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Abstract
Background—Prenatal exposure to cocaine can impede normal brain development triggering a
range of neuroanatomical and behavioral anomalies that are evident throughout life. Mouse models
have been especially helpful in delineating neuro-teratogenic consequences following prenatal
exposure tococaine. The present study employed a mouse model to investigate alterations in D1
dopamine receptor signaling and downstream immediate-early gene induction in the striatum of mice
exposed to cocaine in utero.

Methods—Basal, forskolin- and D1 receptor agonist-induced cAMP levels were measured ex
vivo in the adult male striatum in mice exposed to cocaine in utero. Further studies assessed cocaine-
induced zif 268 and homer 1 expression in the striatum of juvenile (P15), adolescent (P36), and adult
(P60) male mice.

Results—The D1 dopamine receptor agonist SKF82958 induced significantly higher levels of
cAMP in adult male mice treated with cocaine in utero compared to saline controls. No effects of
the prenatal treatment were found for cAMP formation induced by forskolin. Following an acute
cocaine challenge (15 mg/kg, i.p.), these mice showed greater induction of zif 268 and homer 1, an
effect that was most robust in the medial part of the mid-level striatum and became more pronounced
with increasing age.
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Conclusions—Together these findings indicate abnormally enhanced D1 receptor signal
transduction in adult mice following prenatal cocaine exposure. Such changes in dopamine receptor
signaling may underlie aspects of long-lasting neuro-teratogenic effects evident in some humans
following in utero exposure to cocaine, and identify the striatum as one target potentially vulnerable
to gestational cocaine exposure.
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Introduction
Exposure to cocaine in utero continues to be a major epidemiological concern with estimates
of 45,000 (1) to 375,000 (2) affected infants born each year. Roughly $352 million are spent
annually in special education programs for these children in the US (3), and health care costs
are estimated to be double that of a non-exposed infant (4). Despite the existing controversy
over the definitive effects of prenatal cocaine (see (3)) accruing evidence identifying neuro-
behavioral deficits in a subset of exposed offspring reinforce the need for further research aimed
towards understanding mechanisms contributing to such long-term sequelae.

Numerous studies reporting findings from exposed offspring have linked prenatal cocaine
exposure with microcephaly (5), low birth weight and preterm births (6), altered or delayed
motor development (7), global hypertonia and coarse tremor (8), reduced cognitive
development (9), and a subtle reduction in IQ (3) in a subset of exposed offspring. However,
the data remains elusive as to the independent contribution of prenatal cocaine vs. confounding
variables such as poly-drug use, poor prenatal; care, adverse living situations, and
compromised maternal health in contributing to adverse postnatal neuro-behavioral outcomes.
To control for some of these variables we created an animal model of prenatal cocaine exposure
which has provided support for the role of cocaine independently contributing to some but not
all of the clinical findings (reviewed in (10)). Of note,, rodents exposed to cocaine in utero
display an altered response to drugs of abuse when tested as adults including impaired
conditioned place preference (11,12), increased acquisition to (13,14) and enhanced
reinforcing ability of cocaine (13,14) in self-administration tests, augmented brain stimulation
reward following administration of cocaine and D1 agonists (15), and enhanced stereotypy
during cocaine induced behavioral sensitization (16).

The psychostimulant cocaine is a potent, indirect dopaminergic agonist, which inhibits
reuptake by the dopamine transporter to increase synaptic dopamine levels (17). Dopamine
acting on D1 receptors activates the cAMP pathway and cAMP mediated gene expression. A
significant amount of literature details the long-term effects of postnatal cocaine exposure on
the dopamine system in rodents (18,19) reviewed in (20,21). However, much less is known
about the long-term effects of prenatal exposure to cocaine. Evidence suggests decreased
dopamine transporter activity (22,23), and enhanced D1 (24,25) and D2 (23) dopamine receptor
levels/function in the striatum or midbrain of prenatally exposed animals. However, evidence
that prenatal cocaine attenuates D1 receptor signaling has also been found (26,27). Differences
in the species studied, as well as the route, dose and gestational timing of cocaine utilized may
contribute to such discrepant data. However, it is now well established that prenatal
pharmacological manipulation of the embryonic dopamine system via cocaine seems to
interrupt normal development possibly leading to an altered neuro-behavioral phenotype.

To date few studies have characterized alterations in gene expression in the brain of mice
prenatally exposed to cocaine. Of special interest are genes encoding proteins that regulate
neuronal plasticity including transcription factors (immediate-early genes, IEGs) such as c-
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fos and zif 268 (28), and synaptic plasticity factors such as Homer proteins (29,30). The striatum
is among the brain regions that show the most pronounced changes in gene expression
following psychostimulant treatments (31,32). The striatum is part of anatomically distinct
cortico-basal ganglia-cortical circuits that mediate planning and execution of motor functions
and goal-directed behaviors (33–36). Striatal dysfunction is implicated in a variety of neuro-
psychiatric disorders (37–39), including drug addiction (40,41). Genes induced in striatal
neurons by systemic psychostimulant administration include c-fos (42,43), zif 268 (44) and
homer 1a (45,46). Such gene induction is principally mediated by D1-like receptors; however,
D2-like receptors additionally modulate such effects (47,48). Notably, psychostimulant-
induced gene regulation is abolished by D1 receptor blockade (42,44,49,50), or by targeted
deletion of D1 receptors (51–54).

The present study investigated the effects of prenatal cocaine exposure on dopamine receptor
signaling. We assessed D1 receptor signaling by first examining basal, forskolin-, and D1
receptor agonist-regulated cAMP levels in the striatum of adult mice exposed to cocaine in
utero. This was followed by investigation of cocaine-induced expression of two IEGs, zif
268 and homer 1, in the striatum of mice exposed to cocaine in utero, at three developmentally
distinct ages, P15, P36 and P60, which correspond to juvenile, adolescent and adult age,
respectively.

