very uncertain about some stimulus properties, such as the
phase of a grating signal, a response classification experiment may produce no
classification image at all (Ahumada & Beard, 1999).

This problem is more serious because of the equivalence between feature invariance and
intrinsic uncertainty (an uncertainty internal to the observer, as opposed to that in the stimuli,
or extrinsic uncertainty), which we shall explain next.

Visual processing entails the extraction of “features” from retinal inputs that are relevant to
behavior. In theories of object perception, the degree of invariance that a feature possesses is
a central issue. Biederman (1987) and Marr (1982), for example, viewed visual processing as
a stage-wise process designed to recover, from retinal images, non-accidental features of
increasing complexity and invariance (edges, contours, corners, simple volumes, and structural
description of volumes). For example, an edge feature is invariant to local contrast and immune
to changes in local illumination; a volumetric feature is invariant not only to local and global
illumination but also to the observer’s viewpoint. All theories of object recognition involve
invariance but differ in the degree of invariance they rely on to make the final determination
of object identity (cf. Tjan, 2002; Tjan & Legge, 1998).

Consider a detector that signals the presence of a particular feature (e.g., an edge) while
ignoring the specific image properties that the feature was rendered with (e.g., the colors across
the edge). It is as if the detector is obligatorily considering all possible versions of the feature
(e.g., white–black edge, white–gray edge, red–green edge, etc.). Such a feature detector will
exhibit an amount of intrinsic uncertainty, equal to the effective number of orthogonal instances
in the equivalent set of the input images that lead to the same response. The notions of
“invariance” and “uncertainty,” albeit different in their historical and theoretical origins, are
therefore the same.

If the method of classification image indeed could not handle uncertainty, it would be of limited
use as a tool to reveal the mechanisms of vision, which undoubtedly involve invariance.
Limitations imposed by uncertainty have been noted and partially addressed in the past. Using
a vernier-offset detection task, Barth, Beard and Ahumada (1999) rejected the linear observer
model (one that does not have uncertainty) by showing a significant discrepancy between
classification images from human observers and those from a linear model, when the
classification images from the offset-present and offset-absent trials were considered
separately. They also estimated the amount of positional and orientation uncertainty in the
human observers by explicitly modeling uncertainty as a small Gaussian weighting function.
Solomon (2002) likewise pointed out that for a yes–no signal detection task, any difference in
the shapes of templates estimated from target-present trials as compared with target-absent
trials may be due to uncertainty. Abbey and Eckstein (2002) extended this observation to 2AFC
tasks and provided a statistical test for using classification images to detect the presence of
observer nonlinearities. Although these studies showed how observer nonlinearity, such as
uncertainty, could be detected from classification images, they did not provide a general
method for template estimation in the face of large uncertainty. Eckstein, Shimozaki, and

1In vision, and particularly in the context of signal-detection theory, the term “cross-correlation” has often been used, at least since
the 1970s, to refer to a dot product, or in the functional form: s(x,y)·t(x,y) = ∬s(x,y)t(x,y)dxdy. Hence, the result of a cross-correlation
is a scalar. Yet, in mathematics, cross-correlation is defined as a convolution with a flipped and conjugated kernel. For a real function
of two dimensions, this is s(x,y)⊗t(x,y) = ∬s(x – u,y – v) t(–u, –v)dudv. Hence, the result is not a scalar but a function of (x,y). This
confusion is particularly unfortunate when we try to describe a mechanism that is shift invariant (i.e., the mechanism is a cross-
correlation in the second but not the first sense of the term). Murray et al.(2002) used the term in the first sense (dot product). In
this paper, we will avoid the use of the term cross-correlation all together. We will use “correlation” when referring to a dot product
and describe cross-correlation in terms of convolution.
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Abbey (2002) went one step further to show that, at least for a small amount of positional
uncertainty in the task (two possible positions), the classification image computed at each
possible position was an unbiased estimate of the underlying templates of a Bayesian ideal
observer.

The goal of this paper is to show that with a slight modification to the current practice, the
method of classification image is generally applicable even when the task, the visual system,
or both possess a great deal of uncertainty (and invariance). This is achieved by understanding
the role that a signal plays in a classification-image experiment in the context of a well-
established uncertainty model (cf. Pelli, 1985), first proposed by Tanner (1961). Specifically,
we will demonstrate the theoretical feasibility and empirical practicality of recovering the
perceptual templates of an observer for tasks with a high degree of spatial uncertainty. We will
also demonstrate how the degree of uncertainty may be estimated from the resulting
classification images.

Overview
The rest of this paper is organized as follows. In the first half of the paper, we will explore the
theoretical under-pinnings that allow the use of classification-image methods in conditions
with high uncertainty. We will illustrate the various aspects of our proposed method
analytically and by means of simulations using an ideal-observer model for which we know
the ground truth about the observer’s templates. In the second half of the paper, we will
demonstrate the practicality of our method via three sets of experiments with human observers.
Experiments 1 and 2 will show that we can uncover, within a reasonable number of trials, the
perceptual templates for letter identification and detection tasks in conditions with varying
degrees of spatial uncertainty. We will also show that the degree of uncertainty can be estimated
from the classification images. In Experiment 3, we will demonstrate the potential of our
method by using it to measure both the quality of the perceptual templates and the amount of
intrinsic spatial uncertainty in human peripheral vision.

Theory
We first consider an ideal observer for identifying known patterns in additive Gaussian noise
(Tjan, Braje, Legge, & Kersten, 1995; Tjan & Legge, 1998). An ideal observer is a theoretically
optimal decision mechanism for a given task and its stimuli. Strictly speaking, an ideal observer
is not a model of any actual observer. Its formulation is completely determined by the given
task and its stimuli. An ideal observer establishes the upper bound of the level of performance
achievable by any observer, biological or otherwise, and often provides a good starting point
for modeling human observers.

A typical task used in a classification-image experiment is to discriminate between two patterns
embedded in additive Gaussian white noise. A detection task is a special case of this, where
one of the patterns is a blank (noise-only) display. For each of the two patterns, there may be
one or more instances. Consider for example a task to identify if the noisy stimulus contains
the letter “O” or “X.” A single-instance version of this task is one where there is only one
version of “X” and one version of “O.” For a single-instance task, the signal for each response
is known exactly, and there is no stimulus uncertainty. Stimulus uncertainty is introduced when
different image patterns are to be associated with the same response—for example, in a
multiple-instance version of the task, the letters may appear in different fonts, sizes, or
positions.

Let Tr,j be the jth version of a noise-free contrast pattern with a response label r. (Unless the
context suggests otherwise, we generally present a 2-D pattern as a column vector by
concatenating all columns of an image into a single column.) Let Nσ be a sample of a Gaussian
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white noise (a multinomial normal distribution of zero mean and diagonal covariance σ2 I). A
noisy stimulus with a signal contrast of c is,

(1)

The general form of the ideal observer for identifying the embedded pattern in I with maximum
accuracy is to select the response label r that maximizes the posterior probability (Duda &
Hart, 1973; Green & Swets, 1974; Peterson, Birdsall, & Fox, 1954). That is,

(2)

The summation over j (marginalization) in the second expression follows strictly from
probability theory because the occurrence of the different versions of a pattern is mutually
exclusive in a single presentation.

Assuming that all patterns are equally likely to occur, by applying the Bayes theorem and the
probability density function (p.d.f.) of a normal distribution and by collecting into a constant
the terms that do not vary with either r or j, we have:

(3)

where M is the number of distinct patterns with the same response label, the ks are constants,
and the superscript T denotes matrix transpose. We note that ITI does not vary with either r or
j and has therefore been treated as a constant.

Equation 3 provides us with the optimal decision rule for pattern identification with or without
stimulus uncertainty. The optimal decision rule is to choose the response r that maximizes a
univariate decision variable λ(r):

(4)

An appendix in Tjan and Legge (1998) provides a computationally efficient way of
implementing this decision mechanism when the stimulus uncertainty (M) is large (in the tens
of thousands).

Two special cases of the optimal decision rule are noteworthy. For a task where all signal
patterns have the same contrast energy, the dot product Tr,j

T Tr,j is a positive constant and can
be removed from the decision rule:
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(5)

For a task with equal-energy signals and no stimulus uncertainty (M = 1), the optimal decision
rule can be further reduced to that of a linear correlator by taking advantage of the fact that the
exponential function is monotonically increasing and by removing all constant terms:

(6)

What we have shown is that the popular linear observer model (Equation 6), which makes a
decision by linearly correlating the input with a template, is the optimal decision mechanism
when there is no stimulus uncertainty and when the stimulus noise is white, a well-known result
that is worth reiterating. To maintain optimality under these conditions, it is not necessary to
know either the signal contrast (c) or the noise variance (σ2). The assumption of a linear
observer is the singularly most important assumption for the classification-image method
(Ahumada, 2002; Murray et al., 2002). Also evident from our derivation is the reason why
uncertainty presents a significant challenge to the classification-image method—because there
are no apparent means of approximating the optimal decision variable of Equation 5 to
something similar to Equation 6.

The uncertainty model
When stimulus uncertainty is due to the task (multiple input patterns are to be associated to the
same response per task requirement), such uncertainty is often referred to as “extrinsic
uncertainty” because it is external to an observer. With extrinsic uncertainty, Equation 4 or 5
is the optimal decision rule if the equal contrast energy condition is met. Extrinsic uncertainty
is contrasted with “intrinsic uncertainty,” which refers to the uncertainty assumed by the
observer. For example, in a letter identification task where there is only one instance of “X”
and one instance of “O”, observers may still insist on considering different versions of the
letters during a trial either because they lack the precision for encoding certain attributes of the
instances (e.g., the exact stimulus size or position) or because they are misinformed about the
task. With intrinsic uncertainty, Equation 4 or 5 becomes an ideal-observer model2 of the
observer. When M in Equation 4 or 5 is greater than 1, the decision rule would be suboptimal
for the task, which has no uncertainty, but it is optimal for the observer with the explicit
limitation that the observer had assumed that there was uncertainty in the task. Tanner
(1961) pointed out that if an observer did not know the signal exactly and had to consider a
number of possibilities, the observer, which could be otherwise ideal, would have a steeper
psychometric function compared with that of an ideal observer. Early studies in audition (cf.
Green, 1964) and vision (e.g., Foley & Legge, 1981; Nachmias & Sansbury, 1974; Stromeyer
& Klein, 1974; Tanner & Swets, 1954) found that when a subject was asked to detect a faint
but precisely defined signal, the resulting psychometric function had a slope consistent with
the presence of a significant intrinsic uncertainty.

