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ABSTRACT

The use of all available molecular markers in statistical models for prediction of quantitative traits has
led to what could be termed a genomic-assisted selection paradigm in animal and plant breeding. This
article provides a critical review of some theoretical and statistical concepts in the context of genomic-
assisted genetic evaluation of animals and crops. First, relationships between the (Bayesian) variance of
marker effects in some regression models and additive genetic variance are examined under standard
assumptions. Second, the connection between marker genotypes and resemblance between relatives is
explored, and linkages between a marker-based model and the infinitesimal model are reviewed. Third,
issues associated with the use of Bayesian models for marker-assisted selection, with a focus on the role of
the priors, are examined from a theoretical angle. The sensitivity of a Bayesian specification that has been
proposed (called ‘‘Bayes A’’) with respect to priors is illustrated with a simulation. Methods that can solve
potential shortcomings of some of these Bayesian regression procedures are discussed briefly.

IN an influential article on animal breeding,
Meuwissen et al. (2001) suggested using all available

molecular markers as covariates in linear regression
models for prediction of genetic value for quantitative
traits. This has led to a genome-enabled selection
paradigm. For example, major dairy cattle breeding
countries are now genotyping elite animals and genetic
evaluations based on SNPs (single nucleotide poly-
morphisms) are becoming routine (Hayes et al. 2009;
van Raden et al. 2009). A similar trend is taking place
in poultry (e.g., Long et al. 2007; González-Recio

et al. 2008, 2009), beef cattle (D. J. Garrick, personal
communication), and plants (Heffner et al. 2009).

The extraordinary speed with which events are taking
place hampers the process of relating new develop-
ments to extant theory, as well as the understanding of
some of the statistical methods proposed so far. These
span from Bayes hierarchical models (e.g., Meuwissen

et al. 2001) and the Bayesian Lasso (e.g., de los Campos

et al. 2009b) to ad hoc procedures (e.g., van Raden

2008). Another issue is how parameters of models for
dense markers relate to those of classical models of
quantitative genetics.

Many statistical models and approaches have been
proposed for marker-assisted selection. These include

multiple regression on marker genotypes (Lande and
Thompson 1990), best linear unbiased prediction (BLUP)
including effects of a single-marker locus (Fernando

and Grossman 1989), ridge regression (Whittaker

et al. 2000), Bayesian procedures (Meuwissen et al. 2001;
Gianola et al. 2003; Xu 2003; de los Campos et al.
2009b), and semiparametric specifications (Gianola

et al. 2006a; Gianola and de los Campos 2008). In
particular, the methods proposed by Meuwissen et al.
(2001) have captured enormous attention in animal
breeding, because of several reasons. First, the proce-
dures cope well with data structures in which the
number of markers amply exceeds the number of
observations, the so-called ‘‘small n, large p’’ situation.
Second, the methods in Meuwissen et al. (2001) con-
stitute a logical progression from the standard BLUP
widely used in animal breeding to richer specifications,
where marker-specific variances are allowed to vary at
random over many loci. Third, Bayesian methods have a
natural way of taking into account uncertainty about all
unknowns in a model (e.g., Gianola and Fernando

1986) and, when coupled with the power and flexibility
of Markov chain Monte Carlo, can be applied to almost
any parametric statistical model. In Meuwissen et al.
(2001) normality assumptions are used together with
conjugate prior distributions for variance parameters;
this leads to computational representations that are
well known and have been widely used in animal
breeding (e.g., Wang et al. 1993, 1994). An important
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question is that of the impact of the prior assump-
tions made in these Bayesian models on estimates of
marker effects and, more importantly, on prediction of
future outcomes, which is central in animal and plant
breeding.

A second aspect mentioned above is how parameters
from these marker-based models relate to those of
standard quantitative genetics theory, with either a finite
or an infinite number (the infinitesimal model) of loci
assumed. The relationships depend on the hypotheses
made at the genetic level and some of the formulas
presented, e.g., in Meuwissen et al. (2001), use linkage
equilibrium; however, the reality is that marker-assisted
selection relies on the existence of linkage disequilib-
rium. While a general treatment of linkage disequilib-
rium is very difficult in the context of models for
predicting complex phenotypic traits, it is important
to be aware of its potential impact. Another question is
the definition of additive genetic variance, according to
whether marker effects are assumed fixed or random,
with the latter corresponding to the situation in which
such effects are viewed as sampled randomly from some
hypothetical distribution. Meuwissen et al. (2001)
employ formulas for eliciting the variance of marker
effects, given some knowledge of the additive genetic
variance in the population. Their developments begin
with the assumption that marker effects are fixed, but
these eventually become random without a clear elab-
oration of why this is so. Since their formulas are used in
practice for eliciting priors in the Bayesian treatment
(e.g., Hayes et al. 2009), it is essential to understand
their ontogeny, especially considering that priors may
have an impact on prediction of outcomes.

The objective of this article is to provide a critical
review of some of these aspects in the context of
genomic-assisted evaluation of quantitative traits. First,
relationships between the (Bayesian) variance of marker
effects in some regression models and additive genetic
variance are examined. Second, connections between
marker genotypes and resemblance between relatives
are explored. Third, the liaisons between a marker-
based model and the infinitesimal model are reviewed.
Fourth, and in the context of the quantitative genetics
theory discussed in the preceding sections, some statis-
tical issues associated with the use of Bayesian models for
(massive) marker-assisted selection are examined, with
the main focus on the role of the priors. The sensitivity of
some of these methods with respect to priors is illus-
trated with a simulation.

RELATIONSHIP BETWEEN THE VARIANCE
OF MARKER EFFECTS AND ADDITIVE

GENETIC VARIANCE

Additive genetic variance: A simple specification
serves to set the stage. The phenotypic value (y) for a
quantitative trait is described by the linear model

y ¼ wa 1 E ; ð1Þ

where a is the additive effect of a biallelic locus on the
trait, w is a random indicator variable (covariate)
relating a to the phenotype, and E is an independently
distributed random deviate, E � ð0; VEÞ, where VE is
the environmental or residual variance, provided gene
action is additive. Under Hardy–Weinberg (HW) equi-
librium, the frequencies of the three possible genotypes
are PrðMM Þ ¼ p2 ; PrðMmÞ ¼ 2pq, and PrðmmÞ ¼ q2,
where p ¼ PrðM Þ and q ¼ 1� p ¼ PrðmÞ. Code arbi-
trarily the states of w such that

w ¼
1 with probability p2

0 with probability 2pq
�1 with probability q2:

8<
: ð2Þ

The genetic values of MM, Mm, and mm individuals are
a, 0, and �a, respectively. Then

EðwÞ ¼ p � q; ð3Þ

Eðw2Þ ¼ 1� 2pq; ð4Þ

and

VarðwÞ ¼ 2pq: ð5Þ

This is the variance among genotypes (not among their
genetic values) at the locus under HW equilibrium.

A standard treatment (e.g., Falconer and Mackay

1996) regards the additive effect a as a fixed parameter.
The conditional distribution of phenotypes, given a
(but unconditionally with respect to w, since genotypes
vary at random according to HW frequencies), has
mean

Eðy j aÞ ¼ EðwÞa ¼ ðp � qÞa ð6Þ

and variance

Varðy j aÞ ¼ a2VarðwÞ1 VE ¼ 2pqa2 1 VE ¼ VA 1 VE;

ð7Þ

where VA ¼ 2pqa2 is the additive genetic variance at the
locus. In this standard treatment, the additive genetic
variance depends on the additive effect a but not on its
variance; unless a is assigned a probability distribution,
it does not possess variance.

Uncertainty about the additive effect: Assume now
that a � u; s2

a

� �
, where u is the mean of the distribu-

tion. In the Appendix of Meuwissen et al. (2001), a
suddenly mutates from fixed to random without
explanation. How does the variance of a arise? Param-
eter s2

a can be assigned at least two interpretations. The
first one is as the variance between a effects in a
conceptual sampling scheme in which such effects
are drawn at random from a population of loci. In the
second (Bayesian), s2

a represents uncertainty about
the true but unknown value of the additive effect of the
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specific locus, but without invoking a scheme of
random sampling over a population of loci. For
example, s2

a ¼ 0 means in a Bayesian sense that a ¼ u

with complete certainty, but not necessarily that the
locus does not have an effect, since u may (may not) be
distinct from 0; this cannot be overemphasized. With a
single locus the Bayesian interpretation is more in-
tuitive, since it is hard to envisage a reference pop-
ulation of loci in this case.