Methods and Materials
Prenatal Cocaine Treatment

Prenatal treatments were accomplished as previously described (55). Briefly, timed-pregnant
Swiss Webster dams (Taconic Labs, New York) were assigned to one of two treatment groups
to receive twice-daily subcutaneous (s.c.) injections (at 7:00 AM and 7:00 PM) from E8–E17,
inclusive, of cocaine HCl (Sigma-Aldrich, St. Louis, MO, 20 mg/kg/injection, s.c., dissolved
in saline, 2 mg/ml; PCOC40), or 0.9% saline (PSAL). In the adenylyl cyclase experiment two
additional treatment groups were included; PCOC20 (2 daily injections of 10 mg/kg cocaine,
s.c. in saline, 1mg/ml), and saline pair-fed (SPF), which were injected with 0.9% saline twice
daily, but received a restricted diet to control for the anorectic effect of cocaine. Neither of
these control groups was significantly different from the PSAL group regarding fetal growth
(see supplemental data) or adenylyl cyclase activity, so offspring were not used in further
studies.

All pups were surrogate fostered to control dams (Black Swiss Webster; Taconic Labs, New
York), which had delivered within the previous 48 hours. To avoid the problem of
‘oversampling’ (56), no more than two offspring per litter were used.

Adenylyl Cyclase Measurement
Adult (P75-90) mice were exposed briefly to CO2, decapitated and the dorsal striatum (caudate-
putamen) was rapidly dissected on ice. Adenylyl cyclase activity was measured as previously
described (19). Briefly, crude membranes were immediately prepared from the striatum of
individual animals. Tissue homogenates (20–35 μg protein) were incubated in 10 mM imidizole
(pH 7.4), 10 mM theophylline, 6 mM MgSO4, 0.6 mM EGTA, 1.5 mM ATP, and 0.01 mM
GTP in the absence or presence of 10 nM – 10 uM SKF82958 or 10 uM forskolin in triplicate
for 5 minutes at 30°C. Adenylyl cyclase activity was terminated by placing the tubes into
boiling H2O for 2 minutes. The amount of cAMP formed was determined by a 3H]cAMP
binding protein assay (57). 3H]cAMP (4 nM) in citrate-phosphate buffer (pH 5.0) followed by
binding protein prepared from bovine adrenal glands was added to each sample. Standards for
quantification were prepared with tissue containing known amounts of cAMP (0.5 – 20 pmol).
A 90-minute competition reaction for the binding protein between formed cAMP and 3H]
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cAMP was incubated at 4°C to reach equilibrium, and terminated with charcoal and
centrifugation to separate the free cAMP from that bound to the binding protein. Aliquots of
the supernatants were assayed for radioactivity by liquid scintillation spectrometry using
CytoScint Scintillation Fluid (ICN Biomedicals, CA). Radioactivity counts were converted to
pmol of cAMP protein by comparison to the standard curve. Protein concentrations were
determined using a modification of the Lowry procedure (58).

Behavioral Testing
Horizontal locomotion was assessed in three different cohorts of male mice were tested at three
distinct ages, postnatal day (P) 15, P36, and P60. On the test day, mice were placed individually
in the test box (30 by 30 centimeter activity box with 16 photocells on each side connected to
a computer, MedAssociates, Georgia, VT) for a 15-minute habituation period, removed from
the box, injected with saline or cocaine (i.p., 15 mg/kg in saline,) and returned to their respective
box for 30 minutes. Immediately following, mice were decapitated, their brains removed and
rapidly frozen at −30°C in isopentane for in situ hybridization histochemistry.

In Situ Hybridization Histochemistry
Cryostat-cut coronal sections (12 μm) through the striatum were thaw-mounted onto glass
slides (Superfrost/Plus, Daigger, Wheeling, IL), dried on a slide warmer and stored at −20°C.
The sections were then fixed in 4% paraformaldehyde/0.9% saline for 10 minutes at room
temperature, incubated in a fresh solution of 0.25% acetic anhydride in 0.1M triethanolamine/
0.9% saline (pH 8.0) for 10 minutes, dehydrated, defatted for 2 × 5 minutes in chloroform,
rehydrated, and air-dried. Slides were stored at −30°C until hybridization.

Oligonucleotide probes (48-mers; Life Technologies, Rockville, MD) were labeled
with 35[S]-dATP (59). The probes had the following sequence: zif 268, complementary to bases
1757–1804, GenBank accession number M28844; homer 1, bases 674–721, AF093257. The
homer 1 probe was a pan probe, targeting the beginning of the transcript, in order to produce
a more robust signal (60).

Labeled probe (~3 × 106 cpm) in 100 μl of hybridization buffer was added to each slide (61).
The sections were coverslipped and incubated at 37°C overnight. After incubation, the slides
were first rinsed in 1X saline citrate (150mM sodium chloride, 15 mM sodium citrate), followed
by three washes (20 minutes each) in 2X saline citrate/50% formamide at 40°C, and two washes
(30 minutes each) in 1X saline citrate at room temperature. After a brief water rinse, the sections
were air-dried and then apposed to X-ray film (BioMax MR-2, Kodak) for 4–10 days.

Analysis of Autoradiograms
Gene expression was assessed in sections from rostral (approximately at +1.5 mm rostral to
bregma; (62,63), middle (+0.8), and caudal striatal levels (−0.2) (Fig. 1). Hybridization signals
on film autoradiograms were measured by densitometry (NIH Image, Wayne Rasband, NIMH)
across the total striatum on all 3 levels, as well as, on the rostral level, in medial and lateral
striatal sectors and in the nucleus accumbens core, and medial and lateral shell, and on the
middle level, in medial, central, lateral and ventral sectors (Fig. 1). The film autoradiograms
were captured using a light table (Northern Light, Imaging Research, St. Catharines, Ontario,
Canada) and a Sony CCD camera (Imaging Research). “Mean density” values of corresponding
regions in the two hemispheres were averaged after correcting for background by subtracting
mean density measured over white matter (corpus callosum). The illustrations of film
autoradiograms (Fig. 4) are computer-generated images, and are contrast-enhanced when
necessary.
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Statistical Analysis
Treatment effects were determined by one- or two-factor ANOVAs, followed by Fisher PLSD
(gestational data), Tukey’s, or Newman-Keuls post hoc tests (Statistica, StatSoft, Tulsa, OK).

All experimental protocols were approved by the Massachusetts General Hospital
Subcommittee on Research Animal Care and were in accordance with NIH and EEC directives
for animal studies.

