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Abstract
The adsorption behavior of a biomolecule, such as a peptide or protein, to a functionalized surface
is of fundamental importance for a broad range of applications in biotechnology. The adsorption free
energy for these types of interactions can be determined from a molecular dynamics simulation using
the partitioning between adsorbed and nonadsorbed states, provided that sufficient sampling of both
states is obtained. However, if interactions between the solute and the surface are strong, the solute
will tend to be trapped near the surface during the simulation, thus preventing the adsorption free
energy from being calculated by this method. This situation occurs even when using an advanced
sampling algorithm such as replica-exchange molecular dynamics (REMD). In this paper, the authors
demonstrate the fundamental basis of this problem using a model system consisting of one sodium
ion (Na+) as the solute positioned over a surface functionalized with one negatively charged group
(COO−) in explicit water. With this simple system, the authors show that sufficient sampling in the
coordinate normal to the surface cannot be obtained by conventional REMD alone. The authors then
present a method to overcome this problem through the use of an adaptive windowed-umbrella
sampling technique to develop a biased-energy function that is combined with REMD. This approach
provides an effective method for the calculation of adsorption free energy for solute-surface
interactions.

I. Introduction
The adsorption behavior of a biomolecule, such as a peptide or protein, to a functionalized
surface is of fundamental importance for a broad range of applications including biomaterials
for implant1–4 and drug-delivery applications,5,6 biosensors,7,8 and bioseparations.9
Molecular simulation provides a very powerful tool to study these types of interactions
theoretically at the atomic level for the calculation of structural, thermodynamic, and kinetic
parameters at the solute-surface interphase.4,10,11 We are particularly interested in the
calculation of the free energy of solute adsorption in an aqueous solution. The accurate
calculation of adsorption free energy requires sufficient sampling of both the conformational
space of the solute and its position with respect to the surface as a function of the surface
separation distance (SSD).

The determination of thermodynamic properties by molecular simulation can be accomplished
using either molecular dynamics (MD) or Monte Carlo (MC) methods to sample the phase
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space of the molecular system of interest.12 MC methods are often more efficient for the
determination of gas- or condensed-phase thermodynamic properties of relatively simple
molecular systems.13 Also, because of the ability to make nonphysical moves, they are
particularly useful for the conformational sampling of macromolecules either in isolation,14–
17 with continuum solvent approximations,16,18 or which are restricted to conformational
moves within a defined lattice.14,19,20

MC sampling, however, can be problematic for macromolecules within explicitly represented
solvent because the surrounding solvent molecules tend to severely restrict the ability to make
conformational moves of the macromolecule without overlapping atoms of the solvent, thus
leading to unacceptably high energy levels and poor sampling efficiency.12,21 MD simulation
methods are therefore more often used to simulate these types of systems, with sampling moves
then controlled by the laws of Newtonian dynamics. Because we are interested in the behavior
of peptides and proteins in explicitly represented physiological saline solution, we have
primarily focused our efforts on the development and application of methods for the
determination of adsorption free energy using MD simulations.

In a previous study, we attempted to perform conventional MD simulations with the
probability-ratio method22 to calculate the adsorption free energy of a model peptide on
functionalized self-assembled monolayer (SAM) surfaces.11 Use of the probability-ratio
method for the calculation of adsorption free energy requires that adequate sampling be
achieved over the entire SSD space, with the SSD parameter extending far enough from the
surface such that the solute no longer feels the effects of the surface (defined here as SSD∞),
thus representing bulk solution conditions. The probability of the peptide being at a particular
SSD position, SSDi, relative to the probability of it being in the bulk solution (SSD∞) can then
be used to calculate the relative free energy of the peptide as a function of SSD. The relative
free energy values can be integrated over the SSD coordinate with proper weighting by their
probability density to calculate the overall adsorption free energy.11 The results from this
previous study clearly demonstrated that the application of a conventional MD simulation
approach to this type of molecular system resulted in two types of sampling problems, both of
which inhibit the accurate calculation of adsorption free energy: (1) trapping of the peptide
near the surface if strong peptide-surface interactions occur, which prevents the calculation of
a relative probability at SSD∞, and (2) limited sampling of the peptide's own conformation
space due to the presence of the relatively high energy barriers separating local low-energy
minima of the dihedral angles of the peptide. These deficiencies clearly indicate that more
advanced types of sampling are needed for the calculation of adsorption free energy for this
type of molecular system.