In a seminal paper, Pelli (1985) made the case that intrinsic uncertainty could account for a
large range of psychophysical data related to contrast detection and discrimination. Pelli

2We make the distinction between an ideal observer and an ideal-observer model. Whereas an ideal observer is defined solely with respect
to a given task and its stimuli, an ideal-observer model, in contrast, includes also the assumed limitations of a human observer. That is,
an ideal observer is optimal with respect to a task and its stimuli; an ideal-observer model, on the other hand, is optimal with respect to
the task, stimuli, and the explicitly assumed limitations of the human observer.
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demonstrated that a simple model of intrinsic uncertainty, which was already quite popular at
the time of his writing but with properties not well understood, provided an excellent fit to
psychophysical data for contrast detection and discrimination in many different conditions. In
a nutshell, the uncertainty model makes a decision based on a decision variable of the form:

(7)

The model essentially says that the observer selects a response associated with the “loudest”
channel. With hindsight, it is not difficult to see why Equation 7 is a reasonable approximation
to the optimal decision rule (Equation 5):

(8)

We use ↔ to indicate that two functions are monotonically related such that replacing one with
the other does not affect the rank order of the values of the function. The only approximation
in Equation 8 is the replacement of the sum of a set of exponentials by the largest value from
the set (Equations 12 and 13 in Nolte & Jaarsma, 1967). This approximation is reasonable if
the largest value is very large relative to the other values to be summed, as is often the case
with an exponential function.

The uncertainty model (Equation 7) is the key theoreical foundation that led to our proposed
method for obtaining a classification image in the face of uncertainty. The results of Pelli
(1985) showing the general validity of this model to a large set of empirical data and the rather
ubiquitous applications of the model in visual psychophysics justified this starting point.
Nevertheless, we note that our approach does not depend on any subtle assumptions of the
uncertainty model beyond Equation 7 and is theoretically robust.

Isolating a channel in the uncertainty model by using a signal
If there is no uncertainty and if the linear observer model (Equation 6) is a good approximation
of an actual observer, then it has been established that the classification-image method could
uncover the observer templates Tr (cf. Ahumada, 2002). The same, however, could not be said
when there is significant extrinsic or intrinsic uncertainty.

An inherent property of the uncertainty model (Equation 7) offers a way to reduce or eliminate
intrinsic uncertainty and thus reduces the uncertainty model to a linear observer model. Because
the channel with the highest response drives the net output of the uncertainty model, the
presence of a relatively strong signal in the noisy stimulus will bias one channel over the others
in terms of its contribution to the observer’s response. When the observer made an incorrect
response while the signal is present, we know with relative certainty that it was that channel
that often responded maximally to the signal that was suppressed. The linear kernel associated
with this channel can then be recovered using the conventional classification-image technique.

We can illustrate this logic more precisely by combining Equation 7 with the definition of the
stimulus (Equation 1):

Tjan and Nandy Page 7

J Vis. Author manuscript; available in PMC 2009 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(9)

where we let Tr,z, z ∈ [1, M] denote the channel that has the highest response for signal S The
last line of approximation is justified because (1) for equal-energy signals, NσTTr,j is
statistically identical for all channels j, and (2) the term STTr,z leads one particular channel to
have the highest response most of the time and thus to single-handedly drive the decision
variable λ(r). What is critical for this approximation is that the response STTr,z must be
significantly larger than the responses from the other channels. We refer to this requirement
as the “signal-clamping” requirement and the approximation in Equation 9 as the signal-
clamping approximation.

In short, we are using a fixed signal to hold on to a specific channel and a varying noise to map
the linear kernel of the channel. We refer to this approach as the signal-clamped classification-
image method. Our logic is essentially the same as the two-bar method by Movshon,
Thompson, and Tolhurst (1978) for mapping the linear component of the receptive field of a
complex cell. We can think of a complex cell as an observer with uncertainty in the phase of
a grating and is approximately equivalent to a detector that does a max-response pooling from
a large set of detectors, each selective to a specific phase.3 With this perspective, we can think
of the two-bar method as using one bar to select a channel of a specific phase, and the other
bar, with varying positions relative to the first bar, to map the receptive field of the selected
channel.

Properties of signal-clamped classification images
Signal-clamped classification images have distinct properties that can be exploited to estimate
the amount of intrinsic uncertainty (or equivalently, the degree of invariance) of an observer.
We will illustrate these properties, first analytically and then by simulation using an ideal-
observer model (Equation 4), for which we know the ground truth about the observer’s internal
templates and the amount of intrinsic uncertainty. We used an ideal-observer model in the
simulation instead of the uncertainty model (Equation 7) to show that the analytical properties
of signal clamping derived from the uncertainty model does not depend on the absolute validity
of the uncertainty model. Whether these properties are valid for a human observer is an
empirical question. The three human experiments in the second half of this paper will confirm
that these analytical properties of signal-clamped classification images are indeed valid and
robust.

Contrast of signal-clamped classification images—For the rest of this paper, we will
consider a two-letter identification task (“O” vs. “X”) and a single-letter detection task
(detecting “O” against a noisy background). We restrict the form of uncertainty to the
uncertainty about the location of the stimulus on the display. The templates (or channels) for
a given response are shifted versions of one another but are otherwise identical; that is,

(10)

3The more conventional model for a complex cell is to sum the square of the outputs of a quadrature pair (a contrast energy model).
Here, we are making a qualitative point and thus are ignoring the quantitative difference between the energy model and the uncertainty
model.
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where Tr is the position-normalized template for response r and pj is a position on the display.
Our goals are to recover Tr and the range of pj. Possible generalizations of the signal-clamping
technique to other types of uncertainty beyond that of shift invariance will be addressed in the
General discussions section.

A conventional classification image is a composition of a set of classification subimages. A
subimage CIAB is the average of all the noise patterns Nσ (Equation 1) from trials where the
signal in the stimulus was A and the observer’s response was B. Consider the two-letter
identification task (“O” vs. “X”). The subimage CIOX is the average of the noise patterns
NOX from trials where “O” was in the stimulus but the observer responded “X” (we refer to
this as an OX trial). An “X” response implies that the internal decision variable for an “X”
response was greater than that for an “O” response; that is, λ(“X”) > λ(“O”). Appealing to the
uncertainty model (Equation 7) and the composition of a stimulus (Equation 1) and letting Xj
= Tx,j and Oj = To,j to improve readability, we have

(11)

where O (without any subscript) is the “O” signal in the noisy stimulus presented to the
observer. If there is no uncertainty (M = 1), Equation 11 becomes the familiar form that
underlies the conventional classification image:

(12)

The right-hand side of the inequality is a positive number because a noiseless “O” stimulus
will activate the “O” channel (O1) more than the “X” channel (X1); that is, OTO1 > OTX1. For
this inequality to hold, the average noise pattern on the left-hand side must have a positive
correlation with the X template and a negative correlation with the O template. Ahumada
(2002) showed analytically that

(13)

where E[·] denotes a mathematical expectation (see also Abbey & Eckstein, 2002; Murray et
al., 2002). The proportional constant is affected by the probability of an OX trial (stimulus
“O”, response “X”), and the internal-to-external noise ratio (ratio between the variances of the
noise internal to an observer and that in the stimuli; e.g., see Equation A3 in Murray et al.,
2002). CIOX approaches E[NOX] as the number of OX trials (NOX) approaches infinity. For a
finite number of trials, the variance of CIOX is rather cumbersome because the probability
density of CIOX is a truncated version of the multidimensional Gaussian (Nσ) used to form the
stimuli. Ahumada (2002) pointed out that the variance of CIOX is upper bounded by the variance
of the nontruncated distribution. Murray et al. (2002, Appendices A and F) further argued that
the difference between the upper bound and the actual variance is negligible for a typical
classification-image experiment where (1) the amount of the stimulus noise is comparable to
the level of the observer’s internal noise, (2) the number of independent image pixels (and
hence the dimensionality of stimulus) is large, and (3) the accuracy level is above 75%. All of
the experiments in the current study met these three conditions. Thus, CIOX can be
approximated as
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(14)

where Nσ is a sample of white noise from the distribution used to form the stimuli (Equation
1).

Equations 13 and 14 show that in a conventional classification-image experiment, where a
great deal of effort is directed toward the elimination of uncertainty in the experiment, each
classification subimage contains both a positive image of one template and a negative image
of the alternative template. In the case of an error trial, the negative image is the template for
the presented signal, and the positive image is the template associated with the response.

Now consider a condition where there is no extrinsic uncertainty (i.e., the Xs, and Os were
always presented at the same position on the display) but with a significant amount of intrinsic
uncertainty (M » 1). Applying the signal-clamping approximation (Equation 9) to the right-
hand side of Equation 11, we have

(15)

The signal-clamping approximation applies only to λ(“O”) because the “O” signal in the
stimulus consistently biases one particular “O” channel (Oz in the equation). There is no such
trial-to-trial consistency among the “X” channels because none of them are tuned to the “O”
signal. Hence, the signal-clamping approximation does not apply to λ(“X”). Following the
logic of Ahumada (2002), we can show that (Appendix)

(16)

Furthermore, the relationship between the expected value of the noise (E[NXO]) and the
classification subimage (CIOX) remains the same as stated in Equation 14.

Equation 16 shows that the average of the noise patterns of the error trials contains a negative
image of exactly one of the many templates for the presented signal. Important for our purpose
is that this negative image is not affected by uncertainty and thus provides a good estimate of
the unknown template. This is due to the signal-clamping approximation applied to the right-
hand side of Equation 11. That is, the presence of a relatively strong “O” signal in the stimulus
biased the signal response to precisely one of the many “O” channels; when the observer made
an error and responded “X”, we are relatively certain that the noise pattern suppressed the
particular “O” channel (Oz in Equations 15 and 16) that would otherwise be responding.

Critically, the signal-clamping approximation is applicable only when the signal contrast in
the noisy stimulus is sufficiently strong. The disadvantage of this requirement is that when the
signal contrast is high, the number of the error trials, which is more informative than the correct
trials, will be low, and the average of the noise patterns from the error trials will have a high
variance (Equation 14). Hence, the contrast of the signal must be sufficiently high but not too
high. As will be shown in the simulations and with human data, a contrast that achieves an
accuracy of 75% correction reaches this balance.

