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ABSTRACT

We designed and experimentally validated an in silico gene deletion strategy for engineering
endogenous one-carbon (C1) metabolism in yeast. We used constraint-based metabolic modeling and
computer-aided gene knockout simulations to identify five genes (ALT2, FDH1, FDH2, FUM1, and ZWF1),
which, when deleted in combination, predicted formic acid secretion in Saccharomyces cerevisiae under
aerobic growth conditions. Once constructed, the quintuple mutant strain showed the predicted increase
in formic acid secretion relative to a formate dehydrogenase mutant ( fdh1 fdh2), while formic acid
secretion in wild-type yeast was undetectable. Gene expression and physiological data generated post hoc
identified a retrograde response to mitochondrial deficiency, which was confirmed by showing Rtg1-
dependent NADH accumulation in the engineered yeast strain. Formal pathway analysis combined with
gene expression data suggested specific modes of regulation that govern C1 metabolic flux in yeast.
Specifically, we identified coordinated transcriptional regulation of C1 pathway enzymes and a positive
flux control coefficient for the branch point enzyme 3-phosphoglycerate dehydrogenase (PGDH).
Together, these results demonstrate that constraint-based models can identify seemingly unrelated
mutations, which interact at a systems level across subcellular compartments to modulate flux through
nonfermentative metabolic pathways.

FORMIC acid is an important intracellular metabo-
lite that has been adapted for specific functions in

different organisms. It is produced and secreted in
small amounts as a fermentation by-product by bacteria
in the family Enterobacteriaceae (Leonhartsberger

et al. 2002) and in large quantities as an irritant and
pheromone by ants (Hefetz and Blum 1978). Formic
acid is used commercially as a preservative in animal
feed and has a potential use as a precursor to hydrogen,
since it is one of only a few biological molecules with
sufficient reducing potential (Milliken and May 2007).
The main pathway for biohydrogen production during
mixed acid fermentation in Escherichia coli proceeds
through a formic acid intermediate: a product of the
reaction catalyzed by pyruvate formate lyase (PFL) (EC
2.3.1.54) (Birkmann et al. 1987).

As yeast (and other eukaryotes) lack a PFL homolog,
their primary source of formic acid is through tetrahydro-
folate (THF)-mediated one-carbon (C1) reactions present
in the mitochondria (McNeil et al. 1996). In mam-
malian cells C1 metabolism is responsible for up to
90% of single carbon units required for nucleotide
biosynthesis (Fu et al. 2001). The first reaction in this

pathway is catalyzed by the branch point enzyme 3-
phosphoglycerate dehydrogenase (PGDH) (EC 1.1.1.95)
encoded by the yeast isozymes SER3 and SER33. The NAD-
dependent oxidation reaction catalyzed by PGDH is
nonfermentative: oxygen, rather than organic substrate,
acts as the final electron acceptor to maintain redox
homeostasis under conditions where high levels of serine
and formic acid are synthesized from the glycolytic inter-
mediate 3-phosphoglycerate (3PG) (Peters-Wendisch

et al. 2005).
Constraint-based (stoichiometric) models are capa-

ble of describing systems-level properties of metabolic
networks without requiring specific information about
molecular mechanism or reaction-specific kinetics. As
many of these parameters are often unknown, constraint-
based methods have advantages over their kinetic
counterparts as practical tools for developing systems-
level metabolic engineering strategies. These models
rely on well-annotated genomic sequences to define sets
of metabolites and the stoichiometric matrix of known
biochemical reactions. Once these are defined, feasible
assumptions about quasi-steady-state optimality are all
that is necessary to predict reaction rates for the entire
system. Combinatorial enzyme deletion phenotypes can
be explored systematically by constraining specific
enzyme-reaction fluxes to zero (for example, Edwards

and Palsson 2000; Forster et al. 2003). This approach
provides reasonable approximations of genomewide
biochemical processes in several model organisms
(Edwards and Palsson 2000; Duarte et al. 2004; Bro
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et al. 2006; Hjersted et al. 2007; Oh et al. 2007;
Resendis-Antonio et al. 2007; Becker and Palsson

2008; Motter et al. 2008).
Constraint-based methods provide a solid mathemat-

ical foundation for identifying important properties of
biochemical pathways. Under a certain set of stoichio-
metric constraints, metabolic networks can be decom-
posed into a finite number of elementary flux modes
(EFMs) or extreme pathways (Papin et al. 2002). The
properties of EFMs have important biological implica-
tions. EFMs are the unique set of nondecomposable path-
way flows for a given biochemical network (Schuster

et al. 2000). In biological terms, EFMs are modular units
of pathway function—minimal sets of enzymes required
to catalyze whole metabolic reactions. Because meta-
bolic pathways are highly integrated, the number of
possible pathways connecting reactants and products
grows exponentially. Thus EFM analysis is computation-
ally tractable only for individual pathways or small
metabolic subnetworks (Klamt and Stelling 2002).

Past metabolic engineering efforts in eukaryotic
microbes have sought to control flux through anaerobic
pathways for increased production of metabolites pro-
duced by fermentation. These include lactate (van

Maris et al. 2004; Ishida et al. 2006), malate (Zelle

et al. 2008), isoprenoids (Shiba et al. 2007; Herrero

et al. 2008; Kizer et al. 2008), glycerol (Geertman et al.
2006; Cordier et al. 2007), and ethanol (Alper et al.
2006; Bro et al. 2006), among others. Although non-
fermentative by-products represent a class of biologi-
cally interesting and commercially attractive small
molecules, efforts aimed at engineering microbes for
increased production of these metabolites are compar-
atively infrequent.