Efficient conformational sampling of a solute molecule in solution or at a surface can be
provided through the use of advanced sampling methods that enable relatively high potential-
energy barriers separating local low-energy states to be readily crossed, such as those separating
dihedral rotations of a peptide chain. Conventional temperature-based replica-exchange
molecular dynamics (REMD) methods have been shown to be fairly efficient in overcoming
this type of sampling problem.23,24 However, for the situation where a sampling problem exists
due to the need to sample states with relatively large differences in free energy, such as when
strong interactions occur between a solute and a surface,11,25 a solute will still tend to become
trapped within a tight range of SSD values close to the surface even in a REMD simulation.
This occurs because the resulting Boltzmann distribution of sampled states will still
overwhelmingly favor the low free-energy states. The high-lying states may be sampled by the
high-temperature replicas, but will not be represented in the Boltzmann ensemble at the
temperature of interest generated by the lowest-temperature replica (see Fig. 1). Other types
of advanced sampling algorithms, such as biased-energy methods,26,27 are better suited to
address this particular type of sampling problem. However, although readily applicable to
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problems dealing with a single coordinate of interest, such as SSD, biased-energy methods
generally become too complex for practical implementation when attempts are made to address
multiple coordinate dimensions, such as controlling both SSD and peptide conformational
sampling at the same time. In this paper, we present a biased-energy REMD method that we
developed and applied to overcome both of these sampling problems in a single simulation for
the calculation of the adsorption free energy of solute-surface interactions.

To demonstrate this type of problem at a fundamental level, we investigated the behavior of a
relatively simple solute-surface system consisting of one sodium ion (Na+) over a
functionalized alkanethiol self-assembled monolayer (SAM) surface presenting one negatively
charged carboxylate (COO−) group in explicit water. This system serves to illustrate the
shortcomings of the conventional REMD method for this type of sampling problem, while
retaining the most important characteristics of the system; i.e., a strong solute-surface
interaction that results in a relatively deep energy well that tends to trap the solute close to the
surface. It is taken for granted in our study that REMD is able to provide sufficient
conformational sampling of a solute, as this has been shown in numerous previous studies
related to peptide folding.23,24 The single-ion adsorption system was purposely selected to
eliminate the need for conformational sampling of the solute to allow focus to be placed on
adapting the REMD method to overcome the SSD-sampling problem. We demonstrate that
sufficient sampling along the SSD as a degree of freedom cannot be obtained by conventional
REMD alone for this system. We then show that an effective biased-energy function can be
developed using an adapted windowed-umbrella sampling method that we have developed for
this application. When combined with REMD, this method can overcome this problem and
enable sufficient sampling to be achieved over the full range of SSD space for the accurate
calculation of adsorption free energy for solute-surface interactions.

II. Methods
A. Overview of advanced sampling methods

The probability-ratio method22 is a standard statistical mechanics technique that can be used
for constructing a potential of mean force (PMF) profile (equivalent to a free energy profile)
to characterize an adsorption process. This method relates the PMF to the natural logarithm of
the probability density of sampled states, P(φ), as a function of a predefined reaction coordinate
as follows:

(1)

where φ denotes the reaction coordinate, W is the PMF value at φ, kB is Boltzmann's constant,
and T is the absolute temperature.

The precision of this method depends heavily on the sufficient and adequate estimation of P
(φ). The estimation of this function, however, is known to be problematic for conventional MD
and Monte Carlo simulations.11,28,29 This is due to the fact that energetic barriers or entropic
bottlenecks may not be sampled sufficiently in a simulation of finite duration, because of their
high free energy, which may then prevent the sampling of the low free-energy states that are
separated by these conditions. In addition, molecular configurations with relatively high free
energy may also need to be sampled, as in the case of solute adsorption, so that the relative
differences in free energy between the high and low free-energy states can be calculated.

Since the 1970s, this problem has attracted a large amount of attention and many excellent
simulation protocols have been proposed to overcome this limitation.30–32 The basic concept
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behind these algorithms is that of biasing the statistical mechanical factors that control the
Boltzmann probability distribution of the system, thus causing the rare events to occur much
more frequently in a simulation so they can be sufficiently sampled in the simulation trajectory.
This is accomplished by multiplying the probability density function, P(φ), with a reweighting
factor that effectively adjusts the probability density of a rare event as follows:

(2)

where γ(φ) is the reweighting factor, P*(φ) is the adjusted probability measure, which is non-
Boltzmann, and P(φ) is the original Boltzmann-weighted probability density function. The
simulation is then performed on the adjusted, or reweighted, probability basis, and the original,
unbiased probability measure can subsequently be calculated from the resulting biased
probability distribution as

(3)

Collectively, all of the protocols that use a reweighting factor to improve the sampling
efficiency are non-Boltzmann algorithms and procedures based on this class of algorithms are
called non-Boltzmann sampling methods.