Irrespective of the interpretation assigned to s2
a , the

assumption a � u; s2
a

� �
induces another conditional

distribution (given w) with mean and variance

Eðy jwÞ ¼ Eðwa jwÞ ¼ wu ð8Þ

and

Varðy jwÞ ¼ w2s2
a 1 VE; ð9Þ

respectively. However, both w (the genotypes) and a
(their effects) are now random variables possessing
a joint distribution. Here, it is assumed that w and a are
independent, but this may not be so, as in a mutation-
stabilizing selection model (e.g., Turelli 1985) or in
situations discussed by Zhang and Hill (2005) where
the distribution of gene frequencies after selection
depends on a. Deconditioning over both a and w (that
is, averaging over all genotypes at the locus and all values
that a can take), the expected value and variance of the
marginal distribution of y are

EðyÞ ¼ Ew Eðy jwÞ½ � ¼ EðwÞu ¼ ðp � qÞu ð10Þ

and

VarðyÞ ¼ Ew Varðy jwÞ½ �1 Varw Eðy jwÞ½ �
¼ Ew w2s2

a 1 VE

� �
1 Varw wu½ �

¼ ð1� 2pqÞs2
a 1 2pqu2 1 VE: ð11Þ

This distribution is not normal: the phenotype results
from multiplying a discrete random variable w by the
normal variate a, and then adding a deviate E, which
may or may not be normal, depending on what is
assumed about the residual distribution. The genetic
variance is now ð1� 2pqÞs2

a 1 2pqu2. The term ð1�
2pqÞs2

a stems from randomness (uncertainty) about a,
and it dissipates from (11) only if s2

a ¼ 0. Note that there
is additive genetic variance even if s2

a ¼ 0, and it is equal
to 2pqu2. Further, if the standard assumption u ¼ 0 is
adopted, the variance of the marginal distribution of
phenotypes becomes

VarðyÞ ¼ ð1� 2pqÞs2
a 1 VE: ð12Þ

Here, the standard term for additive genetic variance
disappears and yet s2

a may not be zero, since one poses
that a locus has no effect (on average) but there is some
uncertainty or variation among loci effects, as repre-
sented by s2

a.

In a nutshell, the additive genetic variance at the
locus, VA¼ 2pqa2, does not appear in (11), because a has
been integrated out; actually, it is replaced by 2pqu2 in
(11). The term ð1� 2pqÞs2

a does not arise in the
standard (fixed) model, where additive genetic variance
in stricto sensu is VA. When a is known with certainty, then
s2

a ¼ 0 and yet the locus generates additive genetic
variance, as measured by VA¼ 2pqu2. If u¼ 0 and s2

a ¼ 0,
then the variance is purely environmental. In short, the
connection between the uncertainty variance s2

a and
the additive variance VA (which involves the effect of the
locus) is elusive when both genotypes and effects are
random variables.

Several loci: Consider now K loci with additive effect
ak at locus k, without dominance or epistasis. The
phenotype is expressible as

y ¼
XK

k¼1

wkak 1 e; ð13Þ

with Eðy j a1; a2; . . . ; akÞ ¼
PK

k¼1ðpk � qkÞak under HW
equilibrium. If all markers were quantitative trait loci
(QTL), this would be a ‘‘finite number of QTL’’ model; it
is assumed that these loci are markers hereinafter unless
stated otherwise. Under this specification

Varðy j a1; a2; . . . ; akÞ ¼ Var
XK

k¼1

wkak j a1; a2; . . . ; ak

 !
1 VE:

ð14Þ
To deduce the additive variance, some assumption must
be made about the joint distribution of w1, w2,. . ., wK,
the genotypes at the K loci.

Linkage equilibrium (LE) and HW frequencies are
assumed to make the problem tractable. Some expres-
sions are available to accommodate linkage disequilib-
rium, but parameters are not generally available to
evaluate them (see the appendix). When there is se-
lection, genetic drift, or introgression and many loci are
considered jointly, some of which will be even physically
linked, the LE assumption is unrealistic. Hence, as in
the case of many other authors, e.g., Barton and de

Vladar (2009) in a study of evolution of traits using
statistical mechanics, LE–HW assumptions are used
here.

If there is LE, the distributions of genotypes at the K
loci are mutually independent, so that

Varðy j a1; a2; . . . ; akÞ ¼
XK

k¼1

VarðwkÞa2
k 1 VE

¼
XK

k¼1

2pkqka2
k 1 VE: ð15Þ

The multilocus additive genetic variance under LE–HW
is then VA ¼

PK
k¼1 2pkqka2

k .
Suppose now that all effects ak ðk ¼ 1; 2; . . . ;K Þ are

drawn from the same random process with some
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distribution function PðaÞ, mean u, and variance s2
a .

Using the same reasoning as before, the variance of the
marginal distribution of the phenotypes is

VarðyÞ ¼ Vara

XK

k¼1

ðpk � qkÞak

 !
1 Ea

XK

k¼1

2pkqka2
k 1 VE

 !
:

ð16Þ
Then

VarðyÞ ¼ s2
a

XK

k¼1

ð1� 2pkqkÞ1 u2
XK

k¼1

2pkqk 1 VE; ð17Þ

which generalizes (11) to K loci. The first term is
variance due to uncertainty, the second term is the
standard additive genetic variance, and the third one is
residual variation.

What is the relationship between the multilocus
additive genetic variance VA ¼

PK
i¼1 2pkqka2

k and s2
a?

Let V 9A be the mean variance, obtained by averaging VA

over the distribution of the a’s. This operation yields

V 9A ¼ E
XK

i¼1

2pkqka2
k

 !
¼ ðs2

a 1 u2Þ
XK

i¼1

2pkqk :

Hence, if u¼ 0 (additive effects expressed as a deviation
from their mean), then

V 9A ¼ s2
a

XK

i¼1

2pkqk : ð18Þ

The relationship between the uncertainty variance s2
a

and the marked average additive genetic variance V 9A
would then be

s2
a ¼

V 9AP
K
i¼1 2pkqk

; ð19Þ

in agreement with Habier et al. (2007), but different
from Meuwissen et al. (2001). Unless the markers are
QTL, V 9A gives only the part of the additive genetic
variance captured by markers, and this may be a tiny
fraction only (Maher 2008). This makes the connection
between additive genetic variance for a trait and marked
variance even more elusive.

Corresponding formulas under linkage disequilib-
rium are in the appendix.

Heterogeneity of variance: Suppose now that locus
effects are independently (but not identically) distrib-
uted as ak � N uk ; s2

ak

� �
. The mean of the marginal

distribution of phenotypes is EðyÞ ¼
PK

k¼1ðpk � qkÞuk ,
and the variance becomes

VarðyÞ ¼
XK

k¼1

ð1� 2pkqkÞs2
ak

1
XK

k¼1

2pkqku2
k 1 VE:

If all s2
ak
¼ 0 (complete Bayesian certainty about all

marker effects ak), there would still be genetic variance,
as measured by the second term in VarðyÞ. Apart from

the difficulty of inferring a given s2
ak

with any reasonable
precision, there is the question of possible ‘‘commonal-
ity’’ between locus effects. For instance, some loci
may have correlated effects, and alternative forms
for the prior distribution of the a’s have been suggested
by Gianola et al. (2003). Also, some of these effects
are expected to be identically equal to 0, especially if
ak represents a marker effect, as opposed to being
the result of a QTL [if the marker is in linkage
disequilibrium (LD) with the QTL, its effect would
be expected to be nonnull]. In such a case, a more
flexible prior distribution might be useful, such as a
mixture of normals, a double exponential, or a Dirichlet
process.

If a frequentist interpretation is adopted for the
assumption ak � N uk ; s2

ak

� �
, it is difficult to envisage

the conceptual population from which ak is sampled,
unless the variances are also random draws from some
population. Posing a locus-specific variance is equiva-
lent to assuming that each sire in a sample of Holsteins is
drawn from a different conceptual population with sire-
specific variance. There would be as many variances as
there are sires!

Variation in allelic frequencies: In addition to assum-
ing random variation of a effects over loci, a distribution
of gene frequencies may be posed as well. Wright

(1937) found that a beta distribution arose from a
diffusion equation that was used to study changes in
allele frequencies in finite populations, so this is well
grounded in population genetics. In a Bayesian context,
on the other hand, assigning a beta distribution to gene
frequencies would be a (mathematically convenient)
representation of uncertainty.