Results
Adenylyl cyclase activity

Adenylyl cyclase activity was measured under basal conditions and following the addition of
forskolin or the selective D1 receptor full agonist SKF82958 in the striatum of adult male PSAL,
PCOC20, PCOC40 and SPF mice. Basal adenylyl cyclase activity was not significantly
different between prenatal treatment groups including PSAL, PCOC20, PCOC40 and SPF (p
> 0.05; Figure 2). Forskolin stimulated adenylyl cyclase activity by six- to eight-fold in all
animals, and there were no significant differences between prenatal treatment groups (p > 0.05;
Figure 2). SKF82958 produced an increase in cAMP formation at concentrations of 10 nM to
100 uM (Figure 2). Two-factor ANOVA revealed significant main effects of concentration (p
< 0.001) and treatment factors (p < 0.05) as well as a concentration-treatment interaction (p <
0.05). Tukey post-hoc analysis revealed that adult male PCOC40 mice showed significantly
greater stimulation of adenylyl cyclase activity by the D1 receptor agonist as compared with
PSAL mice (p < 0.05; Figure 2).

Behavioral effects
Three-way ANOVA revealed a significant main effect of postnatal treatment (coc vs. sal; F
(1,94)= 79.924, p < 0.0001) on locomotion in all three age groups, which was more pronounced
at P36 and P60 (p < 0.0001) than at P15 (p < 0.01), but no main effect of prenatal treatment at
any age studied (Figure 3). For both PCOC and PSAL groups post hoc analyses revealed
significantly higher locomotor activity in cocaine-treated mice compared to saline-treated
controls at P36 and P60 (p < 0.001), but not at P15.

Cocaine-induced zif 268 expression in the striatum and nucleus accumbens
Basal zif 268 expression (i.e., in PSAL mice) in the striatum was relatively low, but showed a
medial-to-lateral gradient with higher levels medially, in all three age groups (Table 1). Cocaine
challenge-induced zif 268 expression displayed distinct regional patterns throughout the
striatum. Induction of zif 268 was most pronounced on the middle striatal level, slightly lower
on the rostral level, but was minimal in the caudal striatum (Table 1). In both the rostral and
middle striatum, zif 268 mRNA levels were considerably higher medially than laterally after
the cocaine challenge. However, due to the medial-lateral gradient in basal expression, the
drug-induced increase tended to be greater laterally. On all levels, zif 268 induction was less
pronounced or absent in ventral striatal regions, including the nucleus accumbens (Table 1).

These expression patterns were in part age-dependent. Overall, younger animals tended to show
a greater zif 268 response than adults. For example, in the nucleus accumbens, at P15, there
was a significant increase in zif 268 expression after cocaine injection in the core (p < 0.01,
both prenatal treatments), whereas at P36, the response just attained statistical significance (p
< 0.05; core and shell), and at P60, no significant challenge effects were found in these
subdivisions of the nucleus accumbens. The spatial pattern of zif 268 expression shifted with
increasing age in the dorsal striatum as well. While stable in the medial part at all ages studied,
zif 268 induction in the rostral lateral striatum gradually diminished from P15 to P60 (Table
1). Moreover, on the middle level, the zif 268 response was statistically more robust in the
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central than in the lateral part of the striatum at P15, but gradually reversed to become more
robust laterally at P60 (Figure 4).

Effects of prenatal cocaine treatment on zif 268 expression were restricted to the middle
striatum; these effects were maximal in the medial part and increased with age (Figure 5; Table
1). Overall, mice prenatally exposed to cocaine vs. saline, tended to show reduced zif 268
mRNA levels following injection with saline (i.e., PCOC sal vs. PSAL sal), although this effect
did not reach statistical significance. Because of this somewhat reduced basal expression,
effects of the cocaine challenge were best revealed by the relative magnitude of the zif 268
response (expressed as % of basal levels). No statistically significant effects of prenatal cocaine
were seen at P15, with the one exception of a smaller challenge response (p < 0.05) in the total
middle striatum in animals prenatally exposed to cocaine (Table 1; Figure 5). In contrast, at
P36, there was a significantly increased relative zif 268 response in the medial part of the middle
striatum in animals prenatally exposed to cocaine (PCOC coc vs. PSAL coc, p < 0.05; Table
1). No other effects were seen at this age. At P60, a statistically more robust (p < 0.01) increase
was found in the medial striatum. In addition, increased zif 268 induction (p < 0.05) was also
present in the lateral and ventral striatum, and the increased response thus reached statistical
significance also for the total striatum on the middle level (p < 0.01; Table 1; Figure 5). In
contrast, a decreased zif 268 response (p < 0.05) was seen in the lateral shell of the nucleus
accumbens (Table 1).

Cocaine-induced homer 1 expression in the striatum and nucleus accumbens
Basal homer 1 expression in the striatum was also low, comparable to zif 268 expression (Figure
4). After the cocaine challenge homer 1 expression was increased, showing similar regional
patterns as zif 268 induction, but this increase was generally less robust than that for zif 268,
especially in younger animals. Cocaine-induced homer 1 expression was also more pronounced
in the medial than the lateral striatum, on all striatal levels and at all ages examined. On the
middle level, a similar, but less distinct, expression shift from more central than lateral at P15
to more lateral than central at P60 was apparent. In the ventral striatum, minimal or no effects
of the cocaine challenge on homer 1 expression were seen. In the core and in the lateral shell
of the nucleus accumbens, there was increased expression, which just reached statistical
significance (p < 0.05), in PCOC coc and PSAL coc mice, respectively, at P36 (Table 2).

Effects of prenatal cocaine treatment on homer 1 expression were similar to those on zif 268
expression, including the age-dependent expression pattern. No effects of the prenatal
treatment were seen in P15 animals. In contrast, at P36, animals prenatally exposed to cocaine
vs. saline displayed a significantly greater homer 1 response to the cocaine challenge in the
medial part of the middle striatum (PCOC coc vs. PSAL coc, % increase, p < 0.01; Table 2).
Moreover, at P60, mice prenatally exposed to cocaine showed a significantly enhanced homer
1 response in the rostral striatum (total, p < 0.05, absolute and relative increase; Table 2) and
in the middle striatum (total, p < 0.05, relative; ventral, p < 0.05, absolute; Figure 5, Table 2).

