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ABSTRACT

Neutrality tests based on the frequency spectrum (e.g., Tajima’s D or Fu and Li’s F ) are commonly used
by population geneticists as routine tests to assess the goodness-of-fit of the standard neutral model on
their data sets. Here, I show that these neutrality tests are specific instances of a general model that
encompasses them all. I illustrate how this general framework can be taken advantage of to devise new
more powerful tests that better detect deviations from the standard model. Finally, I exemplify the
usefulness of the framework on SNP data by showing how it supports the selection hypothesis in the
lactase human gene by overcoming the ascertainment bias. The framework presented here paves the way
for constructing novel tests optimized for specific violations of the standard model that ultimately will
help to unravel scenarios of evolution.

THE standard models of population genetics (i.e.,
the Wright–Fisher model and related ones) con-

stitute null models for which an amazing amount of
theory has been developed. Population geneticists have
used some aspect of the theory (e.g., summary statistics)
to test the goodness-of-fit of the standard model on a
given data set. Rejection of the standard model typically
suggests that alternative hypotheses, such as selection
or demographic history, have to be accounted for. Al-
though they test for more than neutrality, tests that
compute the goodness-of-fit of the standard model
have been referred to as ‘‘neutrality tests.’’ Since dif-
ferent neutrality tests have varying sensitivity to dif-
ferent violations of the standard model, one typically
uses a plethora of tests on the data set of interest. One
then hopes that the evolutionary processes that gen-
erated the data set will be, at least partially, uncovered
by the tests. Although neutrality tests based on pop-
ulation samples exhibit important diversity, they can be
assigned to families such as ‘‘haplotype tests’’ (e.g., Fu

1997; Depaulis and Veuille 1998) that use the dis-
tribution of haplotypes, ‘‘tree shape tests’’ that try to
capture specific tree deformations (e.g., Ramos-Onsins

and Rozas 2002), and ‘‘frequency spectrum tests’’ that
are based on the frequency spectrum (e.g., Tajima

1989; Fu and Li 1993b; Fay and Wu 2000; Achaz 2008).
In this study, I investigate neutrality tests based on the

frequency spectrum (hereafter referred to simply as
neutrality tests) and show that they are all specific

instances of a general framework. Neutrality tests
compare two estimators of the population mutation
parameter u that characterizes the mutation–drift equi-
librium. It is defined as u¼ 2pNem, where p is the ploidy
(1 for haploids and 2 for diploids), Ne is the effective
population size, and m is the locus neutral mutation
rate. When the standard model is true, the expectations
of the several unbiased estimators of u are equal.

Typical estimators of u, in a sample of n sequences, are
ûS ¼ S=an , where S is the number of polymorphic sites
and an ¼

Pn�1
i¼1 ð1=iÞ (Watterson 1975), and ûp ¼ p,

where p is the average pairwise difference between all
sequences in the sample (Tajima 1983). If an outgroup
is available, mutations at frequency i/n can be distin-
guished from mutations at frequency 1� i/n. Following
Fu (1995)’s notations, j is a vector that represents
the unfolded frequency spectrum composed of ji, the
number of polymorphic sites at frequency i/n in the
sample (i 2 [1, n � 1]). When no outgroup is available,
the frequency spectrum is folded and is given by a vector
h, composed of hi, the number of polymorphic sites at
both frequencies i/n and 1 � i/n. Accordingly, it has
been shown that u can be estimated from ûj1

¼ j1, with
j1 the number of derived singletons (Fu and Li 1993b),
from ûh1

¼ ððn � 1Þ=nÞh1, with h1 the total number of
singletons (derived and ancestral) (Fu and Li 1993b),
and from ûH ¼

Pn�1
i¼1 ð2i2=ðnðn � 1ÞÞÞji (Fay and Wu

2000). Recently, it has been suggested that singletons
should be ignored when u is estimated in samples with
sequencing errors; this leads to estimators such as
ûp�j1

, ûS�j1
, ûp�h1

, and ûS�h1
(Achaz 2008). Other esti-

mators of u, such as ûj and ûh, were designed to minimize
their variance (Fu 1994b), although they can be com-
puted using recursions only for a given value of u.
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Neutrality tests compute the goodness-of-fit of a
statistic T, which is the difference between two estima-
tors of u, normalized by its standard deviation:

T ¼ û1 � û2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½û1 � û2�

q ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
anu 1 bnu2

p : ð1Þ

For a given u, under the standard model, T has a
mean of E[T] ¼ 0 and a variance of Var[T] ¼ 1. Lower-
case letters (e.g., t) denote the absolute difference (i.e.,
the numerator only) and uppercase letters (e.g., T) de-
note the normalized difference (Equation 1) throughout
this work. Interestingly, the variance in the denominator
is a function of both u and u2. Because u is unknown, the
denominator cannot be computed as such. In practice,
unbiased estimators of u and u2 must be used instead.
Because the variance of ûS vanishes asymptotically in a
very large sample (limn/‘Var½ûS � ¼ 0), u and u2 are, in
practice, substituted by estimators based on S (Tajima

1989), which changes the mean and the variance of T to
E[T] � 0 and Var[T] � 1.