Suppose that allelic frequencies pk (k¼ 1, 2, . . . , K) vary
over loci according to the same beta Bðfa ; fbÞ process,
where fa, fb are parameters determining the form of the
distribution; Wright (1937) expressed these parameters
as functions of effective population size and mutation
rates. Standard results yield

EðpÞ ¼ fa

ðfa 1 fbÞ
¼ p0; ð20Þ

EðqÞ ¼ fb

ðfa 1 fbÞ
¼ q0; ð21Þ

and

VarðpÞ ¼ p0q0

fa 1 fb 1 1
: ð22Þ

The expected heterozygosity is given by

2pq ¼ 2p0q0
ðfa 1 fbÞ
ðfa 1 fb 1 1Þ : ð23Þ

There are now four sources of variation: (1) due to
random sampling of genotypes over individuals in the
population, (2) due to uncertainty about additive
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effects (equivalently, variability due to sampling additive
effects over loci), (3) due to spread of gene frequencies
over loci or about some equilibrium distribution, and
(4) environmental variability. The third source contrib-
utes to variance under conceptual repeated sampling,
since gene frequencies would fluctuate around the
equilibrium distribution or over loci.

Consider now additive genetic variance when dispersion
in allelic frequencies is taken into account, assuming LE.
Let p ¼ ðp1; p2; . . . ; pK Þ9 and a ¼ ða1; a2; . . . ; aK Þ9. Us-
ing previous results, (22) and (23),

Varðy j aÞ ¼ Ep Varðy jp; aÞ½ �1 Varp Eðy jp; aÞ½ �

¼ Ep

XK

k¼1

2pkqka2
k 1 VE

" #
1 Varp

XK

k¼1

ðpk � qkÞak

" #

¼ 2p0q0
ðfa 1 fb 1 2Þ
ðfa 1 fb 1 1Þ

� �XK

k¼1

a2
k 1 VE:

ð24Þ

The expected additive genetic variance is now

VA ¼ 2p0q0
ðfa 1 fb 1 2Þ
ðfa 1 fb 1 1Þ

XK

k¼1

a2
k : ð25Þ

To arrive at the marginal distribution of phenotypes,
variation in a effects is brought into the picture,
producing the variance decomposition

VarðyÞ ¼ Ea Varðy j aÞ½ �1 Vara Eðy j aÞ½ �; ð26Þ

after variation in genotypes and frequencies (i.e., with
respect to w and p) has been taken into account. From
(13)

Eðy j a; pÞ ¼ Ew Eðy j a; w; pÞ½ �

¼ Ew

XK

k¼1

wkak j a; p

" #
¼
XK

k¼1

ð2pk � 1Þak ;

Eðy j aÞ ¼ Ep Eðy j a; pÞ½ � ¼ ðp0 � q0Þ
XK

k¼1

ak ;

so that in the absence of correlations between locus
effects

Vara Eðy j aÞ½ � ¼ K ðp0 � q0Þ2s2
a : ð27Þ

Likewise, using (24),

Ea Varðy j aÞ½ � ¼ 2p0q0
ðfa 1 fb 1 2Þ
ðfa 1 fb 1 1ÞK ðs

2
a 1 u2Þ1 VE:

ð28Þ

Combining (27) and (28) as required by (26) leads to

VarðyÞ ¼ ðp0 � q0Þ2 1 2p0q0
ðfa 1 fb 1 2Þ
ðfa 1 fb 1 1Þfa

� �
K s2

a

1 2pq
ðfa 1 fb 1 2Þ
ðfa 1 fbÞ

K u2 1 VE:

ð29Þ

The variance of the marginal distribution of the
phenotypes has, thus, three components. The one
involving s2

a relates to uncertainty about or random
variation of marker effects. The second,

2pq
ðfa 1 fb 1 2Þ
ðfa 1 fbÞ

K u2;

is exactly the additive genetic variance when the mean of
the distribution of marker effects ðuÞ is known with
complete certainty, and the third component is the
environmental variance VE. If u¼ 0 and the first term of
(29) is interpreted as additive genetic variance (V $A), it
turns out that

s2
a ¼

V $A
ðp0 � q0Þ2 1 2pqððfa 1 fb 1 2Þ=ðfa 1 fbÞÞ
� 	

K
:

ð30Þ

This is similar to Habier et al. (2007) only if p0¼ q0, fa 1

fb is large enough, and K is very large, such that

lim
K /‘

1

K

XK

k¼1

2pkqk ¼
ð

2pð1� pÞf ðp jfa ; fbÞdp;

where f ðp jfa ; fbÞ is the beta density representing
variation of allelic frequencies.

RESEMBLANCE BETWEEN RELATIVES

Standard results: QTL are most often unknown, so
their effects and their relationships to those of markers
are difficult to model explicitly. An alternative is to focus
on effects of markers, whose genotypes are presumably
in linkage disequilibrium with one or several QTL, so
can be thought of as proxies. Using a slightly different
notation, the marker-based linear model suggested by
Meuwissen et al. (2001) for genomic-assisted prediction
of genetic values is

y ¼ Xb 1 Wam 1 e; ð31Þ

where y is an n 3 1 vector of phenotypic values, b is a
vector of macroenvironmental nuisance parameters, X
is an incidence matrix, am ¼ amkf g is a K 3 1 vector of
additive effects of markers, and W ¼ wikf g is a known
incidence matrix containing codes for marker geno-
types, e.g., �1, 0, and 1 for mm, Mm, and MM, respec-
tively. Let the ith row of W be w9i and assume that
e � N 0; Is2

e

� �
is a vector of microenvironmental re-

sidual effects.
If genotypes are sampled at random from the pop-

ulation, this induces a probability distribution with
mean vector

Eðy jb; amÞ ¼ Xb 1 EðWÞam

¼ Xb 1 ðP�QÞam ; ð32Þ

where
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EðWÞ

¼

p1 p2 : : : pK

p1 p2 : : : pK

: : : : : :

: : : : : :

: : : : : :

p1 p2 : : : pK

2
666666664

3
777777775
�

q1 q2 : : : qK

q1 q2 : : : qK

: : : : : :

: : : : : :

: : : : : :

q1 q2 : : : qK

2
666666664

3
777777775

¼ P�Q;

and P and Q are matrices whose columns contain pk

and qk, respectively, in every position of column k.
Every element of the column vector ðP�QÞam is the
same and equal to g ¼

PK
k¼1ðpk � qkÞak , a constant that

can be absorbed into the intercept element of b.
Hence, and without loss of generality, Eðy jb; amÞ ¼
Eðy jbÞ.

The covariance matrix (regarding b and marker
effects am as fixed parameters) is

Varðy jb; aÞ ¼ VarðWamÞ1 Is2
e:

Here

VarðWam j amÞ

¼

a9mVarðw1Þam a9mCovðw1; w92Þam : : : a9mCovðw1; w9nÞam

: a9mVarðw2Þam : : : a9mCovðw2; w9nÞam

: : : : : :

: : : : : :

: : : : : :

symmetric : : : : a9mVarðwnÞam

2
666666664

3
777777775
:

If genotypes are drawn at random from the same
population, all wi vectors have the same distribution,
that is, wi � ðp; DÞ for all i. If the population is in HW–
LE, D ¼ 2pkqkf g is a diagonal matrix. Further, if indi-
viduals are genetically related, off-diagonal terms
a9mCov wi ; w9j

� �
am are not null, because of covariances

due to genotypic similarity.
To illustrate, let i be a randomly chosen male mated to

a random female, and let j be a randomly chosen
descendant. Under HW–LE, genotypes at different
marker loci are mutually independent, within and
between individuals, so it suffices to consider a single
locus. It turns out that

Covðwi ; wjÞ ¼ pq ¼ 1

2
ð2pqÞ ¼ 1

2
VarðwiÞ;

yielding the standard result that the covariance between
genotypes of offspring and parent is 1

2 of the variance
between genotypes at the locus in question. This
generalizes readily to any type of additive relationships
in the population.

Letting rij be the additive relationship between i
and j,

VarðWam j amÞ

¼

a9mDam r12a9mDam : : : r1na9mDam

a9mDam : : : r2na9mDam

: : : :

: : :

: :

symmetric a9mDam

2
666666664

3
777777775

¼ VAAr ; ð33Þ

where

VA ¼ a9mDam ¼
XK

k¼1

2pkqka2
k ð34Þ

is the additive genetic variance among multilocus
genotypes in HW–LE, and Ar ¼ rij

� 	
is the matrix of

additive relationships between individuals; D is diag-
onal in this case. The variance–covariance matrix
(33) involves the fixed marker effects am, but these
get absorbed into VA.