Reactions that produce the major one-carbon donors
serine, glycine, and formic acid are often duplicated in
the cytoplasm and mitochondrion (Christensen and
Mackenzie 2006). Flux through these reactions is
generally oxidative in the mitochondria and reductive
in the cytoplasm; however, C1 metabolic pathways are
under considerable regulatory control and can be
adapted to specific genetic backgrounds and growth
conditions (Kastanos et al. 1997; Piper et al. 2000). Two
groups have independently shown that C1 enzymes
are controlled dynamically by glycine at the transcrip-
tional level. Upon glycine withdrawal many enzymes
involved in C1 metabolism are strongly repressed, a
regulatory event that requires the transcription factor
Bas1 (Subramanian et al. 2005). Under conditions of
glycine induction Gelling et al. (2004) noticed a similar
pattern of C1 enzyme differential expression; however,
Bas1 was not required for the observed effect in this
case. In both of these studies the intact cytosolic serine
hydroxymethyltransferase Shm2 (EC 2.1.2.1) was nec-
essary for glycine-dependent changes in C1 enzyme
expression (Gelling et al. 2004; Subramanian et al.
2005). Although contradicting evidence exists, results

reported thus far demonstrate the dynamic control of
C1 metabolism in eukaryotes.

To investigate metabolic engineering strategies for
controlling biosynthetic flux through a nonfermenta-
tive pathway, we chose to construct strains of Saccharo-
myces cerevisiae that increase flux through C1 metabolism.
We chose a constraint-based modeling approach to de-
velop genetic engineering strategies leading to increased
production of formic acid. We experimentally validated
our modeling strategy and identified specific transcrip-
tional control mechanisms that govern C1 metabolism in
the engineered strain.

MATERIALS AND METHODS

Constraint-based modeling and in silico gene deletion: The
validated, genome-scale metabolic model S. cerevisiae iND750
previously described by Duarte et al. (2004) was used to model
the fully compartmentalized yeast metabolic network. The
flux balance analysis (FBA) optimization problem was formu-
lated as described previously (Varma and Palsson 1994) in
the GNU MathProg language and solved with custom-gener-
ated C code (available upon request), implementing the GNU
linear programming (LP) kit (GLPK) available at ftp://aeneas.
mit.edu/pub/gnu/glpk.

Specifically, we defined quasi-steady-state conditions using
the yeast stoichiometric matrix S and unknown flux vector v,

S � v ¼ 0;

with maximization of growth rate (m) as the objective function
for FBA:

max m

s:t: vmin;i # vi # vmax;i :

Thermodynamic constraints in iND750 are derived from the
KEGG database (http://www.genome.jp/kegg/) and associ-
ated with individual reactions to define vub

i and vlb
i , which are

the upper and lower bounds of each reaction i. We modeled
20 mmol gDW�1 hr�1 constant glucose uptake, nutrient uptake
fluxes appropriately constrained to simulate synthetic com-
plete media including the addition of serine (Figure 1A;
supporting information, Table S1), oxygen uptake flux that
was either fixed to 0 mmol gDW�1 hr�1 or left unconstrained to
simulate anaerobic or aerobic growth conditions, respectively,
and internal fluxes constrained to {0, ‘} or left unconstrained
to simulate irreversible or reversible reactions, respectively. It
is important to note that multiple optimal solutions are
possible in which the objective function constraint is satisfied
(Lee et al. 2000; Phalakornkule et al. 2001). We sampled
alternative optimal solutions for the mutant strains predicted
to increase flux to formic acid by relaxing the directionality
constraint of individual reactions (Lee et al. 1997). Results
from this analysis indicated some flexibility in the formic acid
biosynthetic pathway; however, the three mutations alt2, fum1,
and zwf1 were consistently associated with significant increases
in formic acid secretion, with a minimum secretion rate of
53.65 mmol gDW�1 hr�1 (other data not shown).

To identify the maximum theoretical yield for formic acid
production we substituted formic acid secretion for biomass in
the objective function. All the other constraints were appro-
priate for external exchange and aerobic growth. Maximizing
this objective resulted in Equation 1, which can be considered
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the ‘‘type I’’ through pathway for formic acid biosynthesis
(Schilling et al. 2000).

Several efficient algorithms have been developed for
identifying a single solution of optimal gene knockouts (for
example, Burgard et al. 2003). We chose an iterative simula-
tion strategy as we were interested in all combinations of gene
knockouts predicted to affect C1 metabolism and formic acid
production, including solutions that might be considered
suboptimal under formal definitions. By constraining the
fluxes of individual sets of #3 nonessential genes to zero
and reevaluating the system using LP we simulated metabolic
phenotypes for .4 million gene combinations in reasonable
time frames (,4 hr on an x86-64 processor running Linux
version 2.6.15-51). Our knockout simulation protocol is
summarized with the following pseudocode:

p ) powersetðfnonessential genesgÞ
for each combo 2 p: j p j # 3

for each c 2 combo

vub
c ¼ 0:0

vlb
c ¼ 0:0:

Yeast strains and plasmids: PSY3642 was derived from the
fdh1 fdh2 parental strain PSY3639 (Overkamp et al. 2002) by
iterative gene replacement (Guldener et al. 1996). Briefly,
LoxP-KanMX gene deletion cassettes for ALT2, FUM1, and
ZWF1 were generated by PCR, using primers with 45 bp of
flanking homology and pUG6 as template (Guldener et al.
1996). KanMX1 transformants were selected on YPD plates
containing 200 mg/liter G418 (geneticin). After confirming
integration by single-colony PCR, G418 sensitivity was reestab-
lished for subsequent gene replacement by expressing Gal4-Cre
from pSH65 (Guldener et al. 1996) and selecting transform-
ants on YPD plates containing 50 mg/liter phleomycin. Correct
excision of LoxP-KanMX was confirmed by single-colony PCR.

The biobrick assembly method (Knight 2003; Phillips

and Silver 2006) was used to generate the expression plasmid
pRS410a consisting of (ordered 59–39) the yeast CUP1 pro-
moter, the yeast Kozak sequence, the catalytic domain of SerA
(cloned by PCR from E. coli genomic DNA), in-frame fusion of
the V5 epitope, the stop codon, and the yeast ADH1 termina-
tor. The flanking biobrick restriction sites XbaI and SpeI were
used to subclone the expression fragment into pRS410 (Add-
gene). Yeast transformants were selected on YPD plates
containing 200 mg/liter G418 and cultured with the same
concentration of drug in synthetic complete media containing
2% glucose and 0.3 mm CuSO4. Primer sequences used in this
study are shown in Table S3.