Discussion
In this study we provide evidence for an enhanced D1 dopamine receptor agonist-induced
cAMP response in the striatum of adult male, but not female (see Supplemental Materials)
mice prenatally exposed to cocaine compared to controls. Furthermore we show an age-
dependent augmentation of prenatal cocaine treatment on cocaine-induced striatal IEG
expression beginning at adolescence and becoming more robust into adulthood.
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Enhanced D1 receptor signaling
The current data provide evidence for an enhanced cAMP response to the selective D1 receptor
full agonist SKF82958 in the striatum of adult male, mice exposed prenatally to cocaine vs.
saline. We have previously shown that D1 receptor-stimulated adenylyl cyclase activity in mice
normally increases with age peaking at P20 (64). In that study mice exposed to cocaine in
utero exhibited a decrease in D1 receptor-stimulated adenylyl cyclase activity in the striatum
at E18, 24 hours following the final exposure to cocaine, which was a result of a significant
decrease in the expression of adenylyl under basal conditions. The present study, which
demonstrated an increase in D1 receptor-stimulated adenylyl cyclase activity in the striatum
of adult mice, with no significant difference evident under basal conditions, suggests that the
normal ontogeny of D1 receptor signaling evident postnatally is exaggerated following prenatal
cocaine exposure. P15, the earliest time at which we assessed cocaine-induced IEG induction
coincides with the time by which basal and foskolin-induced adenyly cyclase activity have
reached adult levels (64). The age-dependent increase in cocaine-induced gene expression we
observed in mice prenatally exposed to cocaine vs. saline at P15, P36, and P60 thus may require
a functionally mature signaling pathway to demonstrate the full effects of that exposure. The
exaggerated and persistent increase in D1 receptor-mediated intracellular signaling is a
potential mechanism contributing to other behavioral and neuro-anatomical anomalies we and
others have observed in adult mice following prenatal exposure to cocaine (e.g., 13,14). Despite
such persistent neuro-adaptations it is clear that prenatal cocaine treatment does not affect the
acute locomotor response to cocaine, similar to what has previously been seen at various
postnatal ages (16,79,80).

Persistent deficits in striatal D1 receptor signaling have been identified in a rabbit model of
gestational cocaine exposure. Rabbits exposed to cocaine in utero displayed a functional
uncoupling of D1 receptors from G alpha s, without any changes in the concentration of G
alpha s, D2 coupling, or D1 receptor antagonist binding (26,65). Furthermore, a recent report
(66) demonstrated a decrease in D1 receptor membrane expression in the striatum of
preadolescent rabbits prenatally exposed to cocaine, a novel finding which may provide
mechanistic insights into the reduction in G alpha s coupling seen in that model. At the level
of D1 receptor-activated signal transduction, Zhen et al. (67) have demonstrated an increase in
phosphorylation of DARPP-32 at Thr 34, an inhibitor of protein phosphatase 1 (PP1), and an
increase in D1 receptor phosphorylation in the striatum of rabbits prenatally exposed to cocaine.
They speculated that decreased PP1 activity leads to increased phosphorylation and increased
internalization of D1 receptors, which they hypothesized leads to decreased D1 receptor signal
transduction (26). Differences in the species studied, as well as the route, dose and gestational
timing of cocaine utilized may contribute to the discrepancies between the present data obtained
in mice and that published in the rabbit model.

Altered gene expression in the striatum
Our results show that male PCOC40 mice displayed greater induction of the IEGs zif 268 and
homer 1 in the striatum after a cocaine challenge injection. This effect was age-dependent; it
emerged during adolescence (P36) and was maximal in adults (P60). Regionally, this enhanced
gene induction was most robust in the middle striatum and was maximal in the medial part.
These findings are consistent with enhanced D1 receptor signaling in the striatum of these mice.

The present study assessed changes in gene regulation in different functional domains of the
striatum. We used a topographical mapping technique based on cortical input patterns (34,
68) that was developed for the rat (69,70) and simplified for the mouse. While limited
anatomical studies in the mouse (e.g., 71) indicate that the overall topographical organization
of the cortico-striatal projections is similar to that in the rat, the definitive association of the
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present gene regulation effects with particular functional domains in the mouse will need
confirmation.

Our most important finding is the age-dependent effect of prenatal cocaine treatment on IEG
induction in the striatum. Consistent with greater D1 receptor-stimulated cAMP formation, the
present study demonstrates that cocaine exposure in utero produces a long-term enhancement
of IEG induction by cocaine. This effect was most pronounced at P60 and most robust in the
middle striatum, and maximal in, but not limited to, the medial sector, which receives inputs
from prelimbic and anterior cingulate cortex in rat (69) and mouse (73). This abnormal gene
induction was best revealed when the challenge response was expressed relative to basal
expression, especially for zif 268, as basal zif 268 mRNA levels tended to be reduced in mice
exposed prenatally to cocaine compared to saline-injected controls. A suppression of basal zif
268 expression in the striatum by repeated cocaine treatment has been demonstrated before,
although this suppression was found after repeated treatment in adults and recovered within
2–3 days of the treatment (74).

The enhanced induction of striatal zif 268 and homer 1 provides a potential mechanism for
altered plasticity in striatal neurons. Zif 268 encodes a zinc finger transcription factor that
regulates a number of genes and has been implicated in a variety of neuroplastic processes
(28). Homer 1 is a member of a family of scaffolding proteins (Homer/Vesl proteins) of the
postsynaptic density that cluster and traffic glutamate receptors, link these to internal calcium
stores, and play a role in various mechanisms of synapse structuring and plasticity (29,30,
75). The homer 1 signal rapidly induced by psychostimulants (45,70,76) and other treatments
mostly reflects the IEG isoform homer 1a (60). This truncated homer 1 splice variant appears
to act as a dominant negative regulator of glutamate synapse strength (77), by promoting
disassembly and turnover of the signaling complex (29,30). This is seen as a necessary
stabilizing process (78) during activity-dependent synaptic plasticity (77). Enhanced induction
of these plasticity-associated molecules suggests that prenatal cocaine exposure renders these
animals more susceptible to cocaine-induced neuroplasticity. There is the potential for an
abnormal regulation in striatal synaptic growth and transmission related to altered induction
of homer 1 isoforms (77), and electrophysiological consequences related to altered zif 268
induction (see 28).