Unlike the negative image, the positive image in the average noise pattern is severely affected
by uncertainty. This positive image (E[Xj] of Equation 16) corresponds to the average of all
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the channels associated with the response (“X” in our example). As a result, there will not be
any clear positive image in the classification subimages when there is significant intrinsic
uncertainty. The clarity of the positive image provides a way to estimate the degree of
uncertainty.

Estimation of spatial uncertainty—In the case of spatial uncertainty, the channels (or
templates) are assumed to be shifted versions of one another (Equation 10). If we represent the
spatial distribution of the channels with an image S, with each pixel corresponding to a location
in the image and the pixel value representing the probability of a channel at the location
responding erroneously to noise, then

(17)

where * denotes a convolution and Xz is the position-normalized template for “X”. Combining
Equations 16 and 17, we have

(18)

If S can be parameterized with a small number of parameters (e.g., S being a square region with
uniform distribution), then Equation 18 provides a way to estimate both the perceptual
templates and the amount of spatial uncertainty. We can obtain these estimates in stages. The
classification subimage CIOX, which, in the limit, approaches E[NOX], contains a negative
image of the “O” template, unaffected by uncertainty. Likewise, the subimage CIXO provides
a direct estimate of the “X” template. Knowing both the “O” and “X” templates, Equation 17
and the corresponding equation for E[NXO] can be used to estimate the spatial uncertainty S.

In practice, the estimation of the templates is never precise and methods for removing the noise
term in the sub-images tend to introduce various idiosyncratic artifacts. Fortunately, we will
show with simulation that estimation of the spatial uncertainty S appears robust, particularly
if it can be parameterized with very few parameters.

Classification images with extrinsic uncertainty—So far, we have assumed that there
is no spatial uncertainty in the experiment, and the only uncertainty is intrinsic to the observer.
In this case, the presentation of an “O” signal at a fixed location will most likely elicit a response
from one particular “O” channel. The classification subimages (e.g., CIOX) can be calculated
by averaging the noise patterns in the conventional matter:

(19)

We can obtain a clear template despite the spatial uncertainty caused by having a relatively
strong signal at a fixed position. No special operation is needed to reconstruct the classification
images.

With a small but important modification, Equations 16 and 18 will hold even when the spatial
uncertainty is both in the stimuli and the observer. Such a condition arises in experiments when
we want to test a shift-invariant observer by using signals whose positions vary from trial to
trial. The modification is to simply shift the noise pattern (with wraparound) by an amount that
either recenters the signal with respect to the image or otherwise normalizes its spatial position.
That is, if a stimulus at trial i was created by shifting the stimulus O1 by an amount pi:
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(20)

then we will replace NOX in all of the preceding equations with a shifted version SNOX, where

(21)

This modification is valid under the assumption that the templates for a given response are
shifted versions of one another (Equation 10).

Simulations—To illustrate the various properties of the signal-clamped classification
images, we consider an observer model that is otherwise optimal except for two limitations:
(1) it uses templates that are slightly different from the presented signal and (2) it may have a
high degree of intrinsic spatial uncertainty—spatial uncertainty that is not present in the stimuli
but nevertheless assumed by the observer. The decision rule for such an ideal-observer model
is given by Equation 5. We assume that there is no internal noise in the ideal-observer model.
The presence of internal noise before or after the template comparison stage will lower the
contrast of the resulting classification images without qualitatively affecting the critical
properties that we are trying to illustrate. In contrast, internal noise during template matching
will interact with intrinsic uncertainty and can lead to complex effects on the classification
images. Template estimation by the signal-clamping method will remain robust under this type
of noise; however, such noise will lead to a biased estimation of the spatial extent of an
observer’s intrinsic uncertainty when the method that we will be describing in Equations 23a
and 23b is used.

We simulated two tasks, a two-letter identification task and a single-letter detection task. For
each task, we simulated two levels of intrinsic spatial uncertainty. For each pair of conditions
(task and uncertainty level), we estimated the observer templates and the amount of the intrinsic
spatial uncertainty from the classification images. We also illustrated the effect of signal
clamping by simulating the tasks at two different signal contrast levels, one leading to a 55%
correct performance level and another to a 75% correct level.

For the letter identification task, the signals were lowercase “o” and “x” in Times New Roman
font with an x-height of 21 pixels. The signals were always presented at the center of a 128 ×
128 pixel image. The ideal-observer model used lowercase “p” and “k” from the same font and
size as its templates for “o” and “x”, respectively. In the case of no uncertainty (M = 1), the
templates were positioned to have the maximum overlap with the signal. In case of high spatial
uncertainty, the center position of a template is uniformly distributed within the center 64 ×
64 pixels of the image. There were 1,000 spatially shifted templates for each response (M =
1,000). The relative positions of the signals and the templates are shown in Figure 1a. For each
trial, the observer model made a decision according to Equation 5. The external noise had a
variance of 1/16 (σ = 0.25), identical to that used in the human experiments. The signal contrast
was set to a level to obtain an accuracy of 55% correct (low contrast) or 75% correct (high
contrast). The observer model was assumed to know the signal contrast (parameter c in
Equation 5).

Figure 1b shows the four sets of classification sub-images from these four simulated conditions.
Consider the high signal contrast conditions (middle column). When there was no spatial
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uncertainty (first row), the subimages contain an equal portion of both a positive and a negative
image of the two templates (“p” and “k”) used by the observer model. As predicted by Equation
13, these are the templates of the observer and not the presented stimuli. Compare these
subimages to the ones obtained with high degree of spatial uncertainty (second row, middle
column). As predicted by Equation 16, only one clear template is visible in each subimage.
Specifically, for the trials where the signal was “o” and the response was “x”, the classification
subimage CIOX contains a clear negative image of the template for the “o” response, which in
this case was the letter “p”—the template we built into the ideal-observer model. Remarkably,
this image is sharp and unaffected by the high degree of intrinsic uncertainty. This is the main
result of the signal-clamping technique. Also, as predicted by Equation 16, there is no clear
positive template in CIOX, which is the single most important difference between the two
uncertainty levels (M = 1 vs. M = 1,000). It is important to reiterate the point that the negative
image in CIOX resembles the observer’s template “p” and not the signal “o” that was presented.
The “o” signal biased a “p” template at a particular location, allowing the effect of noise on
that particular template to accumulate over all the error trials when the presented signal was
“o”. The effect of the noise was on the nonzero regions of the biased template, although these
regions may not overlap with the signal (e.g., the descender of the lowercase “p”).

The signal-clamping approximation that led to Equation 16 relies on the fact that there is
sufficient signal contrast in the stimulus to select a particular channel for imaging. When the
signal contrast was reduced, the image quality of the signal-clamped classification images is
markedly degraded (left column of Figure 1b). This is in stark contrast to the conventional
classification-image method (or reverse correlation) without uncertainty. When there is no
uncertainty, the overall image quality of the classification images improved with decrease in
signal contrast, as is commonly observed. The improvements are due to a decrease in noise for
the error-trial subimages (because the number of error trials increases) and an increase in signal
for the correct-trial subimages (because with a weak signal, correct responses are often aided
by coincidence with noise). With uncertainty, however, these improvements were overridden
by a failure of the signal-clamping approximation, allowing the uncertainty to affect the
accumulated template images and rendering the templates invisible. This effect is clearly
shown in the left column, second row of Figure 1b, where signal contrast was set to a low value
to achieve an accuracy of 55%.

We next turn to the estimation of the extent of the spatial uncertainty intrinsic to the observer
using Equation 18. We assumed S to be a uniform square region centered in the image with
d pixels on a side. Thus,

(22)

From Equations 14, 18, and 22, we have

(23a)

Likewise,

(23b)

The noise terms in Equations 23a and 23b are white and can be made to have the same variance
if we multiply both sides of Equations 23a and 23b by √NOX and √nXO respectively. If we knew
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the observer’s signal-clamped templates (Oz and Xz), then k, and most importantly the extent
of the spatial uncertainty d, can be estimated from the classification subimages for the error
trials by minimizing the least-squared error. The right-most column of Figure 1b plots the
residual sum-of-squares error for different values of d (with the value of k chosen to minimize
the residual at each level of d). The solid green curves were obtained using the veridical
observer templates (lowercase “p” and “k”). The value of d at which a global minimum is
achieved provides the estimate of the extent of the spatial uncertainty. The estimated values
for the two levels of uncertainty are 1 and 35 pixels, respectively, and are indicated by the first
character of the template label “pk”. For the high-uncertainty condition, the residual landscape
suggests that although the lower bound of d is well defined, the upper bound is not. In the
context of this limitation, the estimated values are in good agreement with the veridical values
(1 for the nouncertainty condition and 64 for the high-uncertainty condition).

The black curves and the one red curve represent the residual landscape of d computed using
incorrect observer templates. Each of the three black curves was obtained with a pair of
lowercase letters (except “p” and “k”) that resembled the classification subimages as the
presumed observer templates. The red curve was obtained with the presented signals (“o” and
“x”) as the presumed observer templates. Note that the values of d at the global minimum of
each of these residual curves are very similar. This result demonstrates the robustness of the
estimate of the spatial extent d of the underlying uncertainty, even when the observer template
is not precisely known. In practice, this means that we can obtain a reasonable estimate of the
spatial extent by assuming that the observer templates were identical to the presented signals.

Figure 2 shows the results of the single-letter detection task. The signal in this task is the
lowercase letter “o” from the two-letter identification task. The ideal-observer model used a
lowercase “e” as the template to detect the signal (Figure 2a). Two levels of intrinsic uncertainty
were simulated: spatial extents with a uniform distribution of 32 (medium uncertainty) and 64
(high uncertainty) pixels on a side of a square centered on the image. For the condition with
the smaller spatial extent, two types of spatial uncertainty were considered: one with a constant
M for both levels of spatial extents (M = 1,000) and another with a constant density (M = 1,000
for high uncertainty, M = 250 for medium uncertainty).4 The telltale sign of uncertainty is
evident in the classification subimages for all conditions (Figure 2b). In particular, the
classification subimage from the miss trials (CImiss) shows a negative image of the observer’s
template (a lowercase letter “e”), whereas the subimage of the false-alarm trials (CIFA) shows
only a positive haze (if there were no uncertainty, it would be a positive image of observer’s
template).

Performance of the ideal-observer model in the two medium-uncertainty conditions was
essentially the same in terms of threshold contrast (C250/C1,000 = 1.1) and classification images
(Figure 2b, first row, left and middle columns). This is consistent with the finding of Tjan and
Legge, (1998) that there exists a task-dependent upper bound of the effective level of
uncertainty, which can be substantially less than the highest possible level of physical
uncertainty. With respect to our current letter detection task, this means that increasing M
beyond a density of 250 possible positions per 32 × 32 pixels has no consequence in
performance.