Tajima’s D (Tajima 1989) is defined by d ¼ ûp � ûS ;
the statistics proposed by Fu and Li (1993b) are f ¼
ûp � ûj1

, f * ¼ ûp � ûh1
, d2 ¼ ûS � ûj1

, and d2* ¼ ûS� ûh1
.

Another classical statistic is h ¼ ûp � ûH (Fay and Wu

2000), even though its variance was not given by the
authors. Finally, two other related neutrality tests that
are, a priori, immune to sequencing errors were pro-
posed: y ¼ ûp�j1

� ûS�j1
and y* ¼ ûp�h1

� ûS�h1
(Achaz

2008). Other tests based on uj and uh (which are
optimized for a given u-value) as well as the difference
between the observed and the expected values of the
frequency spectrum were also proposed (Fu 1996).

Here, I show that when using a general weighted
linear combination of ûi ¼ iji (or ûi* when no outgroup
is available), any estimators of u [i.e., ûv ¼
ð1=

P
viÞ
P

i vi iji] and consequently any neutrality
tests can be derived. Nawa and Tajima (2008) recently
advocated the use of the ûi* spectrum, which is expected
to be uniform under the standard model, as a visual test
for neutrality instead of the classical frequency spec-
trum. This last proposal is in complete agreement with
the current work. Importantly, it has been previously
reported that some u-estimators and neutrality tests
could be expressed as specific linear combinations of
ji or hi (Tajima 1997; Wakeley 2009). Furthermore,
Fu (1997) shows that several u-estimators can be ex-
pressed as specific linear combinations of ûi (ûLðxÞ ¼
ð1=

P
i�xÞ

P
i i�x iji) or in a related framework that uses

ûi* instead of ûi . ûH was subsequently designed as ûLð�1Þ
(Fay and Wu 2000). However, some estimators (like ûp,
ûp�j1

, or ûS�j1
) cannot be expressed using the Fu (1997)

framework. To the best of my knowledge, no previous
study has explicitly derived the framework presented
here. No work has yet highlighted the striking simplicity
of u-estimators and related tests, when expressed in this

framework. I further show how the use of such a simple
framework greatly facilitates the study of previous
u-estimators and their related neutrality tests and how
it opens the door for constructing yet undiscovered
interesting u-estimators and neutrality tests with en-
hanced power.

MODEL

With an outgroup: According to Fu (1995), we know
that

E ½ji � ¼ u=i ð2Þ

Var½ji � ¼ u=i 1 siiu
2 ð3Þ

Cov½ji;jj � ¼ sij u
2; ð4Þ

where sii and sij depend only on n and are given in
Equation 2 of Fu (1995). This shows that E[iji] ¼ u and
therefore that any ji can be used to construct an un-
biased estimator of u:

ûi ¼ iji : ð5Þ

Consequently, a linear combination ûv of the ûi’s (in
which the weights sum to 1) is also an unbiased
estimator of u. Mathematically, it is expressed as

ûv ¼
1P
i vi

Xn�1

i¼1

vi iji ; ð6Þ

where vi is the weight of each ûi in the combined
estimator. Therefore, any estimator based on the
frequency spectrum can be solely described by an
v-vector. Importantly, it should be mentioned that Fu

(1997) also proposed a linear combination of iji, but in
which only a subset of the weight vectors was used.
Namely, the proposed weight vectors were restricted to
vi ¼ i�x.

Using Equations 3 and 4 the variance of ûv can be
shown to be

Var½ûv�

¼
�X

i

vi

��2 Xn�1

i¼1

v2
i i2Var½ji �1 2

X
i

X
j . i

ijvivj Cov½ji ; jj �
 !