Metabolite determination: Extracellular formic acid and
ethanol measurements were made using spectrometric enzy-
matic assays at 340 nm according to the manufacturer’s specifi-
cations (R-Biopharm). Yeast cultures were grown in synthetic
complete media with 2% glucose under batch conditions in
baffled (aerobic) or round bottom (anaerobic) Erlenmeyer
shaker flasks. Anaerobic cultures were grown in sparged media
under nitrogen gas.

Samples for intracellular metabolite measurements were
prepared, using several methods as conceptual frameworks
(Lange et al. 2001; Visser et al. 2004; Canelas et al. 2008;
Sporty et al. 2008). Briefly, 20-ml samples were quickly drawn
at a log phase (cell density of 0.4–0.6 OD600) and immediately
quenched in 32 ml cold 60% (v/v) methanol. A frozen
binary solution of 60% (v/v) ethanol was used to maintain
the yeast samples and quenching solution at �40�. Two
subsequent washes were performed using the cold quench-
ing solution, followed by cell lysis at 4� using a glass bead

beater in the presence of 75% (v/v) ethanol to precipitate
proteins. Samples were lyophilized overnight, resuspended
in 100 ml anaerobic water, and centrifuged twice before use.
The supernatant was stored at �80� until processing via
HPLC.

HPLC measurements were performed using a Waters 2695
HPLC separation module fitted with a Luna C18 5-mm col-
umn, 250 3 4.5 mm (Phenomenex). Samples of 75–85 ml were
injected and eluted at a flow rate of 1 ml/min, starting with
100% mobile phase buffer A and gradually increasing to
100% mobile phase buffer B (Di Pierro et al. 1995).
Specifically, the relative fraction of buffer B in the mobile
phase was increased at a rate of 15%/min until 60%, at 0.6%/
min until 80%, during which the majority of separation
occurred, and at 20%/min until 100% was reached. Buffer A
contained 10 mm tetrabutylammonium hydroxide, 10 mm

KH2PO4, and 0.25% methanol at pH 7.0 (Di Pierro et al.
1995). Buffer B contained 2.8 mm tetrabutylammonium
hydroxide, 100 mm KH2PO4, and 30% methanol at pH 5.5
(Di Pierro et al. 1995). NAD was analyzed at 260 nm, and
NADH was analyzed at 340 nm using a photodiode array
detector (Waters 996) (Di Pierro et al. 1995; Sporty et al.
2008). Standard curves of specific metabolites were performed
to enable quantification.

Gene expression profiling and analysis: Poly(A) mRNA was
obtained in biological triplicate by trizol extraction (Invitro-
gen, Carlsbad, CA) from early log-phase (OD600 ¼ 0.4) yeast
grown aerobically. cDNA was generated from PSY3642 and
PSY3639 by reverse transcription, differentially labeled with
Cy3 or Cy5, respectively (one sample was processed with the
labeling reversed to minimize artifacts introduced by incor-
poration bias), and hybridized to whole-genome cDNA micro-
arrays (http://www.microarray.ca/). Array scans were analyzed
with GenPix software and Rosetta Resolver (complete data are
available in Table S4).

Gene ontology enrichment was obtained using GoStat
(http://gostat.wehi.edu.au/) with Benjamini false discovery
to correct for multiple hypothesis testing. The query set for
enzyme annotation analysis was limited to those gene identi-
ties with represented reactions in iND750 for which flux values
were calculated.

Hierarchical clustering was applied to genomewide expres-
sion profiles of PSY3642 (compared to PSY3639) and other
genetic knockout strains (excluding overexpression and drug
treatment conditions) in the compendium described by
Hughes et al. (2006). Routines were implemented in R
(http://www.r-project.org/) with a Euclidean distance metric
and Ward’s minimum variance clustering algorithm (Murtagh

1985).
We used YEASTRACT-DISCOVERER (http://www.yeastract.

com/) to find transcription factor binding motif enrichments
in the promoter regions of genes with significant activation
(P , 0.01) greater than twofold (Teixeira et al. 2006; Monteiro

et al. 2008).
Phenotypic analysis: Mitotracker Red CMXRos and Mito-

tracker CM-H2XRos (Invitrogen) were used to stain mito-
chondria. CMXRos selectively stains mitochondria and
fluoresces in the red portion of the spectrum. CM-H2XRos is
a reduced version of CMXRos and fluoresces only when
oxidized in respiring mitochondria (Ludovico et al. 2002).
Overnight yeast cultures were resuspended in YEPD media
containing either 1 mm of CMXRos or 3 mm CM-H2XRos and
incubated at 30� for 30 min prior to imaging.

Antibodies and Western blotting: PVDF membranes were
blocked with phosphate-buffered saline containing 0.25%
Tween-20 (PBST) and 5% nonfat dry milk, probed with mouse
monoclonal primary antibodies against actin (Chemicon) or
V5 (Sigma, St. Louis) and appropriate HRP-conjugated
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secondary antibody ( Jackson), washed with PBST, and de-
veloped with enhanced chemiluminescence substrate (Amer-
sham, Piscataway, NJ).

RESULTS

Pathway analysis of C1 metabolism in yeast: We
performed limited pathway analysis of the yeast meta-
bolic network to identify Equation 1, which represents
the complete oxidation of glucose into formic acid (see
materials and methods):

C6H12O6 1 4O2/4HCOOH 1 2CO2 1 2H2O 1 energy: ð1Þ

Due to the quasi-steady-state assumption, individual
reaction rates in Equation 1 are likely to be correlated
during C1-mediated formic acid secretion, a condition
that strongly suggests coordinated regulation of en-
zymes in this pathway (Schuster et al. 2002). Coregu-
lation of enzymes involved in glycolysis is well
characterized; however, it is not fully understood if and
how endogenous transcriptional programs coordinate C1
metabolism to affect formic acid biosynthesis.