For the signal-clamping approximation (Equation 9) to be exact, an observer’s internal
templates should be orthogonal, the signal should be strong, or both. Orthogonality is
effectively reduced when the spatial extent of the templates are confined to a smaller space.

4In the simulations, the possible positions were randomly drawn with replacement. The number of unique positions for the different
conditions were as follows: 870 for high uncertainty, 611 for medium uncertainty with M = 1,000, and 223 for medium uncertainty with
M = 250.
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That is, a randomly selected channel will tend to be in closer proximity to the channel at the
stimulus position. A reduction in the spatial extent also reduced the threshold contrast for
detection (by a factor of about 1.5 for the ideal-observer model). The combined effect of
reduced orthogonality and reduced signal contrast was incomplete signal clamping, which
resulted in the noticeable dark haze around the negative image of the observer template in
CImiss in both of the medium-uncertainty conditions. This dark haze was absent in the high-
uncertainty condition.

The white haze in CIFA is noticeably broader and fainter in the high-uncertainty condition
compared with the medium-uncertainty condition.

Equations 23a and 23b were used to estimate the spatial extent (d) of the uncertainty. Note that
for a detection task, one of the templates (X in this case) is an image of zeros; that is,

(24)

The residual landscape for estimating d is plotted in the second row of Figure 2b. As with the
case of the letter identification simulation, the green curve represents using the veridical
observer template (“e”) to perform the estimation, the red curve represents using the signal in
the stimuli as the template, and the three black curves were obtained using other lowercase
letters that resembled the classification subimages. Again, the values of d that minimize these
residual functions are relatively independent of the assumed observer templates. The averaged
estimated value of d was 14.6 pixels for the medium-uncertainty condition and 37.4 pixels for
the high-uncertainty condition. Although showing the same ratio of difference as the veridical
values (32 vs. 64 pixels, respectively), the estimated values are admittedly a factor of 2 less.
This is probably because the simulation used only 1,000 positions within Sd, as opposed to a
true uniform distribution of positions.

Summary of the method of signal-clamped classification image
Our main finding here is that by presenting a relatively strong signal in the stimulus, the
observer template for the presented signal can be imaged using the conventional classification-
image method in the face of a high degree of intrinsic spatial uncertainty. We called this type
of classification image obtained with a relatively strong signal embedded in the stimulus the
“signal-clamped” classification image. If spatial uncertainty is extrinsic (i.e., in the stimulus),
then the only minor change to the calculation of classification images is to shift the noise pattern
(with wraparound) to recenter the presented signal in the image (Equation 21). How this finding
may be generalized to other types of uncertainties will be addressed in the General discussions
section.

We have shown analytically and with simulations the following properties of signal-clamped
classification images obtained with a high degree of spatial uncertainty:

1. Each of the classification subimages from the error trials contains a clear negative
image of the observer’s template for the presented signal, unaffected by spatial
uncertainty intrinsic or extrinsic to the observer. However, in the presence of
uncertainty, the clarity of the template image markedly deteriorates if the contrast of
the presented signal is not sufficiently high. The need for a high-contrast signal goes
opposite to the conventional practice of using a low-contrast signal to increase the
effect of noise on the observer’s response.

2. Any positive image of the alternative template in a classification subimage for the
error trials is blurred by spatial uncertainty, often rendering it indiscernible.
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3. The extent to which these positive template images are blurred provides an estimate
of the spatial extent of the uncertainty.

4. Because of the presence of a relatively strong signal in the stimulus, the classification
subimages from the correct trials contain very little contrast and are relatively
uninformative. As a result, we do not advocate combining the subimages to form a
single classification image as in the conventional approach.

Our discussions have been and will continue to be focusing on the subimages from the error
trials, although the general properties of signal-clamped classification images derived in this
section also apply to the subimages from correct trials with merely a sign change. We ignore
the correct-trial subimages for the sake of simplicity. We do not lose much because with a
relatively strong signal in the stimulus, the signal-to-noise ratio (SNR) of correct-trial
subimages are often quite low.

Experiments
Three sets of human experiments were conducted to determine the practicality and utility of
the signal-clamped classification-image method. Experiments 1 and 2 paralleled the simulation
studies and aimed to demonstrate the feasibility of the proposed method and to empirically
validate the various properties of signal-clamped classification images. Experiment 1 used the
two-letter identification task, whereas Experiment 2 used the single-letter detection task. To
compare the effects of spatial uncertainty, both experiments were performed in the fovea where
spatial uncertainty of a human observer can be effectively manipulated with the stimulus. We
introduced spatial uncertainty into the task by randomizing the signal position within a given
region in the stimulus display. Knowing the actual spatial extent of the stimulus-level spatial
uncertainty provides a reference for evaluating the estimated spatial extent obtained from the
signal-clamped classification-image method.

Experiment 3 tested letter identification in the periphery. The visual periphery is known to
have a considerable amount of intrinsic spatial uncertainty (Hess & Field, 1993; Hess &
McCarthy, 1994; Levi & Klein, 1996; Levi, Klein, & Yap, 1987). No spatial uncertainty was
added to the stimulus. The objective of this experiment was to demonstrate that the method of
signal-clamped classification images can be used to uncover the perceptual template in the
presence of spatial uncertainty and to estimate the spatial extent of the uncertainty.

General methods
Procedure

In the identification experiments (Experiments 1 and 3), the task was to indicate which of the
two lowercase letters “o” or “x” was presented. In the detection experiments (Experiment 2),
the task was to indicate whether the lowercase letter “o” was presented.

Each experiment consisted of 10 blocks with 1,050 trials per block. In each trial, a white-on-
black letter was presented in a field of Gaussian white noise. The noisy stimuli (letter + noise)
were presented at the fovea for Experiments 1 and 2 and at 10 deg in the inferior visual field
for Experiment 3. The first 50 trials in each block were calibration trials in which the letter
contrast was dynamically adjusted using the QUEST procedure (Watson & Pelli, 1983) as
implemented in the Psychophysics Toolbox extension in MATLAB (Brainard, 1997; Pelli,
1997) to obtain a “calibrated” threshold letter contrast for reaching an accuracy level of 75%.
The remaining 1,000 trials were divided into five subblocks of 200 trials each, and QUEST
was reinitialized to the calibrated value at the beginning of each subblock. During the initial
50 calibration trials, the standard deviation of the prior distribution of the threshold value was
set to 5 log units (a practically flat prior), but for each subblock, the prior was narrowed to a
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standard deviation of 1 log unit. This restricted the variability of the test contrast but still
allowed adequate flexibility for the procedure to adapt to the observers’ continuously
improving threshold levels.

For the foveal experiments, the letter size was fixed at 48 pt in Times New Roman font (x-
height = 22 pixels). For the peripheral experiments, an acuity measurement was first performed
for each subject, in which the subject was instructed to identify any of the 26 letters presented
at a 10-deg retinal eccentricity in the inferior field. The size of the presented letter was varied
using the QUEST procedure to achieve an identification accuracy of 79%. Twice the acuity
size so determined was used in the main experiment.

Stimuli
The stimulus for each trial consisted of a white-on-black letter added to a Gaussian, spectrally
white noise field of 128 × 128 pixels. Before being presented to the observers, each pixel of
this noisy stimulus was duplicated by a factor of 2, such that four screen pixels were used to
render a single pixel in the stimulus. This was done to increase the spectral density of the noise.
The noise contrast was fixed at 25% rms. At a viewing distance of 105 cm, the noisy stimulus
was of size 4.7 deg, and the noise has a two-sided spectral density of 85.5 μdeg2. The mean
luminance of the noisy background was 19.8 cd/m2.

For the fovea experiments (Experiments 1 and 2), the letters were of size 0.81 deg (x-height)
in visual angle. For the periphery experiment (Experiment 3), the letters were of size 0.85 deg
for one subject and 1.15 deg for the other subject. The periphery letter size was 0.3 log units
above the subject’s letter acuity at 10 deg eccentricity. The contrast of the target letter was
adjusted with a QUEST procedure as described in the Procedure section.

For the experiments with spatial uncertainty, 1,000 uniformly distributed random positions,
representing the center of a presented letter, were preselected with replacement from an
imaginary square centered in the noise field. The spatial extent of the spatial uncertainty was
manipulated by changing the size of the imaginary square: 32 stimulus pixels on a side (i.e.,
64 screen pixels because of the factor-of-2 blocking to increase noise spectral density, 1.18
deg of visual angle) for the “medium” level of uncertainty and 64 stimulus pixels (128 screen
pixels, 2.37 deg of visual angle) for the “high” level of uncertainty. For the experiments without
spatial uncertainty, the letter was always presented at the center of the noise field, marked by
a fixation cross before and after stimulus presentation. Figure 3a depicts a noisy stimulus used
in the experiment.

The stimuli were displayed in the center of a 19-in. CRT monitor (Sony Trinitron CPD-G400),
and the monitor was placed at a distance of 105 cm from a subject. The monitor has 11 bits
(2,048 levels) of linearly spaced contrast level. All 11 bits of the contrast levels were
addressable to render the noisy stimulus for each trial. This was achieved by using a passive
video attenuator (Pelli & Zhang, 1991) and a custom-built contrast calibration and control
software implemented in MATLAB. Only the green channel of the monitor was used to present
the stimuli.

The stimuli were presented according to the following temporal design: (1) a fixation beep
immediately followed by a fixation screen for 500 ms, (2) a stimulus presentation for 250 ms,
(3) a subject response period (variable) with positive feedback beep for correct trials, and (4)
a 500-ms delay before onset of the next trial (see Figure 3b).

At the end of each trial, the following data were collected for the subsequent classification-
image reconstruction: the center position of the target letter, the state of the pseudorandom
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number generator used to produce the noise field, the identity and contrast of the presented
letter, and the response of the subject.

Subjects
Five subjects (one of the authors and four paid students at the University of Southern California
who were unaware of the purpose of the study) with normal or corrected-to-normal vision
participated in the experiments. All had (corrected) acuity of 20/20 in both eyes. Subjects
viewed the stimuli binocularly in a dark room. Written informed consent was obtained from
each subject before the commencement of data collection. Because of the monotonous nature
and long duration of each experiment (approximately 8–10 hr), subjects were allowed (and
encouraged) to take breaks whenever they so desired. All the subjects completed their
respective experiments in three to five sessions.