¼
�X

i

vi

��2

3 u
X

i

v2
i i

 !
1 u2

X
i

v2
i i2sii 1 2

X
i

X
j . i

ijvivj sij

 ! !
:

ð7Þ

Following Tajima (1989), using Equation 1, one can
compute a normalized statistic that is, in the general
framework,
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TV ¼
ûv1 � ûv2

Var1=2½ûv1 � ûv2 �
; ð8Þ

which can be expressed as a function of an V-vector,

TV ¼
P

i Vi ijiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
anu 1 bnu2

p ð9Þ

with

Vi ¼
v1iP
j v1j

� v2iP
j v2j

an ¼
X

i

iV2
i

bn ¼
X

i

i2V2
i sii 1 2

X
i

X
j.i

ijViVj sij :

The V-vector results from the difference between two
weight vectors normalized to 1. As a consequence, (1) all
elements of the V-vector sum to 0 and (2) the sum of all
positive values cannot be .1 and the sum of all negative
values cannot be , �1. Any vector that fits these two
constraints can be considered, along with Equation 9, as
a neutrality test.

Without an outgroup: If no adequate outgroup is
available, the unfolded frequency spectrum and conse-
quently the ûi spectrum, cannot be computed. This
implies that one has to use the h folded frequency
spectrum. Following Fu (1995), we define hi ¼
ðji 1 jn�iÞ=ð1 1 di;n�iÞ and therefore we have

E ½hi � ¼ fiu ð10Þ

Var½hi � ¼ fiu 1 riiu
2 ð11Þ

Cov½hi ;hj � ¼ riju
2; ð12Þ

where di,n�i is a Kronecker delta (1 if i ¼ j, and 0
otherwise) and where

fi ¼
n

ð1 1 di;n�iÞiðn � iÞ

rii ¼
sii 1 sðn�iÞðn�iÞ1 2siðn�iÞ

ð1 1 di;n�iÞ2

rij ¼
sij 1 siðn�jÞ1 sðn�iÞj 1 sðn�iÞðn�jÞ

ð1 1 di;n�iÞð1 1 dj;n�jÞ
:

Although, we cannot compute the ûi ¼ iji spectrum
(as defined above), we can compute a folded ûi*
spectrum defined as

û
*
i ¼ f�1

i hi : ð13Þ

This folded ûi* spectrum is the visual neutrality test
proposed by Nawa and Tajima (2008). Using a similar

reasoning to that above, a linear combination of ûi* leads
to a generic unbiased estimator of u defined as

û
*
v ¼

1P
i v*

i

Xn=2

i¼1

v*
i f�1

i hi ; ð14Þ

whose variance is given by

Var½û*
v�

¼
�X

i

v*
i

��2
u
X

i

v*2
i f�1

i

 ! 

1 u2
X

i

v*2
i f�2

i rii 1 2
X

i

X
j . i

f�1
i f�1

j v*
i v*

j rij

 !!
:

ð15Þ
Consequently, the corresponding neutrality test TV* is

T *
V ¼

P
i V*

i f�1
i hiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a*
nu 1 b*

nu2
q ð16Þ

with

V*
i ¼

v*
1iP

j v*
1j

� v*
2iP

j v*
2j

a*
n ¼

X
i

f�1
i V*2

i

b*
n ¼

X
i

f�2
i V*2

i rii 1 2
X

i

X
j . i

f�1
i

f�1
j V*

i V*
j rij :

It is important to mention that Tajima (1997) pre-
viously showed that D, F *, and D2* could be expressed as
a linear combination of hi. More precisely, the vectors
used then correspond in the present framework toP

i Vi*f�1
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an*ûS 1 bn*û

2

S

q
. This vector definition em-

phasizes the weight on each hi rather than on each ûi*.
With or without an outgroup: Using both definitions

of ûi (Equation 5) and ûi* (Equation 13), it is easy to
show that we have

û
*
i ¼

1

n
ðn � iÞûi 1 iûn�i

� �
: ð17Þ

As a consequence, the use of an v*-vector along with
the h folded frequency spectrum is equivalent to the use
of an v-vector with the j unfolded frequency spectrum
only when we have

1

n
ðn � iÞv*

i ûi 1 iv*
i ûn�i

� �
¼ 1

ð1 1 di;n�iÞ
ðvi ûi 1 vn�i ûn�iÞ

v*
i ¼

n

ðn � iÞð1 1 di;n�iÞ
vi

¼ n

ið1 1 di;n�iÞ
vn�i : ð18Þ

This makes clear that there is an equivalent v*-vector
for any v-vector that adheres to the following constraint:
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ivi ¼ ðn � iÞvn�i : ð19Þ

To fold the frequency spectrum, the weight ivi as-
sociated with ji (and not with ûi) has to be the same as
the weight (n � i)vn�i associated with jn�i. This trans-
lates into an ivi vector that is symmetric around n/2.
Furthermore, when the constraint (expressed in Equa-
tion 19) is fulfilled, we can write, for any 0 # f # 1,

v*
i ¼

n

ð1 1 di;n�iÞ
f

vi

ðn � iÞ 1 ð1� f Þvn�i

i

� �
;

which leads interestingly for f ¼ (n � i)/n to

v*
i ¼ ðvi 1 vn�iÞ

1

ð1 1 di;n�iÞ
: ð20Þ

The weights on ûi* simply result from the sums of the
weights on ûi and on ûn�i that are pooled when the
spectrum is folded. In that respect, any v-vector
complying to Equation 19 can be used without the help
of an outgroup. The v*-vectors are then a subset of all
possible values of the v-vectors. The former can be
computed from the latter by using Equation 18 or 20.