Overall the current study provides evidence for abnormally increased striatal D1 dopamine
receptor activity following prenatal cocaine exposure as shown by an enhanced D1 receptor
agonist-induced cAMP response and increased striatal expression of the synaptic plasticity
factor, Homer 1, and transcription factor, Zif 268. Further research is necessary to evaluate the
mechanisms underlying the persistent augmentation of striatal D1 receptor signaling, and its
potential contribution to some of the neuro-behavioral deficits observed in preclinical models
as well as in a subset of infants, children, adolescents and adults following prenatal exposure
to cocaine, and identify the striatum as one target potentially vulnerable to gestational cocaine
exposure.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic illustration of sampling areas used to measure gene expression on rostral, middle
and caudal striatal levels. Total striatal areas (S, left) and striatal and nucleus accumbens (NA)
subregions (right) are shown. Striatum: m, medial; dl, dorsolateral; c, central; l, lateral; v,
ventral; Nucleus accumbens: C, core; Sm, medial shell; Sl, lateral shell.
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Figure 2.
Basal, forskolin- and D1 receptor agonist, SKF82958, stimulated adenylyl cyclase activity in
the striatum of adult mice prenatally exposed to cocaine. Values (mean ± SEM) are given for
males (N=8–9) that were exposed in utero to saline (PSAL) or cocaine (40 mg/kg/day,
PCOC40). Data are expressed in percent of saline controls. A. Neither basal nor forskolin-
stimulated adenylyl cyclase activity was significantly different between treatment groups. B.
PCOC40 mice showed significantly higher D1 receptor-stimulated adenylyl cyclase activity
than the PSAL control group (* P<0.05).
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Figure 3.
Effects of prenatal cocaine exposure on basal and cocaine-induced locomotor activity at
different ages. Distance traveled (mean±SEM) during a 30-min test is given for male mice that
received an injection of saline (sal) or cocaine (15 mg/kg; coc) on postnatal (P) days 15, 36 or
60, following prenatal exposure to saline (PSAL) or cocaine (40 mg/kg/day; PCOC40). While
the cocaine challenge increased locomotion at all 3 ages, no significant main effect of the
prenatal treatment was observed. *** P<0.001, vs. respective saline controls.
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Figure 4.
Prenatal cocaine exposure enhanced cocaine-induced zif 268 (A) and homer 1 expression (B)
in the striatum of adult mice. Illustrations of film autoradiograms depict gene expression in
coronal sections from the middle striatal level in mice that received a saline (sal) or cocaine
(15 mg/kg; coc) challenge injection at postnatal day (P) 60, following prenatal exposure to
saline (PSAL) or cocaine (40 mg/kg/day; PCOC40). Maximal hybridization signal is black.
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Figure 5.
Effects of prenatal cocaine exposure on zif 268 (A) and homer 1 expression (B) in the striatum
at different ages. Mean density values (mean±SEM, arbitrary units) measured across the total
striatum at the middle level are shown for mice that received a saline (sal) or cocaine (coc)
challenge injection at postnatal day (P) 15, P36, or P60, following prenatal exposure to saline
(PSAL) or cocaine (40 mg/kg/day; PCOC40). Cocaine challenge-induced gene expression is
also given in percent (%) of expression in the respective saline control (right). PCOC40 mice
showed enhanced induction of zif 268 and homer 1 by the cocaine challenge at P60. * P<0.05,
** P<0.01, *** P<0.001, vs. saline control or as indicated.

Tropea et al. Page 17

Biol Psychiatry. Author manuscript; available in PMC 2009 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tropea et al. Page 18
Ta

bl
e 

1
Ef

fe
ct

s o
f p

re
na

ta
l c

oc
ai

ne
 tr

ea
tm

en
t o

n 
th

e 
po

st
na

ta
l e

xp
re

ss
io

n 
of

 zi
f 2

68
.

M
ea

n 
de

ns
ity

 v
al

ue
s (

m
ea

n±
SE

M
) m

ea
su

re
d 

in
 d

iff
er

en
t s

tri
at

al
 re

gi
on

s o
n 

ro
st

ra
l, 

m
id

dl
e a

nd
 ca

ud
al

 le
ve

ls
 ar

e g
iv

en
 fo

r m
ic

e t
ha

t w
er

e
pr

en
at

al
ly

 e
xp

os
ed

 to
 sa

lin
e 

(P
SA

L)
 o

r c
oc

ai
ne

 (P
C

O
C

) a
nd

 te
st

ed
 a

t p
os

tn
at

al
 d

ay
s (

P)
 1

5,
 P

36
 o

r P
60

 a
fte

r a
n 

in
je

ct
io

n 
of

 sa
lin

e 
(s

al
)

or
 1

5 
m

g/
kg

 c
oc

ai
ne

 (c
oc

). 
R

es
po

ns
es

 to
 th

e 
co

ca
in

e 
ch

al
le

ng
e 

ar
e 

al
so

 sh
ow

n 
in

 p
er

ce
nt

ag
e 

of
 v

al
ue

s i
n 

re
sp

ec
tiv

e 
sa

lin
e 

co
nt

ro
ls

 (%
).

St
ria

tu
m

 (S
): 

m
, m

ed
ia

l; 
dl

, d
or

so
la

te
ra

l; 
c,

 c
en

tra
l; 

l, 
la

te
ra

l; 
v,

 v
en

tra
l; 

to
t, 

to
ta

l. 
N

uc
le

us
 a

cc
um

be
ns

 (N
A

): 
C

, c
or

e;
 S

m
, m

ed
ia

l s
he

ll;
Sl

, l
at

er
al

 sh
el

l.

ag
e

ar
ea

PS
A

L
sa

l
PC

O
C

sa
l

PS
A

L
co

c
PC

O
C

co
c

PS
A

L
co

c(
%

)
PC

O
C

co
c(

%
)

P1
5

ro
st

ra
l

S 
m

54
.5

±2
.5

53
.4

±2
.3

78
.7

±2
.8

**
*

79
.0

±3
.5

**
*

14
4.

2±
5.

1
14

7.
8±

6.
5

S 
dl

47
.3

±1
.7

44
.8

±1
.3

60
.9

±1
.8

**
*

58
.7

±2
.6

**
*

12
8.

9±
3.