1. Construction of reweighting factors—Broadly, there are two different ways to apply
the non-Boltzmann reweighting. The Boltzmann distribution33 is a function both of the energy
of the state φ, E(φ), as well as the temperature T at which the sampling is performed,

(4)

where α is a normalization constant [which also accounts for the degeneracy of the state(s)
represented by φ and β = (kBT)−1]. Thus, in modifying the Boltzmann probabilities, one
common approach is to modify the temperature, with the simulation performed at a biased
(usually higher) temperature; the other is to modify the system Hamiltonian (usually through
an add-on “umbrella” potential) so that the simulation is performed with a biased potential
energy. It less convenient to bias the distribution via the degeneracy of a particular state,
because, unlike temperature and potential energy, the degeneracy does not explicitly enter into
the molecular dynamics simulation algorithm (and is typically not known a priori). We describe
both types of non-Boltzmann reweighting factors in detail in the following subsections.

2. Umbrella-potential-based reweighting factors—If we denote a biasing potential as
Eb(φ), then from the fundamental Eq. (4), the probability of being in configurational state φ
for the nonbiased case can be expressed as

(5)

and, for a biased case, the probability can be expressed as
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(6)

The reweighting factor can then be written as

(7)

which, after substitution of Eqs. (5) and (6) into Eq. (7), yields

(8)

This type of reweighting factor is utilized in umbrella sampling26,34,35 and adaptive umbrella
sampling27,36–38 methods.

3. Temperature-based reweighting factors—The construction of temperature-based
reweighting factors follows a very similar mathematical procedure as the umbrella potential-
based methods. From the fundamental Boltzmann statistics in Eq. (4), given two different
inverse temperatures β1 and β0, the probabilities of being in a configurational state φ with
energy E(φ) can be expressed respectively as

(9)

and

(10)

A reweighting factor can then be expressed as

(11)

Substituting the expressions of Eqs. (9) and (10) into Eq. (11) gives

(12)

This class of reweighting factor forms the basis of several advanced sampling and analysis
methods, including single histogram analysis,22 multiple-histogram analysis,39,40 the
multicanonical algorithm,41,42 replica-exchange methods,42–44 and temperature-weighted
histogram-analysis methods.45

As indicated by their mathematical similarity, both the energy- and temperature-based methods
effectively perturb the probability distribution that is obtained during an MD simulation, one
by artificially reducing the energy levels separating the configurational states and the other by
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providing increased thermal energy to the system; both of which effectively result in a situation
where transitions between states occur at a higher frequency, thus substantially improving
sampling.

B. Model molecular system
The molecular system selected for this study is shown in Fig. 2. It consists of only one sodium
counter-ion (Na+) in TIP3P water46 over a COOH-functionalized alkanethiol self-assembled
monolayer (SAM) surface47 consisting of 90 chains with a single deprotonated chain (i.e., -
COO−) positioned in the center of the surface to create a negatively charged surface group to
strongly attract the sodium ion through electrostatic attraction. All atoms of the SAM surface
were constrained to prevent them from moving, except for the top layer of the carboxylic acid
functional groups (and central carboxylate group) in order to keep the SAM intact during the
subsequent REMD simulations at elevated temperatures. The 3-D periodic unit cell was
orthogonal with dimensions 44.73×43.04×60.00 Å3. The top 15.0 Å layer of the water box was
constructed from a preequilibrated layer of bulk water, which was then placed at the top of the
simulation cell and constrained to remain fixed. This was done to prevent the imaged
hydrophobic bottom surface of the SAM layer from perturbing the water structure in this part
of the model, which may in turn influence the behavior of the sodium ion as it approached the
top of the simulation cell. By design, this provides a model system where the solute is so
strongly attracted to the surface that the SSD between the Na+ and the SAM surface during a
conventional MD simulation remains within a narrow range within about 3.0 Å of the surface,
thus exhibiting a substantial sampling problem. Furthermore, by selecting a single ion species
as the solute, complications related to the question of conformational sampling of the solute
itself in solution are avoided, with the simulations thus focusing solely on the problem of
addressing the sampling limitation due to energy differences as a function of the SSD reaction
coordinate.

This model system was used in a series of simulations to demonstrate that a substantial sampling
problem exists with such electrostatically charged aqueous adsorption systems such that the
310 K adsorption free energy cannot be properly determined from the trajectory data for
simulations of reasonable length, even when performing a conventional REMD simulation.
We then demonstrate that this problem can be overcome by combining a biased-energy function
with the REMD algorithm to perform a biased-energy REMD simulation, with the resulting
trajectory data then providing sufficient sampling for the calculation of adsorption free energy.

C. Conventional REMD simulation
REMD is one of the most widely applied temperature-based reweighting methods that has been
used for peptide folding simulations because of its extreme versatility and relative simplicity
in application. Sugita and Okamoto23 presented the first paper that describes the molecular
dynamics version of this replica exchange method in 1999. They pointed out that the major
advantage of REMD over other generalized-ensemble methods, such as the multicanonical
algorithm and simulated tempering, lies in the fact that the reweighting factor is automatically
generated during the simulation, while in the latter algorithms the determination of the
reweighting factor requires relatively laborious iterative methods. REMD also provides a great
advantage over umbrella potential-based reweighting algorithms in that it operates on all
degrees of freedom of the system simultaneously without requiring that a specific reaction
coordinate be defined. A brief overview of the most important features of this method is
provided here and readers are referred to the original paper by Sugita and Okamoto23 for its
rigorous formulation.