Because V is the difference between two normalized
v-vectors, all relationships between v and v* expressed
above also hold for V and V*.

RESULTS

The model described above shows that all estimators of
u based on the frequency spectrum are linear combina-
tions of ûi ¼ iji , weighted by a specific vector v. When no
outgroup is available, one can use a linear combination
of ûi* ¼ f�1

1 hi , weighted by a vector v*. Consequently,
neutrality tests can be expressed as a linear combination
of ûi (or ûi*) weighted by a vector V (or V*), for which a
variance can be computed easily. Three applications of

the model are developed below. First, I reinvestigate the
previous estimators of u and their corresponding neu-
trality tests and frame their intrinsic properties in terms of
the ûi (ûi*) spectrum. Then, since previous tests are only
specific instances of the framework, I show how the model
can be used to build new tests that are more powerful than
previous ones. Finally, I exemplify the benefit of the
framework on real data that are known to be subject to an
ascertainment bias.

Previous u-estimators and neutrality tests: Using
Equation 6, all previously reported u-estimators are
given by an v-vector (Table 1). When defined, the
corresponding v*-vectors are also provided (Table 1). A
graphical representation of four estimators of u is shown
in Figure 1. Figure 1 highlights that both ûS and ûp

emphasize the low-frequency polymorphic sites in their
estimation of u (although not as much as ûj1

, which is
solely based on derived singletons) and that, on the
contrary, ûH gives more weight to ancestral polymor-
phisms. Framed in the folded spectrum, ûS still weights
more low plus high frequencies whereas ûp has a
uniform weight. Potentially, using other weight vectors,
one could express any undiscovered estimator of u

based on the frequency spectrum.
The numerical variances of the previous estimators of

u are reported in Table 1 (for n¼ 30 and u¼ 1, 10, 100).
They can be computed either by their original deriva-
tions or by Equation 7. This clearly shows that, among
previous estimators of u, the variance of ûS is the smallest
and that of ûH is the largest. This can be explained by
the fact that the variance of ûi increases with i. As a
consequence ûH , which puts more weight on ancestral
alleles, shows a larger variance. Interestingly, estimators
without singletons have relatively small variances.

Previous neutrality tests are given in Table 2. A
graphical representation of the V-vectors (and V*
when defined) used in four previous tests is reported

TABLE 1

Basic characteristics of previous estimators of u

v*
Variance (n ¼ 30)

Estimators v (when defined) u ¼ 1 u ¼ 10 u ¼ 100

ûS vi ¼ i�1 vi* ¼ n
iðn�iÞð1 1 di;n�i Þ 0.36 12.8 1052

ûp vi ¼ n � i vi* ¼ n
ð1 1 di;n�iÞ 0.59 27.4 2419

ûh1
v1 ¼ ðn � 1Þ; vn�1 ¼ 1; v1,i,n�1 ¼ 0 v1* ¼ n; v*i .1 ¼ 0 1.22 35.1 2839

ûS�h1
v1 ¼ vn�1 ¼ 0; v1,i,n�1 ¼ i�1 v1* ¼ 0; v*i .1 ¼ n

iðn�iÞð1 1 di;n�i Þ 0.52 21.4 1833

ûp�h1
v1 ¼ vn�1 ¼ 0; v1,i,n�1 ¼ ðn � iÞ v1* ¼ 0; v*i .1 ¼ n

ð1 1 di;n�iÞ 0.68 31.9 2825

ûj1
v1 ¼ 1; vi .1 ¼ 0 — 1.15 25.0 1599

ûH vi ¼ i — 1.55 65.0 5597

ûS�j1
v1 ¼ 0; vi .1 ¼ i�1 — 0.51 20.3 1730

ûp�j1
v1 ¼ 0; vi .1 ¼ ðn � iÞ — 0.68 31.5 2790
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in Figure 2. Figure 2 shows that the sensitivity of the
different tests differs although they share some com-
mon features. For example, D and F * both are nega-
tively sensitive to both low and high frequencies
(although more sensitive to low frequencies). D shows
opposite sensitivity between medium frequencies and
low/high frequency, whereas F * shows poor sensitivity to
medium-frequency polymorphisms. F and F * have oppo-
site effects on doubletons and singletons. Thus, devia-
tions that enhance both will have opposite effects. Finally,
H is oppositely skewed by low and high frequencies.