7
13

1.
3±

5.
8

S 
to

t
48

.1
±1

.8
47

.1
±1

.4
68

.0
±1

.7
**

*
67

.2
±3

.0
**

*
14

1.
1±

3.
6

14
2.

6±
6.

3

N
A

 C
38

.0
±2

.6
40

.6
±2

.8
57

.6
±4

.1
**

58
.2

±4
.5

**
15

1.
3±

10
.7

14
3.

3±
11

.2

N
A

 S
m

35
.1

±1
.2

36
.3

±1
.0

40
.5

±3
.3

37
.0

±2
.6

11
5.

4±
9.

4
10

1.
8±

7.
1

N
A

 S
l

27
.0

±1
.0

27
.3

±1
.3

36
.0

±3
.8

31
.6

±3
.2

13
3.

4±
14

.2
11

5.
6±

11
.7

m
id

dl
e

S 
m

56
.7

±3
.6

52
.6

±2
.6

80
.2

±3
.5

**
*

78
.9

±3
.0

**
*

14
1.

4±
6.

2
15

0.
1±

5.
8

S 
c

42
.8

±1
.9

39
.8

±1
.6

64
.8

±3
.0

**
*

63
.7

±4
.8

**
*

15
1.

2±
7.

1
16

0.
1±

12
.1

S 
l

40
.1

±1
.7

40
.5

±2
.9

56
.4

±3
.7

**
52

.0
±4

.1
*

14
0.

4±
9.

1
12

8.
4±

10
.0

S 
v

20
.8

±1
.7

24
.3

±2
.4

27
.7

±2
.8

25
.4

±3
.5

13
2.

9±
13

.4
10

4.
8±

14
.5

S 
to

t
40

.7
±1

.9
36

.8
±2

.3
57

.8
±1

.7
**

*
51

.9
±1

.9
**

* 
#

14
2.

0±
4.

1
14

1.
3±

5.
3

ca
ud

al

S 
to

t
31

.3
±1

.8
32

.4
±2

.1
39

.1
±2

.5
33

.9
±2

.6
12

4.
7±

7.
9

10
4.

7±
7.

9

P3
6

ro
st

ra
l

S 
m

55
.8

±3
.1

52
.8

±1
.9

79
.7

±2
.4

**
*

77
.9

±2
.3

**
*

14
2.

8±
4.

2
14

7.
3±

4.
3

S 
dl

43
.5

±2
.7

42
.6

±2
.7

53
.8

±1
.2

**
52

.6
±2

.0
**

12
3.

6±
2.

8
12

3.
5±

4.
7

S 
to

t
48

.1
±2

.7
45

.9
±2

.0
65

.0
±2

.0
**

*
63

.4
±2

.2
**

*
13

5.
2±

4.
2

13
8.

1±
4.

9

Biol Psychiatry. Author manuscript; available in PMC 2009 September 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tropea et al. Page 19

ag
e

ar
ea

PS
A

L
sa

l
PC

O
C

sa
l

PS
A

L
co

c
PC

O
C

co
c

PS
A

L
co

c(
%

)
PC

O
C

co
c(

%
)

N
A

 C
26

.5
±3

.3
21

.6
±2

.0
36

.7
±3

.2
*

34
.3

±2
.3

*
13

8.
8±

12
.0

15
8.

4±
10

.6

N
A

 S
m

31
.3

±2
.3

25
.6

±1
.9

35
.9

±2
.7

34
.5

±2
.1

*
11

4.
7±

8.
6

13
4.

4±
8.

2

N
A

 S
l

19
.1

±1
.6

18
.0

±0
.9

25
.7

±1
.9

*
26

.4
±2

.4
*

13
4.

7±
9.

8
14

6.
5±

13
.6

m
id

dl
e

S 
m

57
.6

±3
.3

51
.3

±2
.0

83
.0

±1
.8

**
*

81
.7

±3
.0

**
*

14
3.

9±
3.

1
15

9.
1±

5.
9#

S 
c

41
.0

±2
.9

38
.2

±2
.4

57
.5

±2
.1

**
*

54
.8

±2
.8

**
*

14
0.

4±
5.

2
14

3.
5±

7.
2

S 
l

32
.9

±1
.9

33
.7

±2
.8

56
.9

±1
.9

**
*

51
.7

±3
.4

**
*

17
2.

9±
5.

9
15

3.
4±

10
.2

S 
v

19
.3

±2
.3

15
.3

±1
.5

22
.2

±2
.7

17
.3

±2
.3

11
5.

0±
14

.1
11

3.
0±

15
.1

S 
to

t
39

.0
±2

.3
36

.3
±2

.0
57

.0
±1

.9
**

*
54

.4
±2

.6
**

*
14

6.
2±

4.
9

15
0.

0±
7.

1

ca
ud

al

S 
to

t
27

.0
±2

.3
24

.5
±2

.0
32

.1
±2

.2
30

.4
±1

.4
11

8.
8±

8.
1

12
3.

9±
5.

9

P6
0

ro
st

ra
l

S 
m

59
.8

±3
.2

56
.1

±3
.2

76
.6

±2
.4

**
*

73
.5

±2
.2

**
*

12
8.

0±
3.

9
13

1.
0±

3.
9

S 
dl

49
.5

±3
.6

46
.9

±2
.2

56
.4

±2
.2

51
.6

±1
.4

11
4.

0±
4.

4
11

0.
0±

3.
0

S 
to

t
51

.3
±2

.7
48

.8
±3

.0
64

.3
±1

.4
**

*
59

.8
±1

.6
**

12
5.

3±
2.

7
12

2.
5±

3.
3

N
A

 C
39

.9
±3

.8
33

.3
±3

.1
47

.6
±2

.5
42

.5
±2

.0
11

9.
2±

6.
3

12
7.

6±
6.

1

N
A

 S
m

39
.4

±2
.2

37
.6

±2
.4

43
.0

±2
.1

36
.1

±1
.6

10
9.

1±
5.

2
96

.1
±4

.4

N
A

 S
l

30
.8

±3
.1

32
.1

±1
.5

32
.9

±2
.9

26
.6

±1
.9

10
6.

9±
9.

3
82

.8
±5

.9
#

m
id

dl
e

S 
m

61
.8

±2
.2

55
.7

±4
.1

79
.9

±1
.7

**
*

79
.7

±1
.7

**
*

12
9.