Theoretically, maximum flux through Equation 1
would result in four formic acid molecules per glucose,
a twofold yield increase compared to PFL-catalyzed
reactions associated with mixed acid fermentation in
E. coli (Birkmann et al. 1987). This may have important
biotechnological applications for biofuel production.
Assuming 100% conversion of exogenous formic acid
into hydrogen, a two-step conversion process using
endogenous hydrogenases in E. coli could result in 4
H2 per glucose (Yoshida et al. 2005; Waks and Silver

2009). Formic acid production in yeast is relatively low
and secretion is essentially nonexistent (Blank et al.
2005); however, there is reason to believe that engineer-
ing C1 metabolism to produce high levels of formic acid
is achievable. Various insect species regulate homolo-
gous pathways to produce large quantities of formic
acid for the purposes of defense and communication
(Hefetz and Blum 1978).

A model-driven metabolic engineering strategy to
increase endogenous formic acid secretion: To formu-
late genetic engineering strategies leading to increased
production of formic acid in yeast, we used the com-
partmentalized metabolic model iND750 (Duarte et al.
2004) and an iterative gene knockout simulation strategy
to identify combinatorial enzyme deletions predicted to
significantly increase formic acid secretion (see materi-

als and methods for details). As an exhaustive screen
through all triple-knockout combinations would have
been experimentally infeasible, we used FBA to screen
combinatorial knockouts in silico. We identified several
gene knockout combinations, which predicted nonzero
secretion rates of formic acid (Table 1). In all cases
eliminating the NAD-dependent formate dehydrogenase
(FDH) reaction (EC 1.2.1.2) was required for secretion
of formic acid. This is not surprising as FDH is thought to
protect yeast from formic acid toxicity by catalyzing its
irreversible oxidation to CO2 (Overkamp et al. 2002).

We chose to proceed by constructing the mutant
strain predicted to have the highest formic acid pro-
duction efficiency (Table 1). In addition to FDH1 and
FDH2, three other genes were targeted for mutation by
serial gene replacement (Table 2): ALT2, a putative
cytoplasmic alanine transaminase (EC 2.6.1.2); FUM1,
fumarase (EC 4.2.1.2); and ZWF1, glucose-6-phosphate
dehydrogenase (EC 1.1.1.49). Unlike FDH, these three
genes (reactions) function across subcellular compart-
ments at distantly located positions within the metabolic
network and are not obviously associated with formic
acid biosynthesis or C1 metabolism.

A predicted increase in flux to formic acid is achieved
through nonintuitive interactions between alt2, fum1,
and zwf1 (Figure 1). Although the protein encoded by
FUM1 is both cytoplasmic and mitochondrial (Stein

et al. 1994), the model predicted several effects specifi-
cally related to its mitochondrial function: (i) decoupling
of the respiratory chain resulting in (ii) decreased flux
into the key TCA cycle intermediate alpha-ketoglutarate

TABLE 1

Gene combinations affecting C1 metabolic flux and formic
acid secretion identified through in silico knockout simulation

Rank Genotype Efficiency (%)a

1 fdh1 fdh2 alt2 fum1 zwf1 72.3
2 fdh1 fdh2 aat2 fum1 zwf1 72.2
3 fdh1 fdh2 cat2 fum1 zwf1 72.0
4 fdh1 fdh2 cat2 fum1 rpe1 71.7
5 fdh1 fdh2 cat2 fbp1 fum1 30.5
6 fdh1 fdh2 cat2 yat2 slc1 2.4
7 fdh1 fdh2 cat2 yat2 cho1 2.3
8 fdh1 fdh2 cat2 yat2 alt2 1.2

a One hundred percent efficiency is defined as four formic
acid molecules per glucose.

TABLE 2

Yeast strains

Strain Genotypea Reference

PSY3639 fdh1(41, 1091)TloxP
fdh2(41, 1091)TloxP

Overkamp

et al. (2002)
PSY3640 zwf1TloxP This study
PSY3641 zwf1TloxP fum1TloxP This study
PSY3642 zwf1TloxP fum1T

loxP alt2TloxP
This study

PSY3650 zwf1TloxP fum1TloxP
alt2TloxP rtg1TKanMX

This study

PSY3653 fum1TKanMX This study

a All mutations are present in the CEN.PK113-7D MATa
URA3 HIS3 LEU2 TRP1 MAL2 SUC2 genetic background.
PSY3640–PSY3642, PSY3650, and PSY3653 are derived from
PSY3639.
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(AKG) and (iii) increased flux into 3-phosphoglycerate
(3PG). Flux through PGDH compensates for loss of
FUM1 by balancing 3PG and generating the cytoplasmic
AKG—via phosphoserine transaminase (PST) (EC
2.6.1.52) that is necessary for growth. PST catalyzes the
transamination of 3-phosphonooxypyruvate, using gluta-
mate as a cofactor, which is balanced by eliminating the
competitive reaction associated with ALT2. Removing
ZWF1 eliminates direct flux to the pentose phosphate
pathway, thereby increasing flux into 3PG, which is
balanced by serine/glycine biosynthesis, leading to the
complete oxidation of glucose into formic acid, carbon
dioxide, and biomass. In the absence of FDH1 and FDH2,
intracellular formic acid is balanced by secretion into the
media.

Consistent with Equation 1, the FBA model predicts
that formic acid secretion is oxygen dependent. Excess
reducing equivalents in the form of eight cytoplasmic
NADHs are balanced aerobically rather than using an
organic substrate as a final electron acceptor. Accord-
ingly, the model predicts increased flux through reac-
tions catalyzed by the external mitochondrial NADH
dehydrogenases Nde1 and Nde2 as well as downstream
electron transport chain components.

Model validation confirms that elevated formic acid
secretion requires aerobic respiration: Results compar-
ing formic acid secretion in PSY3639 and PSY3642
revealed broad qualitative agreement with two impor-
tant model predictions: (i) mutations in alt2, fum1, and
zwf1 interacted in a combinatorial manner to enhance
formic acid production and (ii) this enhancement was
oxygen dependent.