A REMD simulation results in the construction of a Boltzmann-weighted ensemble of states
by generating independent trajectories at different temperatures, Tm(m = 1, …, Nr), with Nr

Wang et al. Page 6

Biointerphases. Author manuscript; available in PMC 2009 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



being the number of temperature levels, or replicas, represented in the overall simulation.
During the simulation, each replica at its designated temperature level is run in an independent
manner for a short period of time (typically between 100 and 1000 fs), following which
comparisons are made between the potential energy of the replica at temperature Ti and the
replica at the next higher temperature Tj. An exchange attempt is then made using a Metropolis-
based criterion, which is described by

(13)

where RAND(0–1) indicates a random number between 0 and 1, inclusively. If this exchange
condition is satisfied, the atomic position and momentum coordinates between replicas at Ti
and Tj are exchanged and the momentum coordinates [p(Ti) and p(Tj)] are updated by

(14)

to rapidly adjust each replica to its new temperature level. The temperatures of each replica
are typically spaced in an exponential manner over the designated temperature range, with the
width of the temperature intervals set to achieve an exchange acceptance level of between 0.15
and 0.20.23

Enhanced sampling is provided by a REMD simulation because of both the large number of
independent replicas that are sampling different configurational states of the system and the
additional thermal energy provided at the higher temperature levels, which greatly increases
the probability of crossing the energy barriers that separate the different states of the system.
The Metropolis criterion then effectively applies the temperature reweighting factor to control
the sampling process. Once properly equilibrated, the REMD procedure provides a Boltzmann-
weighted sampling of states at each temperature. When such a simulation is continued for a
sufficiently long time (typically for at least several nanoseconds) over a sufficiently large range
of temperature, it permits sampling across barriers that could not be overcome at the low
temperature alone within a reasonable time frame. As shown below, however, the REMD
method does not solve all of the sampling problems that are encountered for a solute-adsorption
process. Because it generates a Boltzmann-weighted ensemble of states at a given temperature
level, it still exhibits sampling problems for events that normally occur with low probability.
To demonstrate this limitation, we conducted a conventional REMD simulation on the model
Na+/water/SAM system described in Sec. II A.

In our REMD simulation, we used 21 replicas spanning a temperature range from 310 K to
400 K, with the temperature levels distributed exponentially as recommended to obtain near-
uniform rates of exchange between adjacent temperature levels.23 Simulations were run using
the CHARMM molecular simulation program48,49 and the CHARMM27 force field,48,49 with
the REMD algorithm applied using a Python module designed by our group as a peripheral to
CHARMM. The system was controlled with a constant number of atoms (N), under constant
volume (V), and constant temperature (T) conditions using a Berendsen thermostat [i.e., in the
canonical (NVT) ensemble] with periodic boundary conditions. Both van der Waals and
electrostatic interactions were handled using a 12–14 Å switching function-based cut-off.49,
50 Cut-offs were used for electrostatic interactions as opposed to particle-mesh Ewald to
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prevent unphysical interactions between the sodium ion and periodic images of the charged
SAM surface. Simulations were carried out for 5.0 ns at each of the designated temperature
levels using the Verlet integrator with a 2 fs time step and bond length constraints applied to
all bonds using SHAKE.48,49 Exchanges between neighboring temperatures were attempted
every 1.0 ps using the criterion shown above in Eq. (13). The trajectory results generated from
the REMD simulation were then analyzed to describe the resulting probability distribution of
the sampled SSD space, which was then converted to a PMF profile using the probability-ratio
method.22

D. Adaptive windowed-umbrella sampling
If the shape of the free energy surface is known a priori for a reaction coordinate of interest,
then the negative of this surface, when applied as a biasing function, will result in a flattened
trajectory with every state exhibiting the same probability of occurrence.23,51 Unfortunately
a priori knowledge of the free energy surface is rarely available for a system of practical
interest. Windowed-umbrella sampling bypasses this shortcoming by dissecting the reaction
coordinate into a series of overlapping regions, or “windows,” and assigning each window a
defined harmonic restraining potential that forces sampling to occur around a specified region;
usually with the following form:

(15)

where Hb denotes the harmonic biasing potential that is added to the force field equation, k is
the harmonic spring constant, θ is value of the reaction coordinate (SSD in our case), θi denotes
the middle point of the ith window, and NW is the total number of windows sampled. An
independent canonical simulation is then performed for each separate window and the results
are combined and then analyzed using the weighted-histogram analysis method (WHAM),39,
40,45 which enables a PMF profile to be calculated as a function of the underlying reaction
coordinate over its full range of values. The resulting profile is then fit by an appropriate curve-
fitting function that is continuous and differentiable, in order to form the biasing-energy
function.