One crucial aspect of neutrality tests is their impor-
tant variance under the neutral model. This variance
induces a large confidence interval and therefore

decreases their power to detect a deviation. It has been
argued that this variance is a consequence of the tree
shape variance and that neutrality tests based on the
frequency spectrum are doomed to exhibit low power
(Felsenstein 1992b).

As a consequence, an ideal neutrality test should
minimize its variance under the standard model. The
variances of the denominator of previous neutrality tests
are given in Table 2 (for n ¼ 30 and u ¼ 1, 10, 100). It is
also important to mention that previous derivations of f,
f *, y, and y* variances give different values. Simulations
show that the new derivations are the correct ones
(supporting information, Table S1). First, it should be
noted that the original D test has a very low variance

Figure 1.—Estimators of u. A graph-
ical view of the weight vectors of four
typical estimators of u (for n ¼ 30).
All values of the normalized vector
sum to 1. In the top four panels, the
v-vectors that are defined for the un-
folded frequency spectrum (j) are given,
whereas the two bottom ones are the
v*-vectors that are defined for the
folded frequency spectrum (h). For es-
timators that can be defined in terms of
both v and v* (here ûp and ûS ), the lat-
ter can be computed from the former
with vi* ¼ vi 1 vn�i (when i 6¼ n � i)
or vi* ¼ vi (when i ¼ n � i).

TABLE 2

Basic characteristics of neutrality tests

Variance (n ¼ 30)

Test û1 û2

Mandatory
outgroup u ¼ 1 u ¼ 10 u ¼ 100

d ûp ûS 0.18 8.2 728
f ûp ûj1

No 1.62 51.9 4,084
d2 ûS ûj1

0.93 25.8 1,910
y ûp�j1

ûp�j1
0.12 6.2 558

h ûp ûH 0.98 40.0 3,417
f * ûp ûh1

Yes 1.71 63.8 5,314
d2* ûS ûh1

0.99 34.5 2,805
y* ûp�h1

ûS�h1
0.12 5.8 524

TV v1i ¼ e�0.9i v2i ¼ 1 1.19 37.1 2,895
v1i ¼ 30

i

� �
0:530 v2i ¼ 1 Yes 2.48 151.4 14,167
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when compared to all other tests. This is connected to
the low variance of both ûS and ûp. Second, Y and Y *
tests have also a small variance, although they ignore an
important fraction of the data (i.e., singletons). All other
tests have a similar variance.

This predicts that D typically will be sensitive to low,
medium, and high frequencies and should be more
powerful because it has a relatively low variance under
neutrality. Therefore, it has the potential to be an
excellent neutrality test and it appears that it is often
one of the most powerful tests (Simonsen et al. 1995; Fu

1997). H is sensitive either low or high frequencies;
however, its larger variance predicts that it will be useful
only when the distortion in the u-spectrum is very
strong. In practice, it is powerful only when there is a
large excess of high-frequency polymorphisms. The
singleton tests appear to be good candidates to capture
an excess of singletons, although they neglect other
deviations in the spectrum. The Y and Y * tests have low
variance, although ignoring singletons can lead to low
power especially when they are in excess (Achaz 2008).

Building new tests: To design new neutrality tests
using this framework I started by analyzing the deviation
of the average ûi spectrum, which is expected to be
uniform under the standard models. Furthermore,
because Fu (1995) showed that the covariance between
ji’s is weak when compared to their variance, visual
inspection of the variance of ûi provides a first approx-
imation to the expected variance of ûv and therefore of
their related Tv tests. I studied two deviations from the

standard model: a severe bottleneck and isolated popu-
lations with migration.