The rate of formic acid secretion measured during
log-phase growth was significantly (3-fold) higher in
PSY3642 compared to PSY3639 (P , 0.01) and this change
was dependent on aerobic growth conditions (Figure 2A).
Furthermore, formic acid secretion increased nonli-
nearly with enzyme loss, indicating a cumulative in-
crease in formic acid production that resulted from
eliminating combinatorial interactions between the
deleted enzymes (Figure 2B). Because FBA models flux
at quasi-steady state, derived predictions are generally
applicable only during log-phase growth. However,
comparisons of PSY3642 and PSY3639 made after
saturation (.30 hr of continuous growth) revealed a
striking 16.5-fold increase in extracellular formic acid
concentration (Figure 2C). Consistent with model
predictions, this difference in total formic acid secre-

Figure 1.—Constraint-based modeling predicts mutations that redirect flux through serine/glycine biosynthesis and C1 me-
tabolism, leading to increased aerobic formic acid secretion. Arrows denote key cytoplasmic (A) and mitochondrial (B) reactions
for which predicted flux is higher (red) or lower (blue) in PSY3642 compared to PSY3639 (see text for details). Boxes superim-
posed over arrows contain flux values for three simulated conditions: (i) PSY3639 (aerobic), (ii) PSY3642 (aerobic), and (iii)
PSY3642 (anaerobic)(†, anaerobic flux values, given in A only). Flux values are relative to a constant glucose uptake rate of
20 mmol gDW�1 hr�1. See Table S2 for a complete list of predicted fluxes and metabolites required for growth (*, the biomass
equation, given in Table S2). Abbreviations (not provided in the text): glc, glucose; g1p, glucose-1-phosphate; g6p, glucose-6-
phosphate; ser, serine; etoh, ethanol; pyr, pyruvate; ala, alanine; gly, glycine; for, formate; nad, nicotinamide adenine dinucleotide;
Q, quinone; accoa, acetyl-CoA; cit, citrate; isocit, isocitrate; succ, succinate; fum, fumarate; and mal, malate.
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tion was observed only under aerobic growth condi-
tions (Figure 2D).

Under aerobic conditions, the model predicted a
slight growth disadvantage in PSY3642 attributed to
diversion of carbon flux away from biomass into formic
acid synthesis (Figure 1A) whereas under anaerobic
conditions the predicted growth rates for the two strains
were equivalent (data not shown). Consistent with these
predictions, under aerobic conditions we observed a
substantial growth defect (0.17 hr�1 vs. 0.26 hr�1)
(Figure 2E). Under anaerobic conditions, the two strains
had comparable growth rates (0.23 hr�1 vs. 0.24 hr�1)
(Figure 2F). One simple explanation for the exacerbated
growth defect observed in PSY3642 was toxicity. However,
the addition of high concentrations of extracellular
formic acid up to 100 mm was well tolerated and did
not affect relative rates of growth or cell lysis in either
strain (data not shown).

Engineering endogenous C1 metabolism induces the
retrograde response: To gain insight into potential
transcriptional mechanisms underlying increases in
formic acid secretion, we performed gene expression
analysis comparing PSY3639 and PSY3642 by competi-
tive hybridization to whole-genome cDNA microarrays

(see materials and methods). Bioinformatics analysis
of these data implicated specific transcriptional re-
sponses resulting from manipulating C1 metabolism
for formic acid production. An initial assessment of
genes with the highest differential expression (some
as high as 56-fold) revealed a varied transcriptional
response involving disparate biological processes, in-
cluding glucose repression (GCR1 and RGR1), mito-
chondrial function (ATP15, FMT1, RPM2, and QCR10),
telomere maintenance (ESC8, RSC58, and SIR3), and C1
metabolism (ADE4, ATP2, ATP7, FOL1, FMT1, and
POR1) (Table 3). Significant gene ontology enrich-
ments were identified for enzymes primarily involved
in mitochondrial-associated reactions (P ¼ 0.01), in-
cluding TCA metabolic processes (P ¼ 0.02) and
oxidative phosphorylation (P ¼ 0.005). These results
are generally consistent with glycine-induced transcrip-
tional changes observed for C1 metabolic enzymes
(Gelling et al. 2004).

To identify similar patterns of expression in other
mutant backgrounds, we compared the gene expression
profile of PSY3642 with the compendium generated by
Hughes et al. (2006). Using hierarchical clustering of
these data, we identified patterns of expression that

Figure 2.—Experimental validation of model
predictions. (A) Formic acid secretion rates un-
der aerobic and anaerobic growth conditions;
(B) total extracellular formic acid production
for several strains, including PSY3639 (blue)
and PSY3642 (red), grown aerobically (C) and
anaerobically (D). Growth rates are given for
PSY3639 and PSY3642 grown aerobically (E)
and anaerobically (F). Genotypes for strains in
B are listed in Table 2. Fit curves in C–F were cal-
culated using logistic regression. Data represent
the average of three biological replicates 6 SD.
A paired two-tailed t-test was used to test for sta-
tistical significance in A.
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were similar to the profile observed in PSY3642 (Figure
3A). Each of these profiles was associated with a
particular conditional experiment. We chose to limit
our analysis to gene expression profiles generated from
gene deletions. PSY3642-similar expression patterns
were associated with specific gene mutations affecting
chromatin function and general transcriptional regula-
tion, MAP kinase signal transduction (swi6, sst2, dig1,
and dig2), mitochondrial function (rip1, qcr2, kim4,
etc.), and cell wall (gas1, anp1, fks1, etc.) and ergosterol
biosynthesis (erg2 and erg3). Interestingly, single dele-
tions in SSN6, RPD3, or TUP1—components of a
well-characterized transcriptional silencing complex—
resulted in the differential expression of .180 genes
(Smith and Johnson 2000; Green and Johnson 2004),
many of which were also differentially expressed in
PSY3642. Motif enrichments in the promoters of upre-
gulated genes implicated transcription factors associ-
ated with several biological processes (Figure 3B).
Included in this set were Rtg1 and Rtg3, two transcrip-
tion factors that mediate mitochondria-to-nucleus ret-
rograde signaling in response to severe mitochondrial
dysfunction.