The traditional approach for the development of the curve-fitting function for the PMF profile
is to use a combination of both polynomial and triangular functions to interpolate the discrete
results from the WHAM analysis. However, taking into account the specific characteristics of
our system, i.e., surface adsorption, we developed a more efficient approach for this based on
the Derjaguin, Landau, Verwey, Overbeek (DLVO) theory.52,53 DLVO theory represents the
adsorption free energy profile with a combination of electrostatic and van der Waals
interactions that underlie an adsorption process. These interactions typically follow the
relationship as shown in Fig. 3, which can be approximated with a functional form of

(16)

where the first term accounts for electrostatic interactions, the second and third terms account
for the attractive and repulsive van der Waals interactions, respectively, r (or SSD for our case)
represents the distance of the ion from the surface, and a, b, c, d, and ro are all coefficients
obtained from least-squares fitting of the PMF versus SSD profile results from a WHAM
analysis of the simulation trajectories.
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For our specific studies, windowed-umbrella sampling (WUS) simulations were performed by
dividing the overall SSD space for the system into a series of 30 windows with a window
spacing of 1.0 Å and with k=1.0 kcal/mol/Å [see Eq. (15)]. MD simulations were conducted
under conditions similar to those described for the conventional REMD simulation. In the
present study, we have developed a computationally efficient approach to WUS, which we call
adaptive windowed-umbrella sampling (AWUS). In this method, we conduct a series of short
200 ps WUS simulations with the results of each simulation being used in an iterative manner
to generate the converged PMF profile.

Accordingly, a 200 ps WUS simulation was first conducted with our molecular system and
WHAM analysis was applied to approximate the shape of the PMF potential over the full range
of SSD-coordinate space. Equation (16) was then fitted to the resulting PMF profile to develop
an equation expressing the PMF as a function of SSD. The negative of the calculated PMF
versus SSD profile was then used as a biasing-energy function for each window (in addition
to the harmonic umbrella potential) and a new series of 200 ps WUS simulations was run. A
WHAM analysis was again performed on the resulting SSD-trajectory data and used to generate
a residual PMF profile from the biased-energy simulation data. The residual PMF profile was
then evaluated for its flatness, which provided an indicator of how closely the applied biased-
energy profile negates the true underlying PMF profile of the system (i.e., if perfectly matched
and adequately sampled, the PMF profile for a biased-energy WUS simulation would be zero
for all SSD values). If not sufficiently flat (i.e., absolute value ≤2 kcal/mol for all SSD
positions), a new estimate of the unbiased PMF potential was generated and a new DLVO
versus SSD function was fit to the PMF profile and applied as the biased-energy function in
another series of WUS simulations. This process was continued until the resulting residual
PMF profile was considered to be sufficiently flat, thus indicating that the applied biased-
energy potential was an adequate representation of (the negative of) the underlying PMF profile
of the system. This biasing potential was then used for the subsequent biased REMD
simulation.

The AWUS method has two advantages over simpler applications of WUS. First, it helps to
ensure that a converged PMF is obtained with the minimum amount of sampling time. Second,
it is more amenable to parallelization on a heterogeneous computer cluster, as the granularity
of the simulations is smaller.

E. Biased-REMD simulation
Biased-REMD is a hybrid non-Boltzmann sampling method, which implements a biased
potential energy function within an otherwise conventional REMD simulation to
simultaneously overcome the two types of sampling problems illustrated in Fig. 1: (1) the need
to readily cross relatively high energy barriers separating states with similar energy levels,
which is provided by REMD, and (2) the need to sample states spanning a relatively large range
of energy levels, which is provided by the biasing potential. In this protocol, the negative of
the final PMF versus SSD profile generated from the AWUS method is used in a subsequent
REMD simulation as a biasing potential for every replica.

Accordingly, for our simulations, we first generated the PMF profile from the AWUS
simulation as described in Sec. II D. We subsequently conducted a REMD simulation following
the same procedures as described in Sec. II C for the conventional REMD simulation, except
that the negative of the PMF profile from the AWUS method was added to the potential energy
function, thus performing a biased-REMD simulation. The resulting biased trajectory was then
analyzed using the WHAM method and corrected for the biased energy function to obtain the
final unbiased PMF profile, which represents the free energy of the system over the entire range
of SSD space. These results were then compared to those obtained from the conventional
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REMD simulation to demonstrate the effectiveness of this hybrid non-Boltzmann sampling
method.

III. Results and Discussion
A. Conventional REMD simulation

A conventional (i.e., unbiased) REMD simulation was conducted as described in Sec. II C for
comparison with biased-REMD results. Table I shows the neighboring replica temperature
pairs and the corresponding acceptance ratios (middle column) obtained for this simulation.
Statistically, the acceptance ratios were distributed around a mean of μ=0.18 with standard
deviation of σ=0.03, thus showing that an adequate level of exchange was achieved between
all neighboring temperature levels.