2±
2.

8
14

3.
1±

3.
0##

S 
c

43
.9

±2
.8

39
.8

±3
.5

53
.2

±3
.0

53
.0

±2
.0

*
12

1.
2±

6.
8

13
3.

2±
5.

1

S 
l

38
.3

±2
.8

33
.1

±2
.8

54
.2

±5
.0

**
59

.6
±2

.4
**

*
14

1.
6±

12
.9

18
0.

0±
7.

1#

S 
v

23
.5

±2
.4

16
.9

±3
.0

22
.5

±1
.7

23
.4

±2
.4

95
.7

±7
.1

13
8.

2±
14

.3
#

S 
to

t
43

.9
±2

.0
38

.6
±3

.0
54

.3
±2

.1
**

55
.4

±1
.3

**
*

12
3.

7±
4.

7
14

3.
6±

3.
5##

Biol Psychiatry. Author manuscript; available in PMC 2009 September 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tropea et al. Page 20

ag
e

ar
ea

PS
A

L
sa

l
PC

O
C

sa
l

PS
A

L
co

c
PC

O
C

co
c

PS
A

L
co

c(
%

)
PC

O
C

co
c(

%
)

ca
ud

al

S 
to

t
32

.5
±0

.9
29

.7
±1

.4
37

.8
±2

.0
35

.7
±2

.2
11

6.
3±

6.
2

12
0.

3±
7.

4

**
* p 

< 
0.

00
1,

**
p 

< 
0.

01
,

* p 
< 

0.
05

, v
s. 

re
sp

ec
tiv

e 
sa

lin
e 

co
nt

ro
l;

##
p 

< 
0.

01
,

# p 
< 

0.
05

, v
s. 

PS
A

Lc
oc

.

Biol Psychiatry. Author manuscript; available in PMC 2009 September 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tropea et al. Page 21
Ta

bl
e 

2
Ef

fe
ct

s o
f p

re
na

ta
l c

oc
ai

ne
 tr

ea
tm

en
t o

n 
th

e 
po

st
na

ta
l e

xp
re

ss
io

n 
of

 h
om

er
 1

.
M

ea
n 

de
ns

ity
 v

al
ue

s (
m

ea
n±

SE
M

) m
ea

su
re

d 
in

 d
iff

er
en

t s
tri

at
al

 re
gi

on
s o

n 
ro

st
ra

l, 
m

id
dl

e a
nd

 ca
ud

al
 le

ve
ls

 ar
e g

iv
en

 fo
r m

ic
e t

ha
t w

er
e

pr
en

at
al

ly
 e

xp
os

ed
 to

 sa
lin

e 
(P

SA
L)

 o
r c

oc
ai

ne
 (P

C
O

C
) a

nd
 te

st
ed

 a
t p

os
tn

at
al

 d
ay

s (
P)

 1
5,

 P
36

 o
r P

60
 a

fte
r a

n 
in

je
ct

io
n 

of
 sa

lin
e 

(s
al

)
or

 1
5 

m
g/

kg
 c

oc
ai

ne
 (c

oc
). 

R
es

po
ns

es
 to

 th
e 

co
ca

in
e 

ch
al

le
ng

e 
ar

e 
al

so
 sh

ow
n 

in
 p

er
ce

nt
ag

e 
of

 v
al

ue
s i

n 
re

sp
ec

tiv
e 

sa
lin

e 
co

nt
ro

ls
 (%

).
St

ria
tu

m
 (S

): 
m

, m
ed

ia
l; 

dl
, d

or
so

la
te

ra
l; 

c,
 c

en
tra

l; 
l, 

la
te

ra
l; 

v,
 v

en
tra

l; 
to

t, 
to

ta
l. 

N
uc

le
us

 a
cc

um
be

ns
 (N

A
): 

C
, c

or
e;

 S
m

, m
ed

ia
l s

he
ll;

Sl
, l

at
er

al
 sh

el
l.

ag
e

ar
ea

PS
A

L
sa

l
PC

O
C

sa
l

PS
A

L
co

c
PC

O
C

co
c

PS
A

L
co

c(
%

)
PC

O
C

co
c(

%
)

P1
5

ro
st

ra
l

S 
m

46
.1

±0
.7

44
.2

±1
.5

53
.1

±1
.4

*
54

.9
±2

.8
**

11
5.

1±
3.

1
12

4.
2±

6.
3

S 
dl

46
.1

±1
.4

45
.9

±1
.2

49
.1

±1
.5

51
.0

±2
.2

10
6.

5±
3.

2
11

1.
0±

4.
8

S 
to

t
44

.5
±0

.8
42

.7
±1

.0
48

.7
±1

.2
51

.9
±2

.5
**

10
9.

4±
2.

8
12

1.
7±

5.
9

N
A

 C
35

.7
±1

.8
32

.7
±1

.8
36

.4
±2

.4
39

.6
±2

.4
10

1.
8±

6.
8

12
0.

9±
7.

4

N
A

 S
m

33
.6

±2
.1

32
.5

±2
.2

29
.2

±2
.3

29
.7

±1
.8

86
.8

±7
.0

91
.2

±5
.4

N
A

 S
l

35
.0

±2
.1

37
.7

±2
.5

35
.3

±2
.1

32
.8

±2
.5

10
0.

8±
6.

1
86

.9
±6

.5

m
id

dl
e

S 
m

43
.1

±0
.9

40
.6

±1
.1

53
.1

±1
.8

**
*

53
.8

±2
.3

**
*

12
3.

0±
4.

3
13

2.
5±

5.
8

S 
c

45
.4

±0
.6

44
.8

±1
.2

52
.7

±1
.6

*
53

.1
±2

.6
**

11
6.

1±
3.

5
11

8.
5±

5.
7

S 
l

50
.7

±0
.9

50
.8

±1
.7

55
.7

±1
.6

52
.7

±2
.2

10
9.

7±
3.

2
10

3.
8±

4.
2

S 
v

27
.3

±1
.2

29
.7

±1
.9

30
.5

±1
.8

30
.4

±1
.3

11
1.

7±
6.

6
10

2.
4±

4.
3

S 
to

t
42

.3
±0

.7
42

.2
±1

.4
48

.7
±1

.0
*

48
.5

±2
.1

*
11

5.
0±

2.
4

11
4.