Retrograde signaling is typically associated with the
petite phenotype caused by loss of mitochondrial DNA
(r0) (Butow and Avadhani 2004). Cells sense mito-
chondrial dysfunction and implement systemic changes
in gene expression to compensate for mitochondria-
associated metabolic deficiencies (Liu and Butow

2006). In r0 yeast, Rtg1-mediated retrograde signaling
is exclusively post-translational: phosphorylated Rtg1

translocates to the nucleus without any change in the
abundance of RTG1 transcript itself; however, in
PSY3642 expression of RTG1 is significantly upregu-
lated (Table 3). This suggests an alternative (transcrip-
tional) mode of Rtg1-mediated retrograde signaling
that is absent in r0 yeast.

Using mitochondria-specific vital stains we confirmed
the mitochondrial defect implied by induced expres-
sion of RTG1 and transcriptional induction of retro-
grade responsive genes. Whereas PSY3639 resembled
wild-type yeast with regard to mitochondrial abundance,
morphology, and membrane potential, analysis of
PSY3642 revealed a heterogeneous population of cells
that were depleted in functional mitochondria (Figure
4). Microscopic analysis revealed a dramatic reduction
in both the total number of mitochondria and their
associated respiratory capacity (compare Figure 4, A
and C, to Figure 4, B and D). This effect was primarily
evident in PSY3642, with strains PSY3640 and PSY3641
resembling the parent strain PSY3639 (Figure S1).
These data, along with experiments that show elevated
formic acid secretion exclusively under oxygenated
growth conditions (Figure 2), indicate that mitochon-
drial function and respiratory capacity are severely
diminished but not completely abolished in PSY3642.

r0 yeast upregulate several genes to provide stoichio-
metric amounts of oxaloacetate and acetyl-CoA to drive
the TCA cycle in the presence of respiratory deficiency
(Epstein et al. 2001). Several of these genes are also
upregulated in PSY3642, including PYC1, OAC1, and
CRC1, as well as the NAD-dependent TCA cycle enzymes

TABLE 3

Differentially expressed genes in PSY3642

Gene ORF Function Fold change

ADE4 YMR300C Phosphoribosylpyrophosphate amidotransferase �56.6
ATP15 YPL271W ATP synthase epsilon subunit �12.7
FMT1 YBL013W Formyl–methionyl–tRNA transformylase �8.5
ESC8 YOL017W Telomeric and mating-type locus silencing �8.2
QCR10 YHR001W-A Ubiqunol–cytochrome c oxidoreductase complex �7.7
POR1 YNL055C Outer mitochondrial membrane porin �4.1
ATP7 YKL016C ATP synthase D subunit �3.3
ATP2 YJR121W F(1)F(0)-ATPase complex b-subunit �2.2
SER3 YER081W Catalyzes the first step in serine biosynthesis 1.8
ADH3 YMR083W Alcohol dehydrogenase isoenzyme 1.9
RTG1 YOL067C Interorganelle communication 4.7
CRC1 YOR100C Mitochondrial carnitine carrier 4.8
FOL1 YNL256W Folic acid synthesis 5.7
IDH1 YNL037C Mitochondrial isocitrate dehydrogenase 5.8
RGR1 YLR071C Transcriptional regulation of diverse genes 6.6
IDH2 YOR136W NAD1-dependent isocitrate dehydrogenase 6.6
OAC1 YKL120W Mitochondrial oxaloacetate carrier 7.0
SIR3 YLR442C Silencing at HML, HMR, and telomeres 9.9
GCR1 YPL075W Positive regulator of the enolase 11.7
RSC58 YLR033W Chromatin remodeling complex subunit 12.1
RPM2 YML091C Mitochondrial precursor tRNAs 44.7
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IDH1 and IDH2 (Table 3). As the FBA model predicted
very little flux through the TCA cycle, a retrograde
responsive increase in flux through these reactions
represents an unanticipated (and unforeseeable) adap-
tation to manipulating C1 metabolism. We constructed
an rtg1 mutation in the PSY3642 genetic background
(PSY3650) and observed a 25% increase in formic acid
secretion (Table 4).

In the presence of severe respiratory deficiency,
increased TCA cycle flux would be coupled to increased
flux through NAD-dependent reactions (for example,
through increased expression of IDH1 and IDH2). As
a result the cell would require some biochemical
mechanism to regenerate NAD and maintain redox ho-
meostasis. r0 yeast upregulate the expression of glycerol-
3-phosphate and alcohol dehydrogenase enzymes
(Gpd2 and Adh1-7) as part of the retrograde response.
These pathways reoxidize NADH in the absence of
competent oxidative capacity (Epstein et al. 2001). In
PSY3642 there is no significant change in expression of
GPD2, ADH1, or ADH4–7. ADH3, a mitochondrial
ethanol-acetaldehyde redox shuttle (Bakker et al.
2000), is induced twofold; however, we observed no
detectable difference in ethanol production between
PSY3642 and PSY3639 (Table 4). To test the hypothesis
that flux through NAD-dependent reactions increases
in PSY3642 we measured intracellular NADH/NAD
ratios directly (see materials and methods). We

observed a significant increase in intracellular NADH
relative to NAD, which was eliminated in rtg1 mutants
(Figure 5). Together, these results support the hypoth-
esis of an Rtg1-mediated increase in flux to the TCA
cycle, which increases the NADH/NAD ratio and diverts
organic substrate away from C1 metabolism and formic
acid biosynthesis.

Increased flux to formic acid is modulated by
coordinated expression of C1 pathway enzymes: Ac-
cording to our pathway analysis of C1 metabolism, the
enzymes associated with Equation 1 are both necessary
and sufficient to catalyze the full oxidation of glucose
into formic acid given proper regulatory constraints that
serve to channel flux through this pathway. Transcrip-
tional coregulation of the upstream portion of Equation
1 (glycolysis) is well characterized. By combining path-
way analysis and transcriptional data, we tested the
hypothesis that downstream reactions occurring after
the glycolytic branch point PGDH are also subject to
coregulation. We sought to identify endogenous tran-
scriptional programs responsible for increased C1
metabolic flux in PSY3642.