The implication is that a model with the conditional
(given marker effects and gene frequencies) expecta-
tion function

Eðy jb; amÞ ¼ Xb 1 ðP�QÞam ð35Þ

[recall that ðP�QÞam ¼ 1g] and conditional covari-
ance matrix

Varðy jb; amÞ ¼
XK

k¼1

2pkqka2
k

 !
Ar 1 Is2

e ð36Þ

has the equivalent representation

y ¼ Xb 1 a* 1 e; ð37Þ

with a* ¼ Wam ¼ ai* ¼
PK

k¼1 wikak

� 	
distributed as

a* � ð0; Ar VAÞ: ð38Þ

This is precisely the standard model of quantitative
genetics applied to a finite number of marker loci (K),
where additive genetic variation stems from the sam-
pling of genotypes but not of their effects. The assump-
tion of normality is not required.

Formulas under LD are given in the second section of
the appendix.

Estimating the pedigree-based relationship matrix
and expected heterozygosity using markers: Consider
model (37):

y ¼ Xb 1 a* 1 e ¼ Xb 1 Wam 1 e:

Given the observed marker genotypes W, the distribu-
tion of W is irrelevant with regard to inference about
a*. It is relevant only if one seeks to estimate parameters
of the genotypic distribution, e.g., gene frequencies and
linkage disequilibrium statistics. Consider, for instance,
the expected value of WW9:
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EðWW9Þ ¼ Efw9iwjg; i; j ¼ 1; 2; . . . ; n;

where w9i wj ¼
PK

k¼1 wi;kwj ;k , and the sum is over
markers. If all individuals belong to the same genotypic
distribution, as argued above,

Eðw9iwjÞ ¼
XK

k¼1

Eðwi;kwj ;kÞ ¼ rij

XK

k¼1

2pkqk 1
XK

k¼1

ðpk � qkÞ2;

ð39Þ

as in Habier et al. (2007); if pk ¼ qk ¼ 1
2 , then E w9i wj

� �
¼

rijðK=2Þ so Eðð2=K ÞWW9Þ ¼ Ar . Under this idealized
assumption ð2=K ÞWW9 provides an unbiased estimator
of the pedigree-based additive relationship matrix, but
only if HW–LE holds. Note that under a beta distribu-
tion of gene frequencies

lim
K /‘

1

K

XK

k¼1

2pkqk ¼ 2p0q0
ðfa 1 fbÞ
ðfa 1 fb 1 1Þ :

Likewise

lim
K /‘

1

K

XK

k¼1

ðpk � qkÞ2 ¼ 1� 4p0q0
ðfa 1 fbÞ
ðfa 1 fb 1 1Þ :

Using this continuous approximation, (39) becomes

Eðw9i wjÞ ¼ rij KH0 1 K ð1� 2H0Þ ¼ K 1 KH0ðrij � 2Þ;

where H0 ¼ 2pq ¼ 2p0q0ððfa 1 fbÞ=ðfa 1 fb 1 1ÞÞ is
the expected heterozygosity. Since the relationship
holds for any combination i, j and there are n(n 1 1)/
2 distinct elements in WW9 and in Ar, one can form an
estimator of mean heterozygosity as

Ĥ0 ¼
w9i wj � K

K ð�rij � 2Þ ;

where w9i wj and �rij are averages over all distinct elements
in WW9 and Ar. The estimator is simple, but no claim is
made about its properties.

CONNECTION WITH THE INFINITESIMAL MODEL

Clearly, (31) or (37) with (38) involves a finite
number of markers, and the marked additive genetic
variance is a function of allelic frequencies and of
effects of individual markers. In the infinitesimal model,
on the other hand, the effects of individual loci or of
gene frequencies do not appear explicitly. How do these
two types of models connect?

The vector of additive genetic effects (or marked
breeding value) of all individuals is a* ¼ Wam ¼
ai*f g ¼

PK
k¼1 wikak

� 	
. Next, assume that effects a1,

a2, . . . , aK are independently and identically distributed
as ai � N 0; s2

a

� �
, but this does not need to be so. Again,

s2
a is not the additive genetic variance, which is given by

(34) above.
Assuming am � N 0; Is2

a

� �
implies that a* ¼ Wam

must be normal (given W). However, the elements of
W (indicators of genotypes, discrete) are also random
so the finite sample distribution of a* is not normal;
however, as K goes to infinity, the distribution ap-
proaches normality, as discussed later in this section. If
am and W are independently distributed, the mean
vector and covariance matrix of the distribution of
marked breeding values are

Eða*Þ ¼ Eam EWðWam j amÞ½ � ¼ Eam ðP�QÞam½ � ¼ 0

ð40Þ

and

Varða*Þ ¼ Varam
EðWam j amÞ½ �1 Eam

VarðWam j amÞ½ �:
ð41Þ

Using the fact that EWðWam j amÞ ¼ ðP�QÞam and
(33), then under LE assumptions

Varða*Þ ¼ ðP�QÞðP�QÞ9s2
a 1 Ar Eam

XK

k¼1

2pkqka2
k

 !
:

Since Eam

PK
k¼1 2pkqka2

k

� �
¼ s2

a

PK
k¼1 2pkqk , it follows that

Varða*Þ ¼ ðP�QÞðP�QÞ9s2
a 1 Ar s2

a

XK

k¼1

2pkqk

" #
:

ð42Þ

This shows that when both genotypes (the w’s) and
their effects (the a’s) vary at random according to
independent trinomial (at each locus) and normal
distributions, respectively, the variance of the distribu-
tion of a marked breeding value a* is affected by dif-
ferences in gene frequencies pk � qk, by the variance of
the distribution of marker effects s2

a , and by the level
of heterozygosity. In the special case where allelic
frequencies are equal to 1

2 at each of the loci, the first
term vanishes and one gets Varða*Þ ¼ Ar s̃2

a*, where
s̃2

a* ¼ K s2
a=2. This can be construed as the counterpart

of the polygenic additive variance of the standard
infinitesimal model, but in a special situation. Again,
this illustrates that sa

2 relates to additive genetic
variance in a more subtle manner than would appear
at first sight.

What is the distribution of marked breeding values
ai* ¼

PK
k¼1 wikak when both wik and ak vary at random?

Because ak is normal, the conditional distribution a*
i j wi

is normal, with mean 0 and variance s2
a

PK
k¼1 w2

ik .
Thus, one can write the density of the marginal
distribution of ai* as
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pða*
i Þ ¼

X
wi1

X
wi2

. . .
X
wiK

pða*
i j wiÞPrðwi1; wi2; . . . ; wikÞ;

where Prðwi1; wi2; . . . ; wikÞ ¼ PrðwiÞ is the probability
of observing the K-dimensional marker genotype wi

in individual i. If the population is in HW–LE at all K
marker loci, the joint distribution of genotypes of an
individual over the K loci is the product of the marginal
distributions at each of the marker loci; that is,

PrðwiÞ ¼
YK
k¼1

ðp2
k Þwik1ð2pkqkÞwik2ðq2

k Þwik3 :

For example, if individual i is AA at locus k, wik1 ¼ 1,
wik2 ¼ 0, and wik3 ¼ 0; if i is heterozygote wik1 ¼ 0, wik2 ¼
1, and wik3 ¼ 0, and if i has genotype aa, then wik1 ¼ 0,
wik2¼ 0, and wik3¼ 1. Note that wik3¼ 1� wik1� wik2, so
that there are only two free indicator variates. It follows
that the marginal distribution of ai* is a mixture of
3K normal distributions each with a null mean, but
distribution-specific variance s2

a

PK
k¼1 w2

ik . As K /‘, the
mixing probabilities PrðwiÞ become infinitesimally
small, so that

pða*
i Þ

�
ð

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

a

P
K
k¼1 w2

ik

q exp �ð
P

K
k¼1 wikakÞ2

2s2
a

P
K
k¼1 w2

ik

� �
f ðwÞdw;

for some density f(w). The mixture distribution of ai*
must necessarily converge toward a Gaussian one,
because ai* ¼

PK
k¼1 wikak is the sum of a large (now

infinite) number of independent random variates (note
that under LE wikak is independent of any other wik9ak9

because genotypes at different loci are mutually in-
dependent), so the central limit theorem holds; it holds
even under weaker assumptions. Then

a*
i � N ð0; s2

a*Þ:

Since all components of the mixture have null means, its
variance is just the average of the variances of all com-
ponents of the mixture (Gianola et al. 2006b); that is,

s2
a* ¼ lim

K /‘

X
wi1

X
wi2

. . .
X
wiK

PrðwiÞ s2
a

XK

k¼1

w2
ik

 !
:

This is the additive genetic variance of an infinitesimal
model, i.e., one with an infinite number of loci, so that
the probability of any genotypic configuration is in-
finitesimally small.