Figure 4(a) presents a plot showing which replica occupied the lowest temperature level (310
K) over the 5 ns conventional REMD simulation. This plot demonstrates that a random walk
across the designated temperature space was satisfactorily obtained, with nearly every replica
visiting the 310 K temperature level during the course of the 5 ns REMD simulation. Figure 4
(b) presents the resulting histogram of the SSD space sampled during this simulation and Fig.
4(c) presents the resulting box-plot statistical analysis54,55 of the histogram. The box-plot
method of representation is used here to provide a simple graphical representation of the overall
degree of statistical sampling that was achieved during the simulation. As indicated in Fig. 4
(c), a box-plot shows the median of the population (thick line inside the box), the first (Q1)
and third quartiles (Q3) of the sampled states about the mean (box around the median), range
bars (lines or “whiskers”) above and below the quartile boxes, and population outliers [dotted
points outside of the range bars; see the caption for Fig. 4(c)]. These results show that the
position of the sodium ion was primarily restricted to be within about 7.0 Å from the SAM
surface, thus clearly demonstrating that a substantial sampling problem occurred in this
simulation.

B. AWUS smulation
The dashed line in Fig. 5(a) represents the first iteration of the AWUS method. In this iteration,
no DLVO-type biasing potential was applied in the simulation; only harmonic umbrella
potentials [i.e., Eq. (15)] were applied to each window in the simulation to keep sampling
centered about the central SSD position of each of the windows. The resulting PMF profile
was constructed with WHAM and fitted with the DLVO-type functional form [Eq. (16)]. This
initial estimate of the PMF had a minimum near 2.7 Å with a well depth of about −4.3 kcal/
mol. From our experience with this approach, the first iteration using this AWUS method
generally results in the depth of the PMF profile being substantially underestimated, due to
insufficient sampling of the high free energy states in the absence of a biasing potential. While
repeated iterations can be used to converge the PMF profile, we have found that this process
can be shortened by three or four iterations by simply amplifying the results of the first 200 ps
iteration prior to conducting the second iteration attempt. Thus, to accelerate this iterative
process, the DLVO-type fitting function obtained from Fig. 5(a) (solid line) was subjectively
multiplied by a factor of about 4, and the negative of this function was then used as a biasing
potential for the second iteration. The residual PMF profile obtained from this iteration
indicated that the biasing potential used in the simulation was overly strong and that another
iteration of the process was necessary. A new estimate of the real PMF profile was then
generated using the WHAM analysis of the sampling provided from the second iteration; the
results of this analysis are shown by the lower dashed line in Fig. 5(b). This profile was then
again fitted with Eq. (16) [lower solid line, Fig. 5(b)] to provide the biasing potential for the
third 200 ps iteration of AWUS. The dashed-dotted line of Fig. 5(b) presents the residual PMF
profile obtained following the third 200 ps iteration, which represents a total of only 600 ps of
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MD simulation, with the residual PMF profile then considered to be sufficiently flat (absolute
magnitude of PMF values ≤2 kcal/mol) within the SSD range from 2 to 16 Å. These results
thus indicated that the process had sufficiently converged and that the applied DLVO-based
biasing function represented a reasonable estimate of the true PMF profile of the system. The
negative of this DLVO function [upper dashed line, Fig. 5(b)] was then used as the biasing
potential for the subsequent biased-REMD simulation. The values of the parameters for this
final functional form of the DLVO function are provided in Table II.

C. Biased-REMD simulation
Table I (column 3) shows the acceptance ratios for each pair of temperatures in the biased-
REMD simulation. Statistically, the acceptance ratios were distributed around a mean of
μ=0.16 with standard deviation σ=0.04, thus showing that an adequate level of exchange was
achieved between all neighboring temperature levels. Figure 6(a) presents a plot showing
which replica occupied the lowest 310 K temperature level over the 5 ns biased-REMD
simulation. This plot demonstrates that a random walk across temperature space was
satisfactorily obtained for the simulation, with nearly every replica visiting the 310 K
temperature level during the course of the 5 ns REMD simulation. Figure 6(b) presents the
resulting histogram of the SSD space sampled during this simulation and Fig. 6(c) presents the
resulting box-plot statistical analysis54,55 of the histogram. These results clearly show that the
use of the biasing potential enabled the sodium ion to readily escape from the surface and
effectively sample the entire range of SSD space during the 5 ns simulation, as desired.