9±
5.

0

ca
ud

al

S 
to

t
33

.8
±1

.4
33

.5
±1

.0
36

.0
±2

.2
34

.6
±2

.1
10

6.
4±

6.
4

10
3.

4±
6.

4

P3
6

ro
st

ra
l

S 
m

47
.7

±1
.3

47
.9

±1
.3

56
.9

±1
.2

**
*

59
.5

±1
.1

**
*

11
9.

2±
2.

4
12

4.
3±

2.
3

S 
dl

48
.9

±1
.5

51
.1

±1
.6

53
.2

±1
.3

54
.7

±1
.5

10
8.

7±
2.

8
10

7.
0±

2.
9

S 
to

t
47

.4
±1

.2
47

.0
±1

.2
53

.0
±1

.0
**

55
.4

±1
.2

**
*

11
1.

9±
2.

1
11

7.
8±

2.
5

N
A

 C
33

.4
±1

.3
30

.2
±1

.8
37

.9
±1

.9
36

.2
±1

.6
*

11
3.

5±
5.

8
12

0.
0±

5.
3

Biol Psychiatry. Author manuscript; available in PMC 2009 September 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tropea et al. Page 22

ag
e

ar
ea

PS
A

L
sa

l
PC

O
C

sa
l

PS
A

L
co

c
PC

O
C

co
c

PS
A

L
co

c(
%

)
PC

O
C

co
c(

%
)

N
A

 S
m

33
.8

±1
.5

31
.4

±1
.7

35
.4

±2
.2

33
.0

±1
.8

10
4.

7±
6.

4
10

5.
0±

5.
7

N
A

 S
l

30
.8

±3
.3

35
.7

±1
.8

38
.9

±2
.1

*
40

.1
±1

.4
12

6.
2±

6.
7

11
2.

1±
3.

8

m
id

dl
e

S 
m

49
.6

±1
.7

47
.2

±1
.4

59
.7

±1
.1

**
*

63
.0

±1
.8

**
*

12
0.

2±
2.

2
13

3.
3±

3.
8##

S 
c

46
.4

±1
.9

45
.9

±1
.6

51
.0

±1
.7

52
.5

±1
.3

*
11

0.
0±

3.
7

11
4.

3±
2.

9

S 
l

50
.2

±2
.2

51
.9

±2
.0

58
.9

±2
.2

*
58

.2
±1

.9
*

11
7.

3±
4.

3
11

2.
0±

3.
7

S 
v

29
.9

±2
.3

31
.5

±2
.0

31
.2

±0
.7

30
.9

±0
.6

10
4.

3±
2.

3
98

.1
±1

.9

S 
to

t
45

.6
±1

.8
45

.4
±1

.7
52

.5
±1

.5
**

53
.1

±1
.2

**
11

5.
1±

3.
2

11
7.

0±
2.

6

ca
ud

al

S 
to

t
35

.9
±1

.8
34

.7
±1

.6
38

.0
±1

.5
40

.3
±1

.1
10

5.
8±

4.
3

11
5.

9±
3.

3

P6
0

ro
st

ra
l

S 
m

51
.4

±0
.9

51
.8

±1
.3

59
.8

±0
.8

**
*

62
.3

±0
.5

**
*

11
6.

3±
1.

5
12

0.
2±

1.
1

S 
dl

50
.9

±2
.6

51
.5

±2
.4

54
.4

±1
.9

57
.3

±1
.7

10
6.

9±
3.

7
11

1.
2±

3.
3

S 
to

t
50

.5
±1

.1
50

.5
±1

.1
54

.6
±0

.7
**

57
.4

±0
.6

**
* 

#
10

8.
2±

1.
5

11
3.

6±
1.

3#

N
A

 C
41

.2
±2

.6
43

.3
±3

.6
41

.4
±1

.4
43

.3
±1

.8
10

0.
4±

3.
4

10
0.

0±
4.

3

N
A

 S
m

41
.2

±1
.9

41
.5

±2
.3

40
.1

±1
.3

39
.6

±2
.0

97
.3

±3
.0

95
.4

±4
.9

N
A

 S
l

39
.9

±2
.5

43
.5

±1
.8

43
.1

±1
.8

43
.3

±2
.4

10
7.

9±
4.

5
99

.5
±5

.6

m
id

dl
e

S 
m

52
.3

±2
.0

50
.4

±2
.7

64
.6

±1
.8

**
*

66
.6

±1
.8

**
*

12
3.

6±
3.

4
13

2.
2±

3.
5

S 
c

44
.8

±1
.5

44
.4

±1
.9

49
.2

±1
.3

51
.1

±1
.8

*
10

9.
9±

2.
8

11
5.

2±
4.

0

S 
l

49
.7

±2
.1

48
.3

±1
.8

57
.1

±2
.2

*
62

.9
±2

.8
**

11
4.

8±
4.

5
13

0.
1±

5.
9

S 
v

29
.9

±2
.4

35
.3

±1
.6

30
.9

±1
.9

37
.5

±1
.3

#
10

3.
2±

6.
4

10
6.

2±
3.

7

S 
to

t
45

.5
±1

.4
45

.6
±1

.7
50

.9
±1

.0
*

54
.7

±1
.3

**
*

11
1.

8±
2.

2
12

0.
0±

2.
9#

Biol Psychiatry. Author manuscript; available in PMC 2009 September 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tropea et al. Page 23

ag
e

ar
ea

PS
A

L
sa

l
PC

O
C

sa
l

PS
A

L
co

c
PC

O
C

co
c

PS
A

L
co

c(
%

)
PC

O
C

co
c(

%
)

ca
ud

al

S 
to

t
36

.8
±1

.5
37

.1
±1

.6
41

.3
±0

.5
42

.3
±1

.6
*

11
2.

3±
1.

4
11

4.
0±

4.
2

**
* P 

< 
0.

00
1,

**
p 

< 
0.

01
,

* p 
< 

0.
05

, v
s. 

re
sp

ec
tiv

e 
sa

lin
e 

co
nt

ro
l;

##
p 

< 
0.

01
,

# p 
< 

0.
05

, v
s. 

PS
A

Lc
oc

.

Biol Psychiatry. Author manuscript; available in PMC 2009 September 17.