When the joint distribution of additive genetic values
a* of a set of individuals is considered, it is reasonable to
conjecture that it should be multivariate normal,
especially under LE. Its mean vector is Eða*Þ ¼ 0, as
shown in (40), and the covariance matrix of the limiting
process can be deduced from (42). The first term
becomes null, because allelic frequencies became in-

finitesimally small as K /‘, so the covariance matrix
tends to

Varða*Þ ¼ Ar s2
a*:

As shown by Habier et al. (2007), markers may act as
a proxy for a pedigree. Hence, unless the pedigree
is introduced into the model in some explicit form,
markers may be capturing relationships among individ-
uals, as opposed to representing flags for QTL regions.
At any rate, it is essential to keep in mind that markers
are not genes.

THE BAYESIAN ALPHABET

The preceding part of this article sets the quantitative
genetics theory basis upon which marker-assisted pre-
diction of breeding value (using linear models) rests.
Specifically, Meuwissen et al. (2001) use this theory to
assess values of hyperparameters of some Bayesian models
proposed by these authors. In what follows, a critique of
some methods proposed for inference is presented.

Bayes A: Meuwissen et al. (2001) suggested using
model (31) for marker-enabled prediction of additive
genetic effects and proposed two Bayesian hierarchical
structures, termed ‘‘Bayes A’’ and ‘‘Bayes B.’’ A brief
review of these two methods follows, assuming that k
denotes a SNP locus.

In Bayes A (using notation employed here), the prior
distribution of a marker effect ak, given some marker-
specific uncertainty variance s2

ak
, is assumed to be

normal with null mean and dispersion s2
ak

. In turn,
the variance associated with the effect of each marker
k ¼ 1, 2, . . . , K is assigned the same scaled inverse chi-
square prior distribution s2

ak
j n; S2

� �
, where n and S 2 are

known degrees of freedom and scale parameters, re-
spectively. This hierarchy is represented as

ak j s2
ak
� N ð0; s2

ak
Þ; s2

ak
j y; S2 � yS2x�2

n :

The marginal prior induced for ak is obtained by
integrating the normal density over s2

ak
, yielding

pðak j y; S2Þ ¼
ð‘

0
N ð0; s2

ak
Þpðs2

ak
j y; S2Þs2

ak

}

ð‘

0
ðs2

ak
Þ�ðð11y12Þ=2Þexp � a2

k 1 yS2

2s2
ak

 !
ds2

ak

} 1 1
a2

k

yS2

� ��ððy11Þ=2Þ

ð43Þ

(Box and Tiao 1973; Sorensen and Gianola 2002).
This is the kernel of the density of the t-distribution
ak j 0; y; S2½ �, which is the de facto prior in Meuwissen

et al. (2001) assigned to a marker effect. Again, y, S 2 are
assumed known and given arbitrary values by the user;
this is a crucial issue.
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Bayes B: In Bayes B, Meuwissen et al. (2001)
proposed

ak j s2
ak
�

point mass at some constant c if s2
ak
¼ 0

N ð0;s2
ak
Þ if s2

ak
. 0

(

s2
ak
j p ¼ 0 with probability p

yS2x�2
n with probability 1� p:



This implies that the joint prior distribution of ak and
s2

ak
, given an arbitrary probability parameter p, is

pðak ; s2
ak
j pÞ

¼
ak ¼ c and s2

ak
¼ 0 with probability p

N ð0;s2
ak
ÞpðyS2x�2

n Þwith probability 1� p;

(

where c is a constant (if s2
ak
¼ 0, this implies that ak is

known with certainty), taken by Meuwissen et al. (2001)
to be equal to 0, even though it does not need to be 0.
Marginally, after integrating s2

ak
out, the prior takes the

form

pðak j pÞ ¼ ak ¼ c with probability p

tð0; y; S2Þwith probability 1� p:



Then, Bayes B reduces to Bayes A by taking p ¼ 0.
A critique: Neither Bayes A nor Bayes B (or any

variations thereof that assume marker-specific varian-
ces) allow Bayesian learning on these variances to
proceed far away from the prior. This means that the
hyperparameters of the prior assigned to these varian-
ces (according to assumptions based on quantitative
genetics theory) will always have influence on the
extent of shrinkage produced on marker effects. A user
can arbitrarily control the extent of shrinkage simply
by varying y and S 2. It suffices to illustrate this problem
with Bayes A, since the problem propagates to Bayes B.

It is straightforward to show that the fully condi-
tional (i.e., given all other parameters and the data, a
situation denoted as ELSE hereinafter) posterior
distribution of s2

ak
is the scaled inverse chi-square

process s2
ak
j n 1 1; ðnS2 1 a2

k Þ=ðn 1 1Þ
� �

, so Bayesian
learning ‘‘moves’’ only a single degree of freedom away
from the prior distribution s2

ak
j n; S2

� �
, even though

its scale parameter is modified from S2 into
ðnS2 1 a2

k Þ=ðn 1 1Þ (most markers are expected to have
nearly null effects). Now, since ak is unknown, and
inferring it consumes information contained in the
data, this implies that, unconditionally (that is, a
posteriori), inferences about s2

ak
are even more strongly

affected by the information encoded by its prior
distribution than in the conditional posterior process.
For instance, if n¼ 5, say, this means that the posterior
degree of belief about s2

ak
has an upper bound at 6,

irrespective of whether data on millions of markers or
of individuals become available.

For parameter u of a model, Bayesian learning should
be such that the posterior coefficient of variation, that is,
CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðu j DATAÞ

p
=Eðu j DATAÞ, tends to 0 asymp-

totically as DATA accrue. This does not happen in Bayes
A or Bayes B for s2

ak
. In Bayes A, the coefficients of

variation of the prior and of the fully conditional
posterior distribution are

CVðs2
ak
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ðn� 4Þ

s
; n . 4;

and

CVðs2
ak
j ELSEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ðn� 3Þ

s
; n . 3;

respectively, so that CV s2
ak
j ELSE

� �
=CV s2

ak

� �
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1=ðn � 3Þ
p

. This ratio goes to 1 rapidly as the
degrees of freedom of the prior increase (meaning that
the prior ‘‘dominates’’ inference), as illustrated in
Figure 1. For example, if n ¼ 4.1, n ¼ 5.1, and n ¼ 6.1,
the ratio between the coefficients of variation of the
conditional posterior distribution of s2

ak
and that of

its prior is �0.30, 0.72, and 0.82, so that the prior is
influential even at mild values of the degrees of
freedom. Given a large n, the conditional posterior
essentially copies the prior, with the contribution of
DATA being essentially nil. As mentioned, since mar-
ginal posterior inferences about s2

ak
require decondi-

tioning over ak (thus consuming information contained
in the data), the impact of the prior will be even more
marked at the margins. This is questionable, at least
from an inference perspective.

Another way of illustrating the same problem is based
on computing information gain, i.e., the difference in
entropy before and after observing data. Since the
posterior distribution of s2

ak
is unknown, we consider

Figure 1.—Ratio between coefficients of variation
CV s2

ak
j ELSE

� �
=CV s2

ak

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=ðn� 3Þ

p
of the condi-

tional posterior and prior distributions of the variance of
the marker effect, as a function of the degrees of freedom
n of the prior.
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the entropy of the fully conditional posterior distribu-
tion of s2

ak
, instead of that of the marginal process. This

provides an upper bound for the information gain. The
entropy of the prior is

H s2
ak
j y; S2

h in o
¼ �

ð
log pðs2

ak
j y; S2Þ

h i
pðs2

ak
j y; S2Þds2

ak

¼ � n

2
� log

nS2

2
G

n

2

� �� �
1 1 1

n

2

� �
d

dðn=2Þ logG
n

2

� �
:

ð44Þ

In the entropy of the fully conditional posterior distri-
bution of s2

ak
, H s2

ak
j ELSE

� �� 	
, n is replaced by n 1 1

and nS2 by nS2 1 a2
k (it is expected that nS2 1 a2

k � nS2

for most markers). The relative information gain (frac-
tion of entropy reduced by knowledge encoded in
ELSE) is then

RIG ¼
H s2

ak
j y; S2

h in o
�H s2

ak
j ELSE

h in o
H s2

ak
j y; S2

h in o : ð45Þ

For instance, RIG ¼ 1 if the entropy of the conditional
posterior process is 0. Assume a nil marker effect and a
root-scale parameter S ¼ 1. For ak ¼ 0, S ¼ 1, and n ¼ 4,
RIG ¼ 0.125; for ak ¼ 0, S ¼ 1, and n ¼ 10, then RIG ¼
6.51 3 10�2; and for ak ¼ 0, S ¼ 1, and n ¼ 100, RIG ¼
9.60 3 10�3. Even at mild values of the prior degrees of
freedom n, the extent of uncertainty reduction due to
observing data is negligible. Metaphorically, the prior is
totalitarian in Bayes A, at least for each one of the s2

ak

parameters.
A third gauge is the Kullback–Leibler distance (KL)

between the prior and conditional posterior distribu-
tions. The KL metric (Kullback 1968) is the expected
logarithmic divergence between two parametric distri-
butions, one taken as reference or point of departure.
Using the prior as reference distribution, the expected
distance is

KL conditional; prior
� �
¼
ð

Lðy; y 1 p; S2; amÞpðs2
ak
j y; S2Þds2

ak
;

where

Lðy; y 1 p; S2; am ; s2
ak
Þ ¼ log

pðs2
ak
j y; S2Þ

pðs2
ak
j ELSEÞ

is a randomly varying distance (randomness is due to
uncertainty about s2

ak
Þ, and p is the number of markers

that are assigned the same variance, so that p ¼ 1 and
am ¼ ak in Bayes A; however, p could be much larger if,
say, all p markers on the same chromosome were
assigned the same variance.