The severe bottleneck was simulated as a sudden
change of size from N chromosomes to N/100 that lasts
for a time Tl ¼ 0.1 (in N generations). Accordingly, the
coalescent rates within the bottleneck are accelerated by
0.01 and the simulations were performed as in Simonsen

et al. (1995). Sampling was performed after a time Tb has
elapsed after the bottleneck. The mean and the stan-
dard deviation of ûi are given in Figure 3a for two times,
Tb ¼ 0.03 and Tb ¼ 0.3. Figure 3 shows that most of the
deviation comes from the sites with low frequency.
Therefore, I designed a new test that captures the
deviations within low frequencies. In this test, I used a
first vector of v1i ¼ e�ai, with a ¼ 0.9 and a second
uniform vector v2i ¼ 1. This results in an exponentially
decreasing weight for low-frequency mutations (Figure
3) that is positive for frequency i/n # 0.13. The choice of
a ¼ 0.9 was mostly empirical, although using a ¼ 0.8 or
a ¼ 1 leads to similar results (data not shown). As
stressed in the discussion, this study aims at illustrat-
ing how easy it is to create new tests with enhanced
power; power optimization deserves an entire new
study. A graphical view of the V-vector associated with
this new TV test is given in Figure 3 and its variance is
reported in Table 2. Most of the weight of this test is
given to low frequencies and its variance is comparable
to those of other neutrality tests. The power of this new
test and of D, F, and H is reported in Figure 3. Results
show that the new test outperforms the previous tests

Figure 2.—Neutrality tests. A graphi-
cal view of the weight vectors of four typ-
ical neutrality tests (for n¼ 30). Because
the V-vectors used for neutrality tests are
computed as a difference between two
normalized vectors, all values of V sum
to 0. In the top four panels, the V-vectors
that are defined for the unfolded fre-
quency spectrum (j) are given, whereas
the two bottom ones are the V*-vectors
that are defined for the folded fre-
quency spectrum (h). For estimators
that can be defined in terms of both V
and V* (here D and F *), the latter
can be computed from the former in
the way that vi* can be deduced from vi.
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by 20% and is able to detect the deviation for a longer
time.

The 95% confidence intervals were built using coales-
cent simulations under the standard model, using a fixed
number of segregating sites (Hudson 1993; Depaulis

and Veuille 1998). Although there has been much debate
on how confidence intervals should be set (Depaulis et al.
2001; Markovtsova et al. 2001; Wall and Hudson 2001),
it has been clearly shown that the choice of a particular
method does not alter the results in standard models
(Ramos-Onsins et al. 2007) and therefore is not discussed
here.

In the second scenario, I compared the power of
neutrality tests in detecting a case of isolation with
migration (e.g., Nielsen and Wakeley 2001). In the
simulations, the isolation event happened at time Ti¼ 3
and both populations were sampled equally (na ¼ nb ¼
15). The migration rate between the two populations is
variable. Similar to the analysis of the bottleneck, I first
report the mean and the standard deviation of the ûi

spectrum. Figure 4 shows that most of the deviation
comes from the sites at frequency 15/30. Additionally,
for a small enough migration rate (M ¼ 0.1), there are
almost no polymorphisms with frequency .0.5. Al-
though the standard deviations are large, the coeffi-
cients of variations (variance/mean) are relatively small.
To design a new test, I used for the first v-vector the
probabilities given by a binomial law, v1i ¼

�
i
n
�
pið1�

pÞn�i with p¼ 0.5 and n¼ 30 and a uniform vector v2i¼
1 as a second vector.

This was motivated by the idea of designing a test that
specifically captures an excess of medium-frequency
polymorphisms. A graphical view of the resulting
V-vector is given in Figure 4 and its variance is given
in Table 2. Almost all the weight of this test is given to the
13 , i , 17 sites. The variance of this new test is large,
and this is related to the large variance of ûn=2 in the
sample with even n. Despite this large variance, the test
clearly outperforms all previous tests (Figure 4).

Overcoming the ascertainment bias: As an example
of the power of designing new neutrality tests, I analyzed
SNP data (from HapMap) around the Lactase gene
(LCT), which has been shown to exhibit a footprint of a
recent strong selective sweep in European populations
(Bersaglieri et al. 2004) as well in eastern African
populations (Tishkoff et al. 2007). This pattern of
recent selection is one of the strongest in the human
genome (Nielsen et al. 2005). Indeed, it has been
advanced that the lactase-persistence phenotype (the
ability to digest milk as an adult) has been advantageous
in European populations of farmers (especially in
Northern European ones). The SNPs that are tightly
associated with the selective sweep in Europeans
are located at 13–22 kb upstream of the gene start
(Bersaglieri et al. 2004). From HapMap (release 27,
February 2009) I gathered all SNPs in a window of

Figure 3.—Example of a severe bot-
tleneck. (a) The mean and the standard
deviation of the ûi spectrum that is ob-
served in simulations (n ¼ 30, 104 repli-
cates) of a standard model or of a
recent severe bottleneck (reduction of
f ¼ 1/100 for a time Tl ¼ 0.1). In both
times after the bottleneck (Tb ¼ 0.03
and Tb ¼ 0.3), the observed trend is
similar: an excess in low frequency of
ûi , though stronger for Tb ¼ 0.03. (b)
Left, the weight vector of a new neutral-
ity test (here TV) is reported. It focuses
its sensitivity on low frequencies:
Vi ¼ e�0:9i=