Classification-image reconstruction
For the purpose of reconstructing the classification images, the calibration trials in each
experiment block were ignored. For the rest of the 10,000 trials, the noise field was first
regenerated using the stored random number state. Next, the noise field was shifted with
wraparound based on the stored target position information as if to recenter the presented letter
(Equation 21). This shifting procedure was obviously unnecessary when there was no spatial
uncertainty at the stimulus level (Experiment 3, and one condition in Experiment 1). For each
trial, the recentered noise field was then classified into one of four bins based on the presented
stimulus and the subjects’ response. The noise fields in each bin were then averaged pixel-wise
to form the corresponding classification subimages.

Relative SNR of classifications subimages
The most practical concern in the signal-clamped classification method is whether the method
would require an unreasonably large number of trials to make up for the loss in the number of
error trials due to the need to use a relatively strong signal. For our experiments, as it will
transpire, 10,000 trials were sufficient to obtain classification images of good quality. We
sought to estimate from our data the minimum number of trials that would be needed when
uncertainty is high. We did so by computing the relative SNR (rSNR; Murray et al, 2002) as
a function of the number of trials; we then compared this function across different uncertainty
levels.

Murray et al. (2002) defined rSNR of a classification image C as:

(25)

where T′ is an assumed template and σC is the pixel-wise standard deviation of the image C.
Murray et al. showed that the discrepancy between T′ and the observer’s actual template only
leads to a reduction in the amplitude of rSNR by a constant factor relative to the inherent
variability of a classification image, thereby making the measurement less reliable. We
modified this approach to measure only the classification subimages of the error trials (e.g.,
CIOX and CIXO for the letter identification experiment) and only the negative template images
in these subimages.

For the two-letter identification task, we define rSNR as follows:
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(26)

Here, X and O are the presented letter stimuli. Equation 26 is applicable to the letter detection
task by setting X to zero. In essence, Equation 26 measured the SNR of the pixels that overlap
the negative O template in the subimage CIOX and the negative X template in the subimage
CIXO.

Experiment 1: Letter identification with and without spatial uncertainty
Experiment 1 was conducted in two different conditions, as was the case for the simulation
study: The first condition (no uncertainty) was intended to replicate past findings without
spatial uncertainty; the second condition was intended to verify our signal-clamped
classification-image method and the associated theoretical claim that perceptual templates can
be uncovered under conditions of spatial uncertainty.

Two subjects (A.O. and B.B.) participated in the nouncertainty condition. In this condition,
the letters (“o” and “x”) were presented at fixation without any spatial uncertainty. The task
was to indicate which of the two letters (“o” or “x”) was presented at each trial. The subjects
were explicitly told that the letters were always centered at fixation.

Subject A.O., and a third subject, A.S.N., participated in the high-uncertainty condition in
which the letter stimuli (“x” or “o”) were presented at any one of 1,000 different random
positions (see General methods section). The set of random positions was chosen from within
a square of 64 × 64 stimulus pixel (128 screen pixels or 2.37 deg on a side) centered in the
stimulus area. The extent of the spatial uncertainty was not known explicitly to the subjects
(except the author A.S.N.).

Results and discussions
Introducing a high degree of uncertainty into the stimulus elevated the contrast threshold by a
factor of 1.74 on average across subjects, although the effect of uncertainty on contrast
threshold is not of interest here. The left column of Figure 4 shows the classification subimages
for both levels of spatial uncertainty. The results of Experiment 1 bear out the theoretical
predictions described earlier, that a clear classification image showing what could be an
observer’s perceptual templates can be obtained under high spatial uncertainty within a
reasonable number of trials (10,000 in this case). Consider only the classification subimages
from the error trials (top right—CIOX and bottom left—CIXO). The most crucial finding is that
across uncertainty conditions, there was little or no difference between the negative
components of the error-trial classification subimages. This was true both within and between
subjects, confirming the general validity of the signal-clamping approximation (Equations 9
and 15).

There was a subtle difference in the estimated “x” templates from the two uncertainty
conditions. One stroke appeared missing in the high-uncertainty condition. With the Times
New Roman font used in the experiment, the missing stroke was about one third the width of
the other stroke. As a result, the lowercase “x” is not isotropic in its ability to limit spatial
uncertainty. It is less able to “clamp” spatial shift of an observer’s internal template along the
thicker stroke than across the thicker stroke. Shift or spatial uncertainty, along the thicker stroke
blurred the image of the thinner stroke, rendered it invisible for subject A.S.N, and only partly
visible for subject A.O. In other words, we do not think that the observer template for “x”
changed as a function of spatial uncertainty; rather, the difference in the observed templates
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was a result of imperfect signal clamping, which is not always avoidable. We will return to
this issue when we consider the perceptual templates in the visual periphery in Experiment 3.

The most noticeable difference between the classification subimages obtained from the two
uncertainty conditions is that for the condition without uncertainty in the stimuli (top two rows),
the subimages from the error trials showed both a negative and a positive component; for the
condition with a high degree of uncertainty (bottom two rows), only the negative component
was apparent, with the positive component being smeared out due to the spatial uncertainty.
This is predicted by Equations 18, 23a, and 23b and consistent with our simulation results.

To aid visual inspection, particularly regarding the absence of the positive components in the
high-uncertainty condition, we blurred the classification subimages with a Gaussian kernel
with a space constant of 1.4 stimulus pixels (right column of Figure 4). In the condition where
there was no spatial uncertainty in the stimulus, the positive component in the error-trial
subimages appeared considerably weaker and less defined than the negative component.
Because the positive component is susceptive to uncertainty (Equations 23a and 23b), it stands
to reason that there existed measurable amounts of spatial uncertainty internal to the observers.
Having no uncertainty in the stimuli does not guarantee the absence of uncertainty intrinsic to
an observer.

To estimate the spatial extent of the uncertainty (extrinsic and intrinsic) from the classification
images, we fitted Equations 23a and 23b to the two error-trial subimages to obtain a numerical
estimation of d in terms of stimulus pixels, using the lowercase stimuli as the presumed
templates. As demonstrated in the simulation, the choice of the presumed templates, which
may be different from the actual observer templates, does not significantly affect the estimated
value of d. The residual landscapes are plotted in the middle column of Figure 4. The standard
error of the estimate was determined by bootstrapping (Efron & Tibshirani, 1994). The results
are summarized in Table 1. As expected, the estimated spatial extent (d) of the combined
uncertainty (extrinsic and intrinsic) was significantly higher in the high-uncertainty condition
than the no-uncertainty condition. Moreover, these values are in reasonable agreement with
the veridical values (1 for the no-uncertainty condition and 64 for the high-uncertainty
condition).

Lastly, we sought to determine the minimum number of trials that would be required to obtain
classification subimages of sufficient quality. Figure 5 plots the rSNR (Equation 26) of the
error-trial classification subimages for subject A.O. as a function of the number of trials for
both the no-uncertainty and high-uncertainty conditions. rSNR linearly increased as a function
of the number of trials. This is expected because the pixel-wise variance of a classification
subimage linearly decreases with the number of trials. What is noteworthy is that the rSNR for
the high-uncertainty condition was higher than that for the no-uncertainty condition, which is
opposite to the results of the ideal-observer simulation (Figure 1). This remains to be the case
even when we changed Equation 26 to include both the negative and positive template images
in the calculation. We will address the relationship between rSNR and uncertainty in the
General discussions section.

Subjectively speaking, with 10,000 trials, both of the error-trial subimages for the no-
uncertainty condition were of sufficient quality. If we use this as a standard, then we only need
about 8,000 trials in the high-uncertainty condition to reach the same level of rSNR. We note
with interest that although uncertainty leads to an increase in threshold, the increase in
threshold, in turn, keeps in check the number of trials required for a signal-clamped
classification-image experiment.
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Experiment 2: Letter detection with medium and high degree of uncertainty
The ideal-observer simulations described earlier (see Figure 2) predict that the extent of the
spatial uncertainty (d as opposed to M) can be estimated from the classification images. This
prediction was tested in Experiment 2.

The task was to detect a lowercase letter “o” in noise. In each trial, the target was either
presented at any one of 1,000 different random positions (see General methods section) or not
presented with equal probability. Subjects were asked to indicate whether the letter was
presented or not. In the medium-uncertainty condition, the total set of random positions was
chosen from within a central square of 32 × 32 stimulus pixels (1.18 deg). The extent of the
spatial uncertainty was indicated to the subjects by means of a white rectangular bounding box
that was displayed during the fixation period immediately prior to the stimulus onset. Subjects
J.H. and M.J. participated in this condition.

In the high-uncertainty condition, the 1,000 different random positions were chosen from a
central square of 64 × 64 stimulus pixels (2.37 deg), and the extent of this uncertainty range
was not explicitly indicated to the subjects. In all other respects, the high-uncertainty condition
was identical to the medium-uncertainty condition. Two subjects, J.H. (who also participated
in the medium-uncertainty condition) and B.B., participated in this condition.

Results and discussions
The resulting classification images and the estimation of the spatial extent of the uncertainty
are shown in Figure 6. As predicted by Equation 24 and consistent with the simulation result,
a clear negative signal was visible in CImiss (the subimage from the miss trials) in the high-
uncertainty condition. Also, as predicted, there was no clear image of the target in CIFA (the
subimage from the false-alarm trials). The positive haze in CIFA is not as pronounced as that
in the simulation, probably due to the presence of internal noise and intrinsic spatial uncertainty.
The presence of a significant amount of intrinsic uncertainty in the observers may also explain
the absence of any blurring of the negative template image in CImiss in the medium-uncertainty
condition, which was observed in the simulation.

The positive haze in CIFA is more visible for the medium-uncertainty condition if we blur the
subimages (using a Gaussian kernel with a space constant of 14.1 stimulus pixel, right column
of Figure 6). Such a positive haze around the center of the image appears to be absent from
CIFA in the high-uncertainty condition.

The quantitative results for the estimation of spatial extent are depicted as plots of residual
versus d (middle column of Figure 6) and summarized in Table 2. These results were obtained
by fitting Equation 24 to the classification subimages, using the target letter “o” as the presumed
observer template. The spatial extent of the uncertainty (d) was significantly higher in the high-
uncertainty condition as compared with the medium-uncertainty condition, both within and
between subjects. The standard errors were estimated with bootstrap.