The impact of the degrees of freedom of the prior on
the random quantity L(.) of the integrand in KL was
examined by assuming that the conditional posterior
distribution of s2

ak
had ak¼ 0 (again, most marker effects

are expected to be tiny, if not null) and that the scale
parameter of the prior of the marker-specific variances
was S ¼ 1. Figure 2 displays three scaled inverse chi-
square densities, all with the same parameter S ¼ 1 and
degrees of freedom 4, 10, or 100, as well as values of the
random quantity Lðy; y 1 p; S2; am ; s2

ak
Þ with p ¼ 1 and

ak¼ 0 in the KL gauge. Also shown in Figure 2 (in open
circles) are values of Lð: ; : ; : ; :Þ for p ¼ 10, meaning
that, instead of having marker-specific variances, 10
markers would share the same variance. While the
three priors are different, and reflect distinct states of
prior uncertainty about s2

ak
via their distinct degrees

of freedom, the Lðy; y 1 p; S2; am ; s2
ak
Þ values are es-

sentially the same irrespective of s2
ak

and flat for any
values of s2

ak
appearing with appreciable density in

the priors. On the other hand, if it is assumed that
Lðy; y 1 10; S2; ak ¼ 0; s2

ak
Þ, where s2

ak
is now a variance

assigned to a group of markers (even assuming that
their effects are nil), Lð: ; : ; : ; :Þ is steep with respect to
s2

ak
, taking negative values for s2

ak
,0.55 (roughly). In

fact, the KL distances (evaluated with numerical in-
tegration) between the prior and conditional posterior
distributions are (1) 7.33 3 10�2 for n ¼ 4, S ¼ 1, p ¼ 1
and ak ¼ 0; (2) 2.64 3 10�2 for n ¼ 10, S ¼ 1, p ¼ 1 and
ak¼ 0; and (3) 2.52 3 10�3 for n¼ 100, S¼ 1, p¼ 1, and
ak ¼ 0, so that the conditional posterior is very close to
the prior even at small values of the degrees of freedom
parameter. However, when the number of markers
sharing the same variance increases to p¼ 10 (assuming

Figure 2.—Prior densities of the marker-specific variance
s2

ak
(solid circles, n ¼ 4, S ¼ 1; solid curve, n ¼ 10, S ¼ 1;

crosses, n ¼ 100, S ¼ 1) and values of integrand
Lðy; y 1 1; S2; ak ¼ 0Þ in the Kullback–Leibler distance, for
each of the three priors, shown as solid lines. The integrands
are essentially indistinguishable from each other for all values
of s2

ak
. Values of the integrand are drastically different (open

circles) when 10 markers are assigned the same variance, so
that Lðy; y 1 10; S2; ak ¼ 0 for all k; s2

ak
Þ.
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all ak’s ¼ 0, as stated), KL ¼ 4.47, so that considerable
Bayesian learning about s2

ak
takes place in this situation.

Relative to scenario 1 above, the KL distance increases
by �61 times.

A pertinent question is whether or not the learned
marker effect (i.e., a draw from its conditional posterior
distribution) has an important impact on KL via
modification of the scale parameter from S2 into
ðnS2 1 a2

k Þ=ðn 1 1Þ. Let c ¼ ak=S be the realized value
of the marker effect in units of the ‘‘prior standard
deviation’’ S, with c ¼ 0, 0.01, 0.5, 1, and 2; the last two
cases would be representative of markers with huge
effects. The density of the conditional posterior distri-
bution of s2

ak
is then

pðs2
ak
j ELSEÞ ¼ ððn 1 c2ÞS2 =2Þðn11Þ=2

Gððn 1 1Þ=2Þ ðs2
ak
Þ�ððn1112Þ=2Þ

3 exp �ðn 1 c2ÞS2

2s2
ak

 !
:

The KL distances between the conditional posterior
and the prior for these five situations, assuming
S ¼ 1 and n ¼ 4, are (1) KLðc ¼ 0Þ ¼ 7:33 3 10�2,
(2) KLðc ¼ 0:01Þ ¼ 7: 32 3 10�2, (3) KLðc ¼ 0:5Þ ¼
4: 67 3 10�2, (4) KLðc ¼ 1Þ ¼ 1: 54 3 10�2, and (5)
KLðc ¼ 2Þ ¼ 0:34. Even though marker effects are
drastically different, the conditional posteriors are not
too different (in the KL sense) from each other,
meaning that the extent of shrinkage in Bayes A (or
B) continues to be dominated by the prior. This is
illustrated in Figure 3: even when c ¼ 2, the conditional
posterior does not differ appreciably from the prior.

In short, neither Bayes A nor Bayes B, as formulated
by Meuwissen et al. (2001), allows for any appreciable
Bayesian learning about marker-specific variances so

that, essentially, the extent of shrinkage of effects will
always be dictated strongly by the prior, which negates
the objective of introducing marker-specific variances
into the model. The magnitudes of the estimates of
marker effects can be made smaller or larger at will via
changes of the degrees of freedom and scale parameters
of the prior distribution.

Arguably, Bayes B is not well formulated in a Bayesian
context. Meuwissen et al. (2001) interpret that assign-
ing a priori a value s2

ak
¼ 0 with probability p means that

the specific SNP does not have an effect on the trait. As
mentioned earlier in this article, stating that a param-
eter has 0 variance a priori does not necessarily mean that
the parameter takes value 0: it could have any value, but
known with certainty. Thus, assuming s2

ak
¼ 0 implies

determinism about such an effect. It turns out, however,
that their sampler sets ak ¼ 0 when the state s2

ak
¼ 0 is

drawn! A more reasonable specification is to place the
mixture with a 0 state at the level of the effects, but not at
the level of the variances.

Impact on predictions: A counterargument to the
preceding critique could be articulated as follows: Even
though the prior affects inferences about marker-specific
variances, this is practically irrelevant, because one can ‘‘kill’’
the influence of the prior on estimates of marker effects simply by
increasing sample size. Superficially, it seems valid, be-
cause the fully conditional posterior distribution of ak

(assuming a model with a single location parameter m)
is

ak j ELSE

� N

Pn
i¼1 wik yi � m�

Pk
k9¼1
k9 6¼k

wik9ak

� �
Pn

i¼1 w2
ik 1 s2

e=s2
ak

;
s2

ePn
i¼1 w2

ik 1 s2
e=s2

ak

2
664

3
775;

k ¼ 1; 2; . . . ; K :

As sample size n increases,
Pn

i¼1 w2
ik 1 s2

e=s2
ak

tends toPn
i¼1 w2

ik so the influence of s2
ak

vanishes asymptotically,
given some fixed values of n, S. This indicates that, in
Bayes A, even though Bayesian learning about the s2

ak

parameters is limited, the influence of the prior on the
posterior distributions of marker effects and of the
genetic values

PK
k¼1 wikak dissipates in large samples.

However, in marker-assisted prediction of genetic values
n , , p, so the prior may be influential. The sensitivity
of Bayes A with respect to the prior in a finite sample was
examined by simulation.

Simulation: Bayes A was fitted under different prior
specifications to a simple data structure. Records for
300 individuals were generated under the additive
model

yi ¼
X280

k¼1

wikak 1 ei ; i ¼ 1; 2; . . . ; 300;

where yi is the phenotype for individual i, and the rest is
as before. Residuals were independently sampled from a
standard normal distribution.