To address the question of whether or not the SSD histogram for the biased-REMD simulation
represented a converged sampling distribution, the histogram from the 5 ns biased-REMD
simulation was compared with a histogram generated following only 2 ns of simulation. Figures
7(a) and 7(b) show the histograms of the 2 and 5 ns simulations, respectively, and Fig. 7(c)
presents a box-plot statistical comparison54,55 of these results. As shown, the results from the
5 ns simulation agree closely with the 2 ns results, with each distribution exhibiting a mean
around μ=18.6 Å with a standard deviation of σ=6.1 Å, thus indicating that sampling had
converged even after 2 ns and that adequate sampling of the system was indeed provided by
the 5 ns biased-REMD simulation.

D. PMF profile comparisons
Figure 8 compares the PMF profiles constructed from a probability-ratio method analysis for
the 5.0 ns conventional REMD simulation (dashed line), the 5.0 ns biased-REMD simulation
(solid line), and the simple expression of Coulomb's law (dashed-dotted red line) for an ion
pair separated by r=SSD [PMFCoul=(q1q2)/(4πεoεr), where q1 and q2 are +1 and −1 units of
electronic charge on the sodium ion and carboxylate group, respectively, εo is the permittivity
of free space, and ε is the relative dielectric constant of TIP3P bulk water, which was taken to
be 80].56

Due to the insufficient sampling provided by the conventional REMD algorithm [as evident
from the histogram shown in Fig. 4(b)], its PMF profile is substantially underestimated and
does not contain any observations of SSD values greater than about 15 Å. In comparison, the
PMF profile from the biased-REMD simulation was constructed with adequate sampling over
the full range of SSD space [as evident from the sampling histogram shown in Fig. 6(b) with
sampling convergence indicated in Fig. 7]. As indicated in Fig. 8, the resulting profile shows
a relatively deep free energy well, with the overall profile being generally in excellent
agreement with the theoretical prediction provided by Coulomb's law.

As expected, the PMF profile generated from the biased-REMD simulation is in excellent
agreement with the PMF profile from the last iteration of the AWUS simulation shown in Fig.
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5(b), which serves to further validate the biased-REMD method. This occurs for this special
case, however, because the molecular system was purposely selected to highlight the problem
of SSD sampling when using the conventional REMD method while avoiding unnecessary
complications related to solute conformational sampling. Now that we have validated this
method, it can confidently be applied to calculate the adsorption free energy for more complex
solutes, such as a peptide over a functionalized surface. For a peptide adsorption system, the
REMD algorithm will primarily provide thermal energy for enhanced conformational sampling
of the peptide, while the biased-energy algorithm incorporated within the REMD simulation
will enable adequate sampling to be achieved over the SSD coordinate.

IV. Conclusions
Adequate system sampling is essential if adsorption free energy for solute-surface interactions
is to be calculated from the trajectory of a molecular dynamics simulation. As described in this
paper, this type of system inherently involves two types of sampling problems: the need to
adequately sample the internal conformational space of the solute and the need to sample its
position over the surface, ranging from tight adsorption to the desorbed state under bulk-
solution conditions. While a conventional REMD simulation is able to overcome free energy
barriers in order to provide adequate conformational sampling of a solute in solution, and
umbrella sampling can be applied to ensure adequate sampling over SSD space, neither of these
methods alone is able to overcome both types of sampling problems. However, when a biasing
potential provided by AWUS is combined with REMD to form a biased-REMD simulation,
both of these sampling problems can be readily overcome and the free energy profile can be
confidently calculated from the resulting simulation trajectory.