For the subject who participated in both of the uncertainty conditions (J.H.), we plotted rSNR
versus number of trials in Figure 7. Consistent with the result of Experiment 1, we found that
the rSNR was higher for the condition with a large extent in spatial uncertainty (and a higher
detection threshold). However, unlike Experiment 1, this result is consistent with the result of
the corresponding ideal-observer model (Figure 2), which also exhibited a higher rSNR in the
high-uncertainty condition.
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Experiment 3: Letter identification in the periphery
We explicitly manipulated spatial uncertainty in Experiments 1 and 2 to test if the various
properties of signal clamping derived from analysis and simulation were empirically relevant.
The results from the two preceding experiments suggest that these properties are indeed valid.
In Experiment 3, we used the method of signal-clamped classification image to estimate the
letter templates in the visual periphery and to determine the level of intrinsic spatial uncertainty
in the periphery (10 deg in the inferior field). It has been suggested that one reason for an
impoverished form vision in the periphery was because of a high degree of intrinsic spatial
uncertainty in the human periphery. The cause of the intrinsic spatial uncertainty can be due
to undersampling of the visual space (Levi & Klein, 1996; Levi et al., 1987) or to an
uncalibrated disarray in spatial sampling (Hess & Field, 1993; Hess & McCarthy, 1994). The
theory of uncalibrated disarray would predict a distorted perceptual template, whereas that of
undersampling would not. These predictions are contingent on the possibility of recovering
the observer’s template despite the high intrinsic spatial uncertainty in the periphery.

Prior to the main experiment, an acuity measurement was first performed on each subject (see
General methods section for details). In the main experiment, letter stimuli (lowercase “x” and
“o”) were presented at a fixed retinal eccentricity of 10 deg. There was no stimulus-level spatial
uncertainty, and the letter was always presented at the center of the noise field. The subjects
were apprised of this fact before the commencement of data collection. Subjects maintained
fixation at a green LED and were asked to identify which letter was presented in each trial.

The experiment was conducted on two subjects who had previously participated in one of the
earlier experiments. Subject A.S.N, (who had participated in Experiment 1 in the high-
uncertainty condition) had a peripheral acuity measurement of 0.42 deg in x-height. A letter
of 50 pt Times New Roman (x-height = 0.85 deg in visual angle) was used for A.S.N. Subject
B.B. (who had participated in Experiment 1 in the no-uncertainty condition) had an acuity of
0.57 deg in x-height. A letter size of 66 pt (1.15 deg in x-height) was used for B.B.

Results and discussions
The classification images for the two subjects are shown in the left column of Figure 8.
Qualitatively, the classification images in the periphery are very similar to the one in the fovea
with high stimulus-level spatial uncertainty (Rows 3 and 4 of Figure 4) and differ noticeably
from the fovea results without stimulus-level uncertainty (Rows 1 and 2 of Figure 4). The
recovered templates are not distorted in shape and almost identical to those obtained in the
foveal conditions. As was the case for the fovea condition with high extrinsic uncertainty, the
observers’ “x” templates obtained in the periphery, without any extrinsic uncertainty, appear
to involve only one stroke. We have attributed this effect to the possibility that spatial
uncertainty was not equally reduced in all directions with the Times New Roman “x” stimulus
because the two strokes of “x” differ in width by a factor of 3.

A very weak or nonexisting positive image in the error-trial subimages implies that there was
a significant amount of intrinsic spatial uncertainty in the periphery. Unlike the fovea
experiment (Experiment 1), the uncertainty in this experiment was entirely intrinsic to the
observers. We estimated the spatial extent of this intrinsic uncertainty using Equations 23a and
23b. The residual functions for the estimation are plotted in the middle column of Figure 8,
and the estimated spatial extents, in units of stimulus pixels, are summarized in Table 3. Table
3 also restates the results from the fovea experiment (Experiment 1) for comparison. Comparing
the fovea (from Experiment 1) and periphery results obtained without any spatial uncertainty
in the stimuli, it is clear and not surprising that intrinsic spatial uncertainty in the visual
periphery is much higher than that in the fovea. Averaging across the two subjects (B.B. and
A.S.N.), the intrinsic spatial uncertainty as measured with an isolated letter target in noise at
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10 deg eccentricity was 48 pixels or 1.78 deg, compared with 0.25 deg in the fovea. Figure 9
plots the estimated extent of spatial uncertainty in units of visual angles for the fovea and the
periphery conditions across subjects.

As to the debate of whether the primary source of spatial uncertainty in the periphery is
uncalibrated disarray (Hess & Field, 1993; Hess & McCarthy, 1994) or (calibrated)
undersampling (Levi & Klein, 1996; Levi et al., 1987), our results side with the latter. This is
because the negative templates for the letter “o” (and for the visible stroke of the letter “x”)
are sharp and undistorted, despite the sizable amount of intrinsic spatial uncertainty revealed
by the lack of positive template images and the estimated value of d.

General discussions
We showed that by presenting a signal of sufficient contrast in noise, we could uncover the
linear kernel (template) of a shift-invariant mechanism, using an otherwise conventional
classification-image method (or reverse correlation). In the context of a well-established
uncertainty model (cf. Pelli, 1985), spatial uncertainty or shift invariance can be modeled with
a set of linear front-end channels of identical kernels at different spatial positions. The
responses from these channels are pooled by a max operator. A signal of sufficient strength
can positively bias one of these channels, making it the most likely one to drive the system’s
response. Noise samples that are negatively correlated with the kernel of the selected channel
will suppress its response, occasionally leading to an error. Hence, by averaging the noise
sample from the error trials associated with a particular signal, we can obtain a negative image
of the linear kernel of the channel that normally responded to this signal. We demonstrated the
validity of this theory with simulations and in three human experiments. We also showed how
the spatial extent of the uncertainty could be estimated from the classification images.

The key to this method is to present the signal at a sufficient strength such that one particular
channel often generates the highest response. In the simulations, we showed that the resulting
classification images revealed the observer’s internal template and not the presented signal.

Another important departure from the conventional classification-image method is that we do
not combine the classification subimages. Keeping the subimages separate allows us to
preserve the blurry positive template images such that we can numerically estimate the spatial
extent of the uncertainty.

Although this paper has focused on spatial uncertainty (or shift invariance), the signal-clamped
classification-image method can be generalized to the other types of uncertainties. This is
because the signal-clamping approximation (Equation 9) depends solely on the validity of the
uncertainty model, which is not specific to spatial uncertainty.

The following discussions consider the potentials and limitations of how this signal-clamped
classification-image method may in general be applied to uncover internal representations.

Feature specificity and invariance
The spatial structure of the receptive field of a neuron in a higher cortical area (e.g., V4, IT) is
hard to characterize because the cell’s responses are both specific and invariant. Specificity
means that the cell may respond to a face but not to the lower half of a face. Invariance means
that the cell may respond equally well to either a frontal view of a face or a quarter view,
although these two images are very different.

Increases in both specificity and invariance are the hallmarks of visual processing. However,
both are forms of nonlinearities that render the conventional reverse correlation or
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classification-image method inapplicable. Specificity implies that it is statistically unlikely to
come across a noise pattern that happens to activate a mechanism (a neuron) because a partially
composed target may not elicit any response. Invariance causes distinct image patterns to be
sorted into the same response bin. Averaging such patterns often results in a blur and a pattern
to which the mechanism does not respond at all.

We have shown that in the case of shift invariance, the problem associated with invariance can
be resolved by signal clamping. This method can be generalized to other types of invariance
or uncertainty because the uncertainty model (and as a consequence, the signal-clamping
approximation of Equation 9) is not specific to spatial uncertainty. If a fixed signal is used to
probe a mechanism, it will remain the case that the signal will bias precisely one channel from
among the many to respond. Noise patterns with pixels that are negatively correlated with this
channel will likely lead to an error in the response. Hence, a classification subimage obtained
from the error trials will contain a clear negative image of the template of that one channel of
the invariant mechanism. Furthermore, the absence of any clear positive image in an error-trial
subimage will indicate that the mechanism is indeed invariant to some aspect of the stimulus,
although the precise nature of the invariance is not known. However, unlike shift invariance,
there is no general method to normalize the equivalent templates of an arbitrary invariant
mechanism. The template images revealed in a signal-clamped classification-image
experiment correspond only to those channels that responded to the presented signals. For
example, if the side view of a face was used as the signal to probe a face-selective neuron, then
only the template responding to the side view of the face will be revealed by the experiment,
although the mechanism may respond equally to all views of a face (i.e., the mechanism is
viewpoint invariant).

It may come as a surprise that signal clamping can also be useful to overcome the difficulties
associated with feature specificity of a high-level mechanism. Recall that feature specificity
means that a mechanism is highly nonlinear such that a partial signal often leads to no response.
The mechanism requires a conjunction of features to be present before it generates a response.
Random noise patterns are therefore unlikely to elicit any response. Signal clamping gets
around this problem by using the noise to disrupt, as opposed to activate, a mechanism. For
example, if a mechanism is tuned to the conjunction of two features (a AND b), and such a
mechanism is activated by a stimulus, then a noise sample that masks either feature “a” or
feature “b” will lead to a error response, and averaging such noise samples will reveal both
features “a” and “b”.

It is often possible to find a pseudominimal stimulus that sufficiently activates a mechanism.
A classic example is the reduction method that Saleem, Tanaka, and Rockland (1993) used to
investigate shape tuning of IT neurons. The reduction method, which starts with a stimulus
that the neuron is known to respond to and successively reduces the feature and complexity of
the stimulus until the cell’s response drops significantly, is an effective way of obtaining a
seemingly minimal stimulus that the neuron is tuned to. However, the process of reduction is
subjective, and a choice of reduction made several steps ago may lead to a end pattern that is
neither minimal nor optimal, and there is no way to know which way it is.

We observed that such a pseudominimal or suboptimal stimulus could be used as the signal in
a signal-clamped classification-image experiment to select a channel of an invariant
mechanism. If this initial signal contains a part that is superfluous, the noise component that
happens to mask that part will not have any effect on the mechanism’s response. If a noise
component masks a part of the signal that is crucial to the mechanism, then the mechanism’s
response will be suppressed, leading to an error (miss). This is particularly true if the
mechanism has a high feature specificity and does not respond to a partial target. Critically,
the noise patterns that masked the different crucial parts of the signal during different trials can
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be “ORed” together by averaging [NOT(a AND b) = (NOT(a) OR NOT(b))], revealing the
complete signal that the mechanism is tuned to as a negative image in the classification
subimage from the error trials.