Figure 3.—Effect of scale parameter on the conditional
posterior distribution of the variance of the marker effect.
Open boxes, prior distribution; solid circles, conditional pos-
terior distribution for c¼ 2 (standardized marker effect). The
other three conditional distributions (solid lines) are barely
distinguishable from the prior.
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Two LD scenarios regarding the distribution of the
280 markers were generated. In scenario X0, markers
were in weak LD, with almost no correlation between
genotypes of adjacent markers (Table 1). In scenario
X1, LD was relatively high: the correlation between
markers dropped from 0.772 for adjacent markers to
0.354 for markers separated by three positions (Table
1). Effects of allele substitutions were kept constant
across simulations and were set to zero for all markers
except for 10, as shown in Figure 4. The locations of
markers with nonnull effects were chosen such that
different situations were represented. For example
(Figure 4), in chromosome 3 there were two adjacent
markers with opposite effects, while chromosome 4 had
two adjacent markers with equal effects.

A Monte Carlo study with 100 replicates was run for
each of the two LD scenarios. For each replicate and LD
scenario, nine variations of Bayes A were fitted, each
defined by a combination of prior values of hyper-
parameters. In all cases, a scale inverted chi-square
distribution with 1 d.f. and scale parameter equal to 1

were assigned to the residual variance. The nine priors
considered are in Table 2. Hyperparameter values were
chosen such that the prior had, at most, the same
contribution to the degrees of freedom of the fully
conditional distribution as the information coming
from the remaining components of the model (i.e., 1).
Values of S 2 were chosen following similar considera-
tions. Note that if the samples of marker effects are equal
to their true value, a2

k # 0.22 (see Figure 4). Priors 1–3 are
improper, and the other six priors are proper but do not
possess finite means and variances. Therefore, scenarios
with S2 ¼ 10�5 correspond to cases of relatively small
influence of the prior on the scale parameter of the fully
conditional distribution, while S2 ¼ 5 3 102 represents a
case where the fully conditional distribution has a strong
dependency on the prior specification.

For each of these models and Monte Carlo replicates
35,000 iterations of the Gibbs Sampler were run, and the
first 5000 iterations were discarded as burn-in. Inspec-
tion of trace plots and other diagnostics (effective
sample size, MC standard error) computed using Coda
(Plummer et al. 2008) indicated that this was adequate
to infer quantities of interest.

Table 3 shows the average (across 100 MC replicates)
of posterior means of the residual variance and of the
correlation between the true and the estimated quantity
of several features. This provides an assessment of
goodness of fit, of how well the model estimates ge-
nomic values, and of the extent to which the model can
uncover relevant marker effects. As expected, Bayes A
was sensitive with respect to prior specification for all
items monitored. Scenarios 4 and 7 produced over-
fitting (low estimate of residual variance, whose true
value was 1, and high correlation between data and
fitted values). It also had a low ability to recover signal
(i.e., to estimate marker effects and genomic values), as
indicated by the corresponding correlations. Other
priors (e.g., 6) produced a model with a better ability
to estimate genomic values and marker effects. These
results were similar in both scenarios of LD. The results
in Table 3 also indicate that it is much more difficult to
uncover marker effects than to predict genomic values.

To have a measure of the ability of each model to
locate genomic regions affecting the trait, an index was
created as follows. For each marker having a nonnull
effect and for each replicate, a dummy variable was

Figure 4.—Positions (chromosome and marker number)
and effects of markers (there were 280 markers, with 270 hav-
ing no effect).

TABLE 1

Correlation between marker genotypes (average over markers
and over 100 Monte Carlo replicates) by scenarios of

adjacency between pairs of markers and of linkage
disequilibrium (X0, low linkage disequilibrium;

X1, high linkage disequilibrium)

Adjacency Adjacency Adjacency Adjacency

Disequilibrium
scenario

1 2 3 4

X0 0.007 0.002 �0.002 0.013
X1 0.722 0.567 0.450 0.356

TABLE 2

Nine different specifications of hyperparameters of the prior
distribution of marker variances in Bayes A (n, prior

degrees of freedom; S 2, prior scale parameter)

S 2 ¼ 10�5 S 2 ¼ 10�3 S 2 ¼ 5 3 102

n ¼ 0 1 2 3
n ¼ 1

2 4 5 6
n ¼ 1 7 8 9
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created indicating whether or not the marker, or any of
its 4 flanking markers, ranked among the top 20 on the
basis of the absolute value of the posterior mean of the
marker’s effect. Averaging across markers and replicates
led to an index of ‘‘retrieved regions’’ (Table 4). Results
suggest that the ability of Bayes A to uncover relevant
genomic regions is also affected by the choice of
hyperparameters. For example, in scenarios 1, 4, and 7
only one of five regions was retrieved by Bayes A. On the
other hand, the fraction of retrieved regions was twice as
large when using other priors (scenarios 2, 3, and 6).
The ability to uncover genomic regions affecting a trait
was usually worse with high LD, due to redundancy
between markers.

DISCUSSION

This article examined two main issues associated with
the development of statistical models for genome-
assisted prediction of quantitative traits using dense
panels of markers, such as single-nucleotide polymor-
phisms. The first one is the relationship between
parameters from standard quantitative genetics theory,
such as additive genetic variance, and those from
marker-based models, i.e., the variance of marker
effects. In a Bayesian context, the latter act mainly as a

measure of uncertainty. It was shown that the connec-
tion between the variance of marker effects and the
additive genetic variance depends on what is assumed
about locus effects. For instance, in the classical model
of Falconer and Mackay (1996), locus effects are
considered as fixed and additive genetic variance stems
from random sampling of genotypes. To introduce a
variance of marker effects, these must be assumed to be
random samples from some distribution that, in the
Bayesian setting, is precisely an uncertainty distribution.

TABLE 3

Average (over 100 replicates) of posterior mean estimates of residual variance (s2) and of the correlation
between the true and the estimated value for several items (phenotypes, y; true genomic value, Wam; fitted

genomic value, Wâm ; true marker effects, am; estimated marker effects,

s2 Corrðy; WâmÞ CorrðWam ; WâmÞ Corrðam ; âmÞ
Mean SD Mean SD Mean SD Mean SD

Low linkage disequilibrium between markers (X0)
Bayes A
1 0.518 0.062 0.839 0.027 0.580 0.063 0.102 0.048
2 0.941 0.089 0.577 0.028 0.721 0.092 0.200 0.022
3 1.074 0.105 0.496 0.032 0.701 0.106 0.199 0.020
4 0.394 0.053 0.895 0.022 0.531 0.060 0.079 0.051
5 0.824 0.077 0.652 0.025 0.699 0.079 0.183 0.028
6 0.950 0.089 0.578 0.027 0.722 0.088 0.201 0.021
7 0.173 0.053 0.966 0.015 0.455 0.057 0.042 0.043
8 0.575 0.056 0.813 0.019 0.606 0.066 0.116 0.044
9 0.710 0.066 0.728 0.020 0.659 0.072 0.152 0.037

High linkage disequilibrium between markers (X1)
Bayes A
1 0.535 0.069 0.824 0.029 0.580 0.070 0.121 0.045
2 0.938 0.076 0.609 0.033 0.677 0.083 0.210 0.026
3 1.093 0.085 0.528 0.034 0.650 0.086 0.211 0.025
4 0.404 0.067 0.888 0.025 0.533 0.067 0.094 0.048
5 0.809 0.069 0.670 0.030 0.659 0.076 0.200 0.030
6 0.948 0.075 0.616 0.031 0.676 0.081 0.211 0.026
7 0.195 0.056 0.960 0.015 0.462 0.060 0.062 0.048
8 0.566 0.058 0.809 0.021 0.593 0.070 0.132 0.042
9 0.689 0.062 0.734 0.024 0.629 0.072 0.173 0.036

SD, among-replicates standard deviation of item.

TABLE 4

Fraction of retrieved regions by set of priors in Bayes A
and scenario of linkage disequilibrium (LD)

Set of priors in Bayes A Low LD High LD

1 0.24 0.21
2 0.43 0.34
3 0.47 0.33
4 0.22 0.19
5 0.36 0.31
6 0.43 0.34
7 0.22 0.18
8 0.26 0.22
9 0.29 0.26
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The article also discussed assumptions that need to be
made to establish a connection between the two sets of
parameters and introduced a more general partition of
variance, in which genotypes, effects, and allelic fre-
quencies are random variables. Some expressions for
relating additive genetic variance and that of marker
effects are available under the assumption of linkage
equilibrium, as discussed in the article. However,
accommodating linkage disequilibrium explicitly into
an inferential system suitable for marker-assisted selec-
tion represents a formidable challenge.