A closer look at relative mRNA abundance for
enzymes involved in formic acid biosynthesis revealed
an interesting pattern of endogenous differential ex-
pression (Figure 6B). Relative to the branch point
isozyme Ser3 (PGDH), differential expression of down-
stream enzymes is correlated to their relative position in

Figure 3.—Expression analysis of PSY3642.
(A) Hierarchical clustering of PSY3642 and other
mutant strain expression profiles are represented
as a clustering diagram (dendogram). For clarity,
only a portion (approximately one-third) of the
complete dendogram is shown. The cluster sub-
trees are ordered and displayed nonrandomly
such that similar expression profiles appear
closer together. Labels for several functional cat-
egories reflect the tendency for strains with com-
parable genetic deficiencies to exhibit similar
patterns of gene expression (Hughes et al.
2006). PSY3642 clusters close to strains with mu-
tations affecting chromatin function, MAP kinase
signaling, and mitochondrial function (see text
for details). (B) DNA-binding motifs (P ,
10�10) within the promoters of activated genes
in PSY3642 are represented as sequence logos
(left column) along with cognate transcription
factors (middle column) and identified regula-
tory roles (right column).
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the pathway, with the lowest expression change associ-
ated with the terminal enzyme Mis1. Linear regression
indicates that 52% of the variance in differential ex-
pression of C1-associated enzymes is explained simply
by their relative topological position in the reaction
pathway (P ¼ 0.02). Interestingly, this pattern of differ-
ential expression implicates a recognized mechanism of
endogenous metabolic control termed multisite modu-
lation, where coordinated expression of several enzymes
modulates flux through entire metabolic pathways (Fell

1997). This provides experimental evidence that C1
enzymes constitute a module of pathway function in
PSY3642.

The transcriptional data we obtained suggested that
increased expression of Ser3 was causally associated with
increased flux to formic acid (Table 3). Generally,
overexpressing branch point enzymes rarely affects
their associated flux to any significant degree. This is
due, in part, to feedback inhibition by downstream
metabolites (Fell 1997). Indeed, PGDH is allosterically
inhibited by serine and, as a consequence, it has very low
flux control in mammalian tissue (; Fell and Snell

1988; Bell et al. 2004; Thompson et al. 2005). To test the
hypothesis that PGDH may control formic acid synthesis
in PSY3642, we generated a plasmid for inducible
overexpression of the catalytic domain of E. coli SerA
(pRS410a), a well-characterized functional homolog of
yeast Ser3. Expression levels of the fusion protein were
not affected by strain-specific genetic backgrounds or
transcriptional induction (Figure 6C). Consistent with
previous experiments in mammalian tissues, SerA had
no effect on flux to formic acid in PSY3639; however,
SerA expression in PSY3642 resulted in an 86% increase
in extracellular formic acid concentration (Figure 6D).
This result is consistent with endogenous induction of
Ser3 in PSY3642 and suggests that PGDH has a positive
flux control coefficient in this strain.Figure 4.—Phenotypic analysis of PSY3642 reveals mito-

chondrial dysfunction. Total mitochondria were labeled in
PSY3642 (A) and PSY3639 (B) and single cells were imaged
at 1003 magnification with DIC (top panels) and epifluores-
cence (bottom panels). Oxidation of Mitotracker CM-H2XRos
was measured to indicate respiratory capacity in PSY3642 (C)
and PSY3639 (D). Cells were imaged at 403 magnification with
DIC (top panels) and epifluorescence (bottom panels). Expo-
sure times were 40 msec in all cases.

TABLE 4

Quantification of Rtg1-mediated formic acid secretion

Strain Formic acid (mm)a Ethanol (mm)a

PSY3639 0.01 6 0.005 155 6 19
PSY3642 0.16 6 0.004 178 6 14
PSY3650 0.2 6 0.01 NA

a Data are given as the average of three biological replicates 6
SD.

Figure 5.—Increase in NADH/NAD in PSY3642 NADH/
NAD ratios for PSY3642 and PSY3650 is given as percentage
of PSY3639. Data represent the average of four biological rep-
licates 6 SD. Compared to that in PSY3639, NADH accumu-
lated significantly in PSY3642 (P ¼ 0.001) but not in PSY3650
(P ¼ 0.46). Statistical significance was assessed by testing the
null hypothesis m ¼ 100% vs. the alternative m . 100%, as-
suming normally distributed sample data.
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DISCUSSION

Our goal in this work was to test an FBA-based strategy
for engineering C1 metabolism in yeast to increase
endogenous formic acid production and describe
cellular mechanisms responsible for regulating this
important metabolic pathway. FBA and gene knockout
simulations identified a nonintuitive combination of
genes (ALT2, FUM1, and ZWF1), which individually had
no obvious role in formic acid biosynthesis (Figure 1).
On the basis of the model predictions, we constructed
the quintuple knockout alt2 fdh1 fdh2 fum1 zwf1 and
showed significant oxygen-dependent formic acid se-
cretion in the engineered strain, during both log-phase
(Figure 2A) and stationary-phase growth (Figure 2, C
and D). Further, maximum formic acid secretion re-
quired all five enzyme deletions predicted by the model
(Figure 2B). Although formic acid is an essential in-
tracellular metabolite, it is not secreted in detectable
levels in wild-type yeast (McNeil et al. 1996; Blank et al.
2005). Thus, our results demonstrate the successful
application of an FBA-based strategy for microbial
production of formic acid under aerobic growth condi-
tions. More generally, these data support the predictive
potential for this approach in deriving strategies aimed
at engineering nonfermentative metabolic pathways
that integrate across subcellular compartments in eu-
karyotic microbes.

To gain insights into the regulatory events that result
from manipulating formic acid biosynthesis, we supple-
mented model predictions and validation experiments
with gene expression and phenotypic analyses. From
these data we identified (i) a significant transcriptional

response involving multiple cellular processes (Table 3
and Figure 3); (ii) activation of retrograde signaling,
mitochondrial dysfunction, and diminished respiratory
capacity (Table 4 and Figures 4 and 5); and (iii) trans-
criptional regulatory events that lead to the coordinated
expression of enzymes involved in C1 metabolism
(Figure 6). Upon close inspection, these data indicate
specific mechanisms of metabolic regulation that result
from unanticipated adaptive responses to manipulating
C1 metabolic flux.