P
j e�0:9j � 1=30. (b) Right,

the power of four neutrality tests is com-
pared in detecting a severe bottleneck
as a function of the time elapsed after
the bottleneck. The new test shows en-
hanced power to detect the bottleneck
(more power for a longer time).
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100 kb centered at the start of the lactase gene. This
includes 50 kb upstream and the entire gene. I con-
sidered only SNPs whose sample size was at least 85
chromosomes. Because the sample size of all SNPs was
not identical, I used the observed frequencies to
generate a folded frequency spectrum of 85 chromo-
somes for the following populations: Utah residents
with northern and western European ancestry from the
CEPH collection (CEU); Han Chinese in Beijing, China
(CHB); Japanese in Tokyo, Japan ( JPT); and Yoruban in
Ibadan, Nigeria (YRI).

According to the literature, one expects to find a trace
of an ongoing selective event in the CEU population
only. Without the help of an outgroup, this would
translate into an excess of low-frequency polymorphism
in the folded frequency spectrum (typically, negative D,
F *, and D2*). Computation of the standard neutrality
tests shows a deficit of low-frequency polymorphism
rather than an excess. This deficit is even often
significant (Table 3). This is clearly caused by the
ascertainment bias in the data set. Because the poly-
morphisms were first screened in a small group and
further genotyped in larger groups, rare variants are
underrepresented (e.g., Kuhner et al. 2000; Clark et al.
2005). This ascertainment bias has been subject to
various corrections (e.g., Wakeley et al. 2001; Nielsen

et al. 2004). To avoid any correction, I computed a TV*
test where the weights of both v1* and v2* vectors were

set to 0 for i , 8. The remaining two vectors were
computed using ûp and ûS . As a consequence, this test is
D-like in that it considers only polymorphisms with
frequencies in the range [0.09, 0.91]. This is reminis-
cent of ignoring the singletons data set where sequenc-
ing errors are suspected (Achaz 2008). Results (Table
3) show that this test significantly deviates from the
standard model for the CEU population. Ignoring fewer
polymorphisms (e.g., only the 5% that are of low fre-
quency) or changing the minimum sample size leads to
similar results (data not shown).

DISCUSSION

Here I developed a unifying framework for u-estimators
on the basis of the frequency spectrum. Namely, all known
estimators of u are linear combinations of ûi ¼ iji (or
ûi* ¼ f�1

i hi). Because neutrality tests based on the
frequency spectrum are simple functions of these u-esti-
mators, the framework can be used to derive them. All
tests (of this family) proposed so far are embedded in the
framework. Using the model, I have shown that esti-
mators of u based on a folded spectrum always have an
unfolded equivalent. The reciprocal, however, is not true.

Besides its unifying appeal, the model developed here
can be used in several ways. First, I showed how it can be
used to compute the variance of all estimators of u and
consequently of statistics such as t ¼ û1 � û2. All variances

Figure 4.—Isolation with migration.
(a) The mean and the standard devia-
tion of the ûi spectrum that is observed
in simulations (n¼ 30, 104 replicates) of
a standard model or of an isolation with
migration model (two populations
equally sampled, na ¼ nb ¼ 15 that were
a single ancestral panmictic population
at time Ti ¼ 3). In both sampling migra-
tion rates between the two populations
(M ¼ 0.1 and M ¼ 1), the observed
trend is similar: an excess of û15, though
much stronger for M ¼ 0.1. (b) Left,
the weight vector of a new neutrality
test (Tv) that focuses its sensitivity on
i ¼ 15. The weight vector used here is

Vi ¼
� 30

i
�
0:530=

P
j

� 30
j
�
0:530 � 1=30,

where
� 30

i
�
0:530 is obtained using a bi-

nomial with p ¼ 0.5 and n ¼ 30. (b)
Right, the power of four neutrality tests
is compared when detecting the popu-
lation structure as a function of the mi-
gration rate. The new test displays much
more power to detect the population
structure.
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of all estimators can be computed either using this
framework or from their previous derived analytical
formula. The same should be true for all t. Importantly,
the computation of f, f *, y, and y* revealed differences
between both methods. Simulations demonstrate that
the previous formulas were not correct while the new
ones are. Besides a minor error in the f and f * variance
(corrected in Simonsen et al. 1995), it appears that the
Cov[p, j1] that was derived by Fu and Li (1993b) is
inexact. Therefore the variances of f and f * (Fu and Li

1993b) as well as the variances of y and y* (Achaz 2008)
that were using this covariance carried along the error.
Framed within the model presented here, all variances
are correct. Finally, it can be used to compute the
variance of h that was not given by the authors (Fay and
Wu 2000).