Based on the successful development of these methods, we are currently applying this approach
to calculate the free energy of adsorption of model peptides over SAM surfaces presenting a
wide range of surface chemistries. These values are being compared with experimental results
obtained from surface plasmon resonance spectroscopy to assess the accuracy of the
CHARMM force field, and to provide a basis for force field optimization for the development
of an interphase force field that is specifically parameterized for the accurate simulation of
protein adsorption behavior on biomaterials surfaces.
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Fig. 1.
Illustration of two different situations that lead to sampling problems. (a) Two states (φ1 and
φ2) with relatively small differences in free energy, ΔG12, separated by a relatively large free-
energy barrier, ΔGa. A typical MD simulation will not be able to cross the energy barrier within
a reasonable simulation time if ΔGa≫kBT, and thus will sample only one or the other, but not
both states. A conventional REMD simulation can effectively sample this type of system by
using elevated temperatures to enable this barrier to be readily crossed. The two states will still
be sampled according to a Boltzmann distribution, with the probability of sampling state φ1
relative to that of sampling state φ2 given by P12=P(φ1)/P(φ2)=exp(−ΔG12/kBT). For example,
for a free energy difference of 2 kcal/mol, the relative sampling probabilities at 310 K are
P12=27:1, with both states thus being well sampled in the simulation. (b) Two states (φ1 and
φ2) with relatively large differences in free energy separated by a relatively large free energy
barrier. In the case where ΔG12≫kBT, a conventional REMD simulation is ineffective in
sampling the system because the resulting Boltzmann distribution will mean that state φ2 is
sampled at a much lower probability than state φ1 in the low-temperature replica. For example,
with a free energy difference of 9 kcal/mol, the relative sampling probabilities at 310 K are
P12=exp(−ΔG12/kBT)=2.6×106:1, with the higher free energy state thus being insufficiently
sampled for any simulation with less than many millions of time steps.
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Fig. 2.
Model system designed for testing the biased-REMD sampling method in comparison to the
conventional REMD method. It consists of a single sodium ion in TIP3P water over a
carboxylic acid-functionalized SAM surface with one ionized COO− functional group in the
middle of the surface to strongly attract the sodium ion. The surface separation distance (SSD)
represents the distance between the sodium ion in solution and the carboxylate group on the
surface.
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Fig. 3.
Typical curve shape represented by the potential of mean force (PMF) profile as a function of
the surface separation distance (SSD) using the DLVO-type relationship shown in Eq. (16).
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Fig. 4.
(a) Time series replica diffusion for the 5 ns conventional (unbiased) REMD simulation. Dark
dashes indicate which of the 21 replicas occupied the 310 K temperature level at a given point
in time. (b) Histogram showing the degree of sampling for each increment of SSD space. (c)
Box-plot statistical analysis of the histogram presented in (b) showing the median (thick line
in box), first (Q1) and third quartiles (Q3) (box around the median), range bars (lines (whiskers)
above and below the box, lower range ≡ Q1−1.5 [Q3–Q1], upper range ≡ Q3+1.5 [Q3–Q1]),
and population outliers (dotted points outside of the range bars).
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Fig. 5.
Development of the biased energy function by the AWUS iterative method. (a) The PMF vs
SSD profile provided by the initial 200 ps simulation with no biasing energy applied (dashed
line) and the best fit of the DLVO function [Eq. (16)] to the data plot (solid line). (b) Revised
estimate of PMF vs SSD profile based on the sampling from two 200 ps simulation iterations
(lower dashed line) and the best fit of the DLVO function to this PMF profile (solid line). The
middle dashed-dotted line presents the residual PMF vs SSD profile obtained from the third
200 ps iteration when the best-fit DLVO function (solid line) was used to define the biased-
energy function; the residual PMF profile is now considered to be acceptably flat (absolute
value ≤2 kcal/mol over the entire SSD range). The upper dashed curve is the negative of the
best-fit DLVO function (solid line); this represents the biased-energy function that was then
applied in the subsequent biased-REMD simulation.
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Fig. 6.
(a) Time series of replica diffusion for the 5 ns biased-REMD simulation. Dark dashes indicate
which of the 21 replicas occupied the 310 K temperature level at a given point in time. (b)
Histogram showing the density of sampling for each increment of SSD space. (c) Box-plot
statistical analysis of the histogram presented in (b) showing the median (thick line in box),
first and third quartiles (box around the median), range bars (lines (whiskers) above and below
the box, lower range ≡ Q1−1.5 [Q3–Q1], upper range ≡ Q3+1.5 [Q3–Q1]), and population
outliers (dotted points outside of the range bars).
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Fig. 7.
Sampling distribution analysis for the biased-REMD simulation. (a) Sampling histogram after
2 ns. (b) Sampling histogram after 5 ns. (c) Box-plot statistical analyses of sampling
distributions from the 2 and 5 ns histograms showing the median (thick line in box), first and
third quartiles (box around the median), range bars lines (whiskers) above and below the box,
lower range ≡ Q1−1.5 [Q3–Q1], upper range ≡ Q3+1.5 [Q3–Q1]), and population outliers
(dotted points outside of the range bars).
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Fig. 8.
Final PMF vs SSD profiles from the 5.0 ns conventional REMD simulation (dashed line), the
5.0 ns biased-REMD simulation (solid line), and the theoretical profile predicted from
Coulomb's law for an ion pair with SSD separation (dashed-dotted red line).
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Table I
Temperature-level pairs and the associated acceptance ratios for both the conventional and the biased-REMD
simulations.

Temperature pairs Ti−Tj
(K)

Conventional REMD
acceptance ratio

Biased-REMD acceptance ratio

310–313 0.204 0.259

313–318 0.107 0.075

318–322 0.176 0.156

322–326 0.173 0.149

326–330 0.187 0.179

330–334 0.174 0.162

334–338 0.179 0.180

338–343 0.153 0.120

343–347 0.191 0.193

347–352 0.160 0.129

352–356 0.186 0.189

356–361 0.156 0.136

361–365 0.221 0.208

365–370 0.196 0.149

370–375 0.173 0.152

375–380 0.187 0.148

380–384 0.233 0.229

384–389 0.206 0.187

389–394 0.181 0.156

394–400 0.119 0.088

Mean ± std. dev. 0.18 ± 0.03 0.16 ± 0.04
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