Hence, regarding both invariance and specificity, the “trick” is to present a signal that can
effectively elicit a response from the mechanism of interest and collect the noise patterns that
suppress the response. In some sense, what we propose here is the opposite of spike-triggered
averaging. Rather than adding up the noise patterns that led to a spike, we propose to add up
the noise patterns that suppressed a spike.

Detecting invariance in a mechanism
Consider the letter identification experiment in the periphery (Experiment 3). Had we summed
the classification subimages as is conventionally done, we would have obtained a dual-template
image similar to what was obtained in the fovea condition without spatial uncertainty (assuming
good signal clamping). There would not be any indication from the classification image alone
that the periphery had a high degree of intrinsic spatial uncertainty. However, by examining
the individual subimages separately, particularly those from the error trials, it is very clear that
the fovea and the periphery results differ qualitatively—the positive component is largely
absent from the error-trial subimages in the periphery condition.

The signal-clamped classification-image method provides a qualitative means to detect the
presence of intrinsic uncertainty in a mechanism, as well as a quantitative method to estimate
the uncertainty. In principle, the method is generally applicable to all types of intrinsic
uncertainty and is not restricted to spatial uncertainty. In short, when the signal-clamping
approximation (Equation 9) is valid, the negative component in the error-trial subimages will
correspond to the template of a single channel in a possibly invariant mechanism that responded
to the presented signal, and the positive component will correspond to the average of all the
templates for all the equivalent signals associated with the erroneous response of the
mechanism (Equation 16). For a two-way discrimination task (e.g., our “o” vs. “x” task), the
negative component from one type of error trials (say, XO—signal was “x”, response was “o”)
can be compared to the positive component from the complementary error trials (OX). The
discrepancy between the two, aside from a sign difference, is indicative of intrinsic uncertainty.
This line of reasoning is similar to those in previous works on detecting observer nonlinearity
based on the differences between classification subimages (Abbey & Eckstein, 2002; Barth et
al., 1999; Solomon, 2002).

Whether the discrepancy between the negative and positive components is easily discernable
depends on the type of uncertainty and the stimuli used to probe it. For example, consider a
mechanism that has an uncertainty in the size but not in the position of a signal. If we tested
this system with the “x” versus “o” task, then the positive component from the OX trials would
be an average of x’s of all sizes, centered on one another. The result would still resemble an
“x” but with a bright and well-defined center and graded strokes extending outward. That is,
the average of x’s of all sizes may not be sufficiently different from a single, medium-sized
“x”. In contrast, the average of o’s of all sizes, which would look like a haze, will be quite
different from an “o” of any particular size. Thus, it would be easy to detect the presence of
size uncertainty with an “o” rather than with an “x” as a signal. We note with interest that the
classification subimages from the letter identification experiment in the fovea with no extrinsic
spatial uncertainty (Figure 4, Rows 1 and 2) appears to show this kind of size uncertainty.

Task requirements and invariance
A mechanism of sufficient flexibility (e.g., a human observer) may adjust its degree of
invariance to suit the task. For example, when there is no positional uncertainty in the stimuli,
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it would be suboptimal to use a mechanism that has a high degree of positional invariance. The
form-vision mechanism in the fovea, for example, seems to be capable of limiting its degree
of positional invariance, and hence the amount of intrinsic spatial uncertainty, when the target
position is precisely known (Experiment 1, nouncertainty condition). In contrast, the form-
vision mechanism in the periphery appears to be unable to make the same adjustment
(Experiment 3).

Likewise, a flexible mechanism must increase its degree of invariance along the relevant
stimulus dimension when the task requires it to do so. The letter detection experiment
(Experiment 2) showed that the foveal mechanism appears to make the appropriate adjustment
when the extent of the spatial uncertainty of the stimulus changed across conditions.

A mechanism that flexibly adapts to the task, such as a human observer, poses problems to the
signal-clamping method. Given that relatively strong signals must be used in an experiment,
the presence of these signals can influence how the mechanism will otherwise perform the task.
For example, a mechanism that normally has a high degree of positional invariance may limit
its processing to a particular region on the display if the signal is always presented at the same
location. In the case of spatial uncertainty, we may assume that the mechanism is shift invariant,
which allowed us to present a single signal at different positions on the display, and then shift
the noise patterns to normalize the position of the presented signal before averaging. However,
as we noted earlier, there does not exist a general method for normalizing other types of
uncertainty or invariance. Without such methods, an unpractically large number of trials may
be needed to obtain the classification images and to maintain a task requirement of high
invariance.

The components of a representation
Consider the “o” versus “x” experiment. What if a mechanism for this task represents “x” as
“either a left slash (\) or a right slash (/)”? The psychometric function (d’ vs. signal contrast)
of such a mechanism is nonlinear, as opposed to the linear psychometric function of a
mechanism that represents “x” as a single template. Unfortunately, linearity of a psychometric
function is nondiagnostic in practice because other factors, such as other types of uncertainty,
can also lead to a nonlinear psychometric function. In fact, the psychometric function of a
human observer is rarely linear for just about any task tested.

For the two-component mechanism, the classification image for the “x” template will look
exactly like “x”. There will be no indication of the two distinct components in the
representation. Signal clamping will not help to resolve this problem without any a priori
assumptions about the possible components. In fact, this is a general problem in all
classification-image methods that involve averaging noise samples across trials. For each type
of trials, although the signal and the response were the same, the cause of the response might
vary from trial to trial. Averaging assumes that the mechanism does not distinguish the higher
order structures within a trial from those across trials, which is clearly incorrect. Accumulating
higher order statistics across trials seem necessary. Techniques that involve obtaining the
covariance (de Ruyter van Steveninck & Bialek, 1988) in addition to the mean appear
promising, but their applications remain restricted to relatively simple systems or stimuli (e.g.,
the spatiotemporal receptive field of macaque VI neurons, Rust et al., 2005; complex cells in
cats, Touryan, Lau, & Dan, 2002; bar detection by human observers, Neri & Heeger, 2002).
The major challenges to these high-order techniques include the determination of what high-
order statistics to collect and whether the number of trials required to obtain such statistics is
practical.

To decipher a complex mechanism, intuitions about the underlying representation are not just
helpful but essential. Returning to our toy example, if we have an a priori reason to suspect
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that the “x” might be represented by a disjunction of two slashes (i.e., “x” = “/” or “\”), we
may test this hypothesis with signal clamping by presenting randomly either the left or the right
slash in a trial when “x” is supposed to be the target. Assuming that adequate measures have
been taken to ensure that nature of the task is not changed by the presented partial signal, we
can then left-right reverse the noise patterns from the error trials when “/” was presented and
average them with the noise patterns from the error trials when “\” was presented. If the
resulting negative image is not that of a single slash, then the hypothesis of “x” being
represented as either the left or the right slash can be rejected.

This toy example stresses a general nature of the signal-clamping method—it is as much a
hypothesis-driven method as a hypothesis-free exploration tool that the conventional
classification-image method is.

Other methods for measuring uncertainty
Signal-clamped classification images provide one method of estimating the amount of intrinsic
uncertainty (Equations 23a, 23b and 24) that is considerably different from the traditional
approach. The traditional method for quantifying intrinsic uncertainty is to estimate M, the
number of orthogonal channels possessed by the observer, by measuring the extent by which
the psychometric function (d′ vs. signal contrast) of the observer deviates from linearity or,
equivalently, its log–log slope deviates from unity (e.g., Foley & Legge, 1981; Green, 1964;
Nachmias & Sansbury, 1974; Stromeyer & Klein, 1974; Tanner & Swets, 1954). Pelli
(1985) used a Weibull approximation to the psychometric function and established via
numerical simulations the relationship between the parameters of the Weibull function and
M. Later work (e.g., Eckstein, Ahumada, & Watson, 1997; Tyler & Chen, 2000; Verghese &
McKee, 2002) departed from the Weibull approximation and/or derived analytically the
relationship between M and the parameters of a psychometric function. All these approaches
assumed the Max-rule model of uncertainty (observer’s response is determined by the
maximally responding channel) and that the M channels are orthogonal. Most critically, these
approaches treat uncertainty in a generic sense and make no distinction regarding the feature
dimension of the uncertainty. For example, uncertainty about a signal’s position is not
distinguished in these formulations from uncertainty about its orientation. All types of
uncertainty are characterized in terms of M—the equivalent number of orthogonal channels
that the observer possesses.

An alternative approach is to use an image-based decision model and measure the intrinsic
uncertainty of an observer by matching the model’s performance to that of the observer by
varying the amount of uncertainty in the model. With this method, uncertainty must be
introduced along one or more specific dimensions of the stimuli. For example, Tjan and Legge
(1998) studied the effect of viewpoint uncertainty on 3-D object-recognition tasks, whereas
Manjeshwar and Wilson (2001) measured positional uncertainty in a line-detection task. Both
studies assumed a sum-of-likelihood decision model. These image-based methods can
characterize uncertainty in units specific to the feature dimension of the uncertainty (e.g., visual
angle for positional uncertainty or angle of rotation for viewpoint). Moreover, these methods
do not require the templates considered by the observer to be orthogonal.

Our method of using signal-clamped classification images to estimate intrinsic certainty is
similar to the image-based approach except that it is less model specific. The method works
as long as signal clamping is reasonably effective (i.e., Equation 9 is a reasonable
approximation). Our method measures intrinsic uncertainty in terms of the spread of the noise
patterns along a feature dimension of interest (e.g., spatial positions of the perceived signal)
that led to false alarms. Such noise patterns cannot be clamped or normalized by the signal and
can therefore be separated from the noise patterns that led to misses, which are clamped by the
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signal. Unlike the image-based methods used in earlier studies, our method does not require
defining a specific image-based model of the observer.

rSNR and spatial uncertainty
We noted with interest that the quality of the signal-clamped classification images from human
observers, when measured in terms of rSNR (Equation 26), increased as spatial uncertainty in
the stimuli increased. In contrast, we found with ideal-observer simulations that the relationship
between uncertainty (intrinsic or extrinsic) and rSNR was actually quite complex. Consider
the letter detection task (Figure 2). When spatial uncertainty increased from a spatial extent of
32 × 32 stimulus pixels (M = 250) to 64 × 64 pixels (M = 1,000), the rSNR of the model’s
classification images increased from 627 to 751, whereas the model’s log threshold contrast
increased from −1.29 to −1.14 (a factor of 1.4 in contrast). When there was no uncertainty, the
model rSNR was 2,020 (not shown in Figure 2) at a log threshold contrast of −1.48. This U-
shape function of rSNR in terms of uncertainty was also evident for the letter discrimination
task (Figure 1). The rSNRs of the model’s classification images were 1,180, 856, and 973 for
spatial extents of 1 × 1, 32 × 32 (M = 250, not shown in Figure 1), and 64 × 64, respectively.