One potentially interesting development is to find an
v-vector that minimizes variance of the associated
estimator of u. This problem was previously addressed
thoroughly (Felsenstein 1992a,b; Fu and Li 1993a; Fu

1994a,b). Indeed, it was shown that phylogenetic esti-
mates have lower variance than estimators based on sum-
mary statistics (Felsenstein 1992b; Fu and Li 1993a; Fu

1994b). Moreover, Fu (1994a,b) proposed a general
method to find weight vectors that minimize the var-
iance of the estimators and showed that the best vector
actually depends on the value of u itself. Nonetheless, it
remains true that some estimators have less variance
than others (i.e., ûS vs. ûp), whatever is the value of u.
This latter observation suggests that re-exploring this
question of minimizing the variance may be of interest.

Nawa and Tajima (2008) recently proposed to use
the ûi* spectrum instead of the classical frequency
spectrum as a visual test for neutrality. This can be
extended to the unfolded ûi spectrum if an outgoup is
available. The study presented here fully supports this
idea. The visual inspection of the ûi spectrum indicates
why some tests will reject neutrality. Contrary to what
intuition may suggest, when one is interested in u-esti-
mation, the appropriate representation for weight
vectors is the v-vector as defined above rather than
weights on the ji themselves (or on the hi as in Tajima

1997).
When an outgroup is used to unfold the spectrum,

the choice of the appropriate outgoup is of critical
importance. If the outgroup is not adequate (too distant

or too close), misoriented sites will have a disastrous
effect on u-estimations and therefore on related neu-
trality tests (Baudry and Depaulis 2003). This adds to
the difficulty of using tests based on the full j-spectrum.
However, when low and high frequencies can be sorted
apart, much power is gained in terms of choosing the
adequate evolutionary scenario. For example, no high
frequencies are overrepresented under recent growth
or severe bottlenecks.

Specific problems that concern only some area of the
spectrum can be handled easily by setting to 0 all weights
in the suspicious area. For example, the sequencing
errors can be avoided when the singletons are ignored
(Achaz 2008). With the current framework, by ignoring
the low-frequency polymorphisms, the ascertainment
bias can be overcome and the pattern expected from
selection at the lactase gene appears. This strategy has
endless extensions as long as we have some prior
knowledge of the suspicious area.

Finally, I think that this framework opens the door for
new estimations of u and the related neutrality tests.
Using simple examples, I show how the power of
neutrality tests can easily be improved to detect devia-
tions from the standard model. To optimize the power
of the future new tests, one could (1) minimize their
variance under the standard model, (2) select their area
of sensitivity on the basis of prior knowledge of the
impact of specific deviations, and (3) use recombina-
tion estimates to compute smaller confidence intervals
(Wall 1999) (because recombination results in quasi-
independent replicates that lower the variance of the
u-estimators). By building specific tests that will be
sensitive to specific deviations, one could envision how
several selected tests will be able to help the population
geneticist to choose between different possible scenar-
ios for a given data set. Another interesting alternative
would be to use the different u-estimators as summary
statistics to infer the best parameters for a given
evolutionary scenario (e.g., using ABC analysis).

The source code for this study was designed as a C11

library for the simulations and a C library for sequence
analysis and is available upon request. A dedicated web
version of the tests is available at http://wwwabi.snv.
jussieu.fr/achaz/neutralitytest.html. Furthermore, the
tests will be incorporated in a future release of DNAsp.
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2 SI 

TABLE S1 

Variance of neutrality tests (θ  = 10, n = 30, 105 replicates) 

 Test  Publication  Original Derivation Current Framework Simulation 

 d  TAJIMA (1989)  8.21 8.21 8.24 

 d2  FU and LI (1993b)  25.83 25.83 25.89 

 d2* 
 FU and LI (1993b)  34.47 34.47 34.58 

 h  FAY and WU (2000)  na 39.96 39.55 

 f *  FU and LI (1993b)  61.44 63.84 63.98 

 f  FU and LI (1993b)  49.59 51.85 51.83 

 y*  ACHAZ (2008)  7.72 5.81 5.80 

 y  ACHAZ (2008)  7.40 6.18 6.17 

Please note that for F *, the typo FU and LI (1993b) equation was corrected, as it is 
in SIMONSEN et al. (1995). 

 