The second aspect addressed in this study was a
critique of methods Bayes A and B as proposed by
Meuwissen et al. (2001). These methods require spec-
ifying hyperparameters that are elicited using formulas
related to those mentioned in the paragraph above;
however, the authors did not state the assumptions
needed precisely. It was shown here that these hyper-
parameters can be influential.

The influence of the prior on inferences and pre-
dictions via Bayes A can be mitigated in several ways.
One way consists of forming clusters of markers such
that their effects share the same variance. Thus, shrink-
age would be specific to the set of markers entering into
the cluster. The clusters could be formed either on the
basis of biological information (e.g., according to
coding or noncoding regions specific to a given chro-
mosome) or perhaps statistically, using some form of
supervised or unsupervised clustering procedure. If
clusters of size p were formed, the conditional posterior
distribution of the variances of the markers would have
p 1 n d.f., instead of 1 1 n in Bayes A. A second way of
mitigating the impact of hyperparameters is to assign a
noninformative prior to the scale and degrees of
freedom parameters of Bayes A. This has been done in
quantitative genetics, as demonstrated by Strandén

and Gianola (1998) and Rosa et al. (2003, 2004) and
discussed in Sorensen and Gianola (2002). For exam-
ple, Strandén and Gianola (1998) used models with t-
distributions for the residuals (the implementation
would be similar in Bayes A, with the t-distribution
assigned to marker effects instead), with unknown
degrees of freedom and unknown parameters. In
Strandén and Gianola (1998) a scaled inverted chi-
square distribution was assigned to the scale parameter
of the t-distribution, and equal prior probabilities were
assigned to a set of mutually exclusive and exhaustive
values of the degrees of freedom. On the other hand,
Rosa et al. (2003, 2004) presented a more general
treatment, in which the degrees of freedom were
sampled with a Metropolis–Hastings algorithm. A third
modification of Bayes A would consist of combining the
two preceding options, i.e., assign a common variance to
a cluster of marker effects and then use noninformative
priors, as in Rosa et al. (2003, 2004), for the parameters
of the t-distribution. Applications of thick-tailed priors,
such as the t or the double exponential distribution, to

models with marker effects are presented in Yi and Xu

(2008) and de los Campos et al. (2009a).
Bayes B requires a reformulation (and a new letter, to

avoid confusion!), e.g., the mixture with a zero state
posed at the level of effects and not at that of the
variances, as discussed earlier. For example, one could
assume that the marker effect is 0 with probability p or
that it follows a normal distribution with common
variance otherwise. Further, the mixing probability p

could be assigned a prior distribution, e.g., a beta
process, as opposed to specifying an arbitrary value for
p. Mixture models in genetics are discussed, for
example, by Gianola et al. (2006b) and some new, yet
unpublished, normal mixtures for marker-assisted se-
lection are being developed by R. L. Fernando (R. L.
Fernando, unpublished data) (http://dysci.wisc.edu.
edu/sglpe/pdf/Fernando.pdf).

A more general solution is to use a nonparametric
method, as suggested by Gianola et al. (2006a),
Gianola and van Kaam (2008), Gianola and de los

Campos (2008) and casted more generally by de los

Campos et al. (2009a). These methods do not make
hypotheses about mode of inheritance, contrary to the
parametric methods discussed above, where additive
action is assumed. Evidence is beginning to emerge that
nonparametric methods may have better predictive
ability when applied to real data (González-Recio

et al. 2008, 2009; N. Long, D. Gianola, G. J. M. Rosa

and K. A. Weigel, unpublished results.).
In conclusion, this article discussed connections be-

tween marker-based additive models and standard mod-
els of quantitative genetics. It was argued that the
relationship between the variance of marker effects and
the additive genetic variance is not as simple as has been
reported, becoming especially cryptic if the assumption
of linkage equilibrium is violated, which is manifestly the
case with dense whole-genome markers. Also, a critique of
earlier models for genomic-assisted evaluation in animal
breeding was advanced, from a Bayesian perspective, and
some possible remedies of such models were suggested.
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titative genetics of mixture characters. Genetics 173: 2247–2255.

Gianola, D., and J. B. C. H. M. van Kaam, 2008 Reproducing kernel
Hilbert spaces methods for genomic assisted prediction of quan-
titative traits. Genetics 178: 2289–2303.
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APPENDIX

Linkage disequilibrium: The expression
PK

i¼1 2pkqk ¼
PK

k¼1 VarðwkÞ results from jointly sampling genotypes (but
not their effects) at K loci in linkage equilibrium. This is a needed assumption for arriving at (19). On the other hand,
if there is LD, the additive genetic variance (under HW equilibrium at each locus) is

VAðDÞ ¼ Var
XK

k¼1

wkak

 !

¼
XK

k¼1

2pkqka2
k 1 2

XK

k¼1

XK

l.k

2Dkl akal ; ðA1Þ

where Dkl ¼ PrðABÞkl � pA;kpB,l is the usual LD statistic involving the two loci in question. The first term in (A1) is the
additive genetic variance under LE; the second term is a contribution to variance from LD, and it may be negative or
positive. It can be shown that the average correlation between genotypes at a pair of loci is (approximately) ,K�1.
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The average (over a effects) variance under LD depends on the distribution of the a’s. If these are independently
and identically distributed with mean u and variance s2

a , one has

V 9AðDÞ ¼ E VAðDÞ½ � ¼ ðs2
a 1 u2Þ

XK

i¼1

2pkqk 1 2u2
XK

k¼1

XK

l.k

2Dkl : ðA2Þ

If u ¼ 0, then V 9A(D) ¼ V 9A, in which case linkage disequilibrium would not affect relationship (19).
There is no mechanistic basis for expecting that all loci have the same effects and for these being mutually

independent. There may be some genomic regions without any effect at all, or some regions may induce similarity (or
dissimilarity) of effects; for example, if two genes are responsible for producing a fixed amount of transcript, their
effects would be negatively correlated, irrespective of whether or not genotypes are in linkage equilibrium. A more
general assumption may be warranted, i.e., that effects follow some multivariate distribution a � ðu; Vs2

aÞ, where s2
a is

just a dispersion parameter. Here, with w being the vector of genotypes for the K loci, one can write the average
variance under LD,

V 9AðDÞ ¼ E Var
XK

k¼1

wkak

 !" #
¼ E a9Ma½ �;

where M is the covariance matrix of w (diagonal under LE),

M ¼ 2

p1q1 D12 : : : D1K

p2q2 : : : D2K

: : : :
: : :
: :

Symmetric pK qK

2
6666664

3
7777775
:

Further,

V 9AðDÞ ¼ u9Mu 1 s2
atrðMVÞ;

where trð:Þ is the trace of the matrix in question. The counterpart of (19) is

s2
a ¼

V 9AðDÞ � u9Mu

trðMVÞ ; ðA3Þ

which is a complex relationship even if u ¼ 0. It follows that (19), appearing often in the literature, holds only under
strong simplifying assumptions. In short, the connection between additive genetic variance and the variance of marker
effects depends on the unknown means of the distributions of marker effects, their possible covariances (induced by
unknown molecular and chromosomal process), their gene frequencies, and all pairwise linkage disequilibrium
parameters, which are a function of the Dkl ’s. It is not obvious what the effects of using (19) as an approximation are,
but the assumptions surrounding it are undoubtedly strong.

Covariance between relatives and linkage disequilibrium: Linkage disequilibrium complicates matters, as noted
earlier. The covariance between marked genetic values of individuals i and j, instead of being rij a9mDam ¼
rij

PK
k¼1 2pkqka2

k , takes the form

Covðw9iam ; w9jam j amÞ ¼
XK

k¼1

XK

l¼1

Covðwi;kwj ;kÞakal ;

¼ a9m Cov

wi;1;wj ;1 wi;1;wj ;2 : : : wi;1;wj ;K

wi;2;wj ;2 : : : wi;2;wj ;K

: : : :

: : :

: :

symmetric wi;K ;wj ;K

2
666666664

3
777777775

0
BBBBBBBB@

1
CCCCCCCCA

am

¼ a9mM*a9m

and M* is no longer a diagonal matrix, because of LD creating covariances between genotypes at different marker loci.
The diagonal elements of M* have the form (assuming HW frequencies within each locus)

362 D. Gianola et al.



m*
ij ;k ¼ Covðwi;k;wj ;kÞ ¼ rij2pkqk ; k ¼ 1; 2; . . . ; K

and the off-diagonals are

m*
ij ; k; l ¼ rij 2Dkl ; k 6¼ l :

This implies that disequilibrium statistics D must be brought into the picture when estimating a pedigree relationship
matrix using markers in LD.
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