We do not fully understand why rSNR versus spatial extent is a U-shape function because we
do not yet have a close-form expression relating rSNR to uncertainty. We suspect that the U-
shape function was a result of the interplay between uncertainty and contrast threshold. Given
that the signal-clamping approximation (Equation 9) is never perfect, we expect rSNR to
decrease as uncertainty increases. However, as uncertainty increases, so does the threshold
contrast. Because masking a signal of higher contrast requires larger instantaneous amplitude
in the noise, the negative correlation between the presented signal and the noise pixels in the
error-trial classification subimages must therefore be stronger, resulting in a higher rSNR. In
short, an increase in uncertainty can cause either a decrease or an increase in rSNR, depending
on the amount of uncertainty and the amount of threshold elevation caused by the uncertainty.

In the experiments report here, human rSNR always increased with extrinsic spatial
uncertainty, which ranged from none to 64 × 64 pixels (at M = 1,000). This pattern of results
can be reconciled with data from the ideal-observer models by noting that intrinsic spatial
uncertainty was always present in the human observers, even when there was no uncertainty
in the stimulus (Table 1). Such intrinsic uncertainty might place human data on the increasing
portion of the U-shape function. In addition, internal noise in human observers may also play
a role. A more thorough analysis of rSNR versus intrinsic uncertainty in human observers
awaits future studies.

Conclusion
Most human experiments using the classification-image methods present a signal in each trial
primarily to keep the observers engaged. Here, we showed that such a signal, if of sufficient
strength, could limit or even eliminate the effect of uncertainty on the resulting classification
images. As examples, we successfully obtained clear images of human observers’ perceptual
templates in the face of a high degree of spatial uncertainty.

A hallmark of visual processing is the progressive increase of invariance. Because invariance
is a form of uncertainty, our method offers a new tool for uncovering the underlying
representations in a visual processing system.

Tjan and Nandy Page 28

J Vis. Author manuscript; available in PMC 2009 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Appendix

Appendix
We want to show that that noise sample NOX from the OX error trials, where the signal was
“O” but the response was “X”, has the mathematical expectation as described in Equation 16,
where Oz is the channel that is tuned to the presented “O” signal, Xj, j∈[1, M] are the channels
that are tuned to the possible signals for the “X” response, and E[Xj] denotes the average across
all Xjs. Our starting points are (1) the result from Ahumada (2002) for M = 1 (Equation 13)
and (2) the internal decision variable of the observer during these trials, with the signal-
clamping approximation applied (Equation 15).

We shall prove Equation 16 with mathematical induction on M. The case of M = 1 is true from
Ahumada (2002) (i.e., Equation 13). Assuming M = k is true, we consider the case of M = k +
1. Let v be the number of trials where Xj, j ≤ k, were the maximum-responding X channels on
the left-hand side of Equation 15. For these trials only, it was as if M = k, and Equation 16 is
true by assumption. The sum of the noise samples from these trials is

(A1)

Let w be the number of trials where Xk+1 is the maximum-responding X channel. For these
trials, it was as if M = 1, for which the result of Ahumada (2002) (Equation 13) applies. The
sum of the noise samples from these trials is

(A2)

Adding Equation A1 to Equation A2 and dividing the sum by the total number of trials (v +
w), we have

(A3)

Thus, Equation 16 will be true for M = k + 1, if it is true for M = k. Because it is true for M =
1, by mathematical induction, Equation 16 is true for all M ≥ 1.
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Figure 1.
(a) Signals and templates used for simulating the letter identification task using an ideal-
observer model. The white haze shows the spatial extent of the intrinsic spatial uncertainty of
the model for M = 1,000 and spatial extent (d) equal to 64 pixels. The templates used by the
model are shown in green. The letter stimuli are shown in red and overlapping regions in yellow,
(b) Classification images from the ideal-observer model for the letter identification task: first
row, simulations with no spatial uncertainty (M = 1); second row, simulations with high spatial
uncertainty (M = 1,000, d = 64); left column, low signal-contrast simulations at an accuracy
criterion of 55% correct; middle column, high signal-contrast simulations at an accuracy
criterion of 75% correct; right column, estimations of the spatial extent (d) of the uncertainty
for the high signal-contrast condition (middle column)—each curve is an error function labeled
by the templates used to obtain the estimate. The value of d at the minimum of each error
function represents the estimated spatial extent of the uncertainty. The minimum of each curve
is marked by the position of the first character of the corresponding label. The green curves
were obtained using the actual observer templates from the model, the red curves were obtained
using the stimuli letters as templates, and the black curves were obtained using pairs of letters
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that closely resembled (in terms of rms distance) the true templates. The high degree of
similarity in the estimated values of d using different putative templates shows the robustness
of the method. The stimulus noise had a pixel-wise standard deviation of 0.25. rSNR was
computed using only the error trials, as described in Equation 26.
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Figure 2.
(a) Signal and template used for simulating the letter detection task with an ideal-observer
model. The white haze shows the extent of the intrinsic spatial uncertainty of the model
observer for M = 1,000 and spatial extent (d) equal to 64. The template used by the model is
shown in green. The letter stimulus is shown in red. The overlapping regions are shown in
yellow, (b) Classification images from the ideal-observer model performing the letter detection
task at an accuracy level of 75% correct: first column, classification-image and spatial-extent
estimations for the medium spatial uncertainty condition (M = 1,000, d = 32); second column,
classification-image and spatial-extent estimations for a medium spatial uncertainty condition
(M = 250, d = 32), which has the same spatial density of templates as the high-uncertainty
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condition; third column, classification-image and spatial-extent estimations for the high spatial
uncertainty condition (M = 1,000, d = 64). The error functions of spatial-extent estimations are
labeled by the putative template used for the estimation. The value of d at the minimum of each
curve represents the estimated spatial extent and is marked by the position of the corresponding
label. The green curves were obtained using the model’s template, the red curves were obtained
using the stimulus letter as the template, and the black curves were obtained using letters that
resembled (in terms of rms distance) the model template.
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Figure 3.
(a) A sample of the noisy stimulus, (b) Timing of stimuli presentation: (1) fixation beep
immediately followed by a fixation screen for 500 ms, (2) stimulus presentation for 250 ms,
(3) subject response period (variable) with positive feedback beep for correct trials, and (4)
500 ms delay before onset of next trial.
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Figure 4.
Classification images for the human observers in the letter identification task (Experiment 1):
top two rows, no spatial uncertainty (M = 1); bottom two rows, high spatial uncertainty (M =
1,000, d = 64 stimulus pixels); left column, classification images at a signal contrast
corresponding to 75% correct; middle column, the spatial extent of the uncertainty estimated
from the classification images in the left column; the value of d at the minimum of each curve
(marked by the gray arrow) represents the mean spatial extent of the uncertainty; right column,
blurred versions of the classifications images from the left column using a Gaussian kernel
with space constant of 1.4 stimulus pixels for visualization purposes only. Image intensities in
each column are identically scaled to facilitate across-condition comparisons.
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Figure 5.
rSNR versus number of trials for subject A.O. who participated in both conditions of
Experiment 1. The gray arrow marks the approximate number of trials that would be needed
in the high-uncertainty condition to achieve the same classification-image quality as the no-
uncertainty condition. Error bars are boot-strap standard errors of the mean.
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Figure 6.
Classification images for the human observers in the letter detection task (Experiment 2): top
two rows, medium spatial uncertainty; bottom two rows, high spatial uncertainty; left column,
classification images at a signal contrast corresponding to 75% correct; middle column,
estimation of spatial extent of the uncertainty from the classifications images in the left column;
the estimated value of d with the minimum residual error is marked by the gray arrows; right
column, blurred versions of the classifications images in the left column using a Gaussian
kernel of space constant equal to 14.1 stimulus pixels to visualize the positive haze in the false-
alarm trials.

Tjan and Nandy Page 40

J Vis. Author manuscript; available in PMC 2009 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Plot of rSNR versus number of trials for subject J.H. who participated in both conditions of
Experiment 2. The gray arrow marks the approximate number of trials needed in the high-
uncertainty condition to achieve the same classification-image quality as the medium-
uncertainty condition.
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Figure 8.
Classification images for the human observers performing a letter identification task in the
periphery (Experiment 3) with no stimulus-level (extrinsic) spatial uncertainty: left column,
classification images at a letter contrast sufficient to obtain 75% correct; middle column,
estimation of the spatial extent of the intrinsic uncertainty from the classification images in the
left column; the value of d with the minimum error is marked by the gray arrows; right column,
blurred versions of the classifications images in the left column using a Gaussian kernel of
space constant equal to 1.4 stimulus pixels for visualization.
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Figure 9.
The spatial extent of uncertainty, d, in degrees of visual angle, for the subjects who participated
in the letter identification task in the periphery (10 deg inferior field, Experiment 3) without
stimulus-level spatial uncertainty (green). For comparison, the results for the same task in the
fovea with (blue) and without (red) stimulus-level spatial uncertainty are also shown.
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Table 1
The estimated extents of spatial uncertainty for conditions in Experiment 1 in units of stimulus pixels.

Condition Subject d ± SE

No uncertainty B.B. 5 ± 1.0

A.O. 9 ± 10.4

High uncertainty A.O. 35 ± 4.6

A.S.N. 51 ± 8.5
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Table 2
The estimated extents of spatial uncertainty for conditions in Experiment 2 in units of stimulus pixels.

Condition Subject d ± SE

Medium uncertainty M.J. 31 ± 22

J.H. 31 ± 13

High uncertainty J.H. 127 ± 45.3

B.B. 65 ± 28
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Table 3
The estimated extents of spatial uncertainty for the periphery condition in Experiment 3 in units of stimulus pixels, as
compared with those for the fovea conditions in Experiment 1.

Condition Subject d ± SE

Fovea, no stimulus A.O. 9 ± 10.4

  uncertainty (Experiment 1) B.B. 5 ± 1.0

Periphery, no B.B. 67 ± 31

  stimulus uncertainty A.S.N. 29 ± 9.4

Fovea, high stimulus A.S.N. 51 ± 8.5

  uncertainty (Experiment 1) A.O. 35 ± 4.6
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