Several lines of evidence strongly suggest activation of
the retrograde response in PSY3642 cells. In terms of
global gene expression pattern, PSY3642 is most similar
to strains with mutations in genes that are directly
involved in retrograde signaling (Figure 3A). These
include Rpd3, Ssn6, and Tup1, a well-characterized
corepressor complex (Malave and Dent 2006), and
Yat2, a carnitine acetyl-CoA transferase involved in
transporting activated acetate into respiratory deficient
mitochondria (Epstein et al. 2001; Swiegers et al. 2001;
Liu and Butow 2006). Interestingly, Yat2 was identified
in our original in silico knockout screen for enzymes that
affect C1 metabolic flux (Table 1).

In petite cells Ssn6–Tup1 is converted from a transcrip-
tional corepressor complex into a coactivator, which
upregulates gene expression through direct interaction
with Rtg3 (Conlan et al. 1999), one of three transcription
factors primarily responsible for retrograde responsive
gene activation in yeast (Rothermel et al. 1997). DNA
binding motifs for Rtg1 and Rtg3 are overrepresented
in the promoters of activated genes in PSY3642 (Figure
3D) while RTG1 expression itself is increased almost
fivefold (Table 3). These results strongly implicate

Figure 6.—Flux to formic acid is controlled by
PGDH and the coordinated expression of all path-
way enzymes. (A) The subnetwork of serine–
glycine–formate biosynthesis with reaction arrows
thatrepresent compositesof severalbiochemical in-
terconversions labeled with relevant enzymes. The
cytoplasmic enzymes involved in converting serine
into formicacid (Shm2 andAde3) are denoted with
asterisks. (B) Differential expression of enzymes in
A were normalized to Ser3 and plotted according to
their pathwayposition. Multisite modulationforen-
zymes in the formic acid biosynthetic pathway is in-
dicated by linear regression (solid line, R2 ¼ 0.52)
andcorrectedSpearman’srankedordercorrelation
(r¼�0.72, P¼ 0.02). (C) Levels of the SerA fusion
protein (relative to actin) were unaffected by ge-
netic background and induction conditions. (D)
Expressing SerA in PSY3642 caused a significant in-
crease in formic acid secretion under inducing con-
ditions. Each transformed strain was normalized to
the empty vector control plasmid pRS410a. Data in
D represent the average of three biological repli-
cates 6 SD.We assessed statistical significance using
a paired two-tailed t-test (P ¼ 0.002).
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retrograde regulatory transcription factors as specific
modulators of gene activation and metabolic activity
in PSY3642. Consistent with this hypothesis are data
showing Rtg1-dependent NADH accumulation and
limitations in formic acid biosynthesis (Figure 5 and
Table 4).

While zwf1 mutants have no mitochondrial defects
(Blank et al. 2005), Wu and Tzagoloff (1987) specu-
lated that the petite-like phenotype of fum1 mutants is
caused by decreased concentrations of intramitochon-
drial amino acids, which limits the production of res-
piratory chain components. However, loss of Fum1
alone does not account for retrograde signaling in
PSY3642, as transcriptional changes in fum1 single
mutants are limited; only �20 genes are affected, none
of which encode typical retrograde responsive TCA
cycle enzymes (McCammon et al. 2003). Furthermore,
although Gelling et al. (2004) showed that C1 meta-
bolic flux changes significantly affect the expression
status of respiratory chain components, mitochondrial
deficiency and retrograde signaling were not reported
as a consequence. From these results we conclude that
enzyme deletions predicted by our model cause sys-
temic metabolic changes that modulate C1 flux and
activate retrograde signaling in PSY3642. Specifically,
alt2-associated loss of cytoplasmic alanine transaminase
activity—either alone or in combination with fum1 or
zwf1 mutations—may significantly diminish aminogenic
capacity leading to full activation of the retrograde
response. Alternatively, retrograde signaling may re-
sult from reduced intracellular concentrations of
specific retrograde inhibitors such as glutamate, glu-
tamine, or ammonia (Crespo et al. 2002; Tate and
Cooper 2003; Butow and Avadhani 2004; Dilova

et al. 2004).
Multisite modulation is an important mechanism of

metabolic control, where changes in pathway flux result
from the coordinated expression of multiple pathway
enzymes in relative proportion to their distance from
the main pathway branch point (Thomas and Fell

1996; Fell 1997). Accumulating evidence obtained in
yeast (Niederberger et al. 1992), mammals (Brownie

and Pedersen 1986; Waterman and Simpson 1989;
Hillgartner et al. 1995; Vogt et al. 2002; Werle et al.
2005), and plants (Quick et al. 1991; Stitt et al. 1991;
Anterola et al. 1999) suggests that multisite modula-
tion may be a general design principle employed by cells
to regulate metabolic flux in vivo (Wildermuth 2000).
Indeed, using formal pathway analysis, we identified a
module of pathway function corresponding to down-
stream reactions in C1 metabolism (Equation 1) and
observed a pattern of differential expression in PSY3642
that strongly suggested multisite modulation of en-
zymes in this pathway (Figure 6B).

A predominant challenge in constraint-based analysis
of metabolic networks involves discovering and incor-
porating relevant cellular regulatory processes (Price

et al. 2003; Stelling and Gilles 2004). Because
regulatory events are conditional and often character-
ized by their dynamic nature, they are difficult to predict
under the assumptions of conventional FBA ( Jamshidi

and Palsson 2008). Without the benefit of complete
knowledge of gene regulation it is useful to combine
systems-level modeling with experimental data gener-
ated post hoc for the purposes of design and discovery in
complex metabolic systems. By combining formal path-
way analysis, FBA, and experimentation, we were able to
identify and exploit specific modes of endogenous
regulation to increase C1 metabolic flux and engineer
a formic acid-producing strain of yeast.
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FIGURE S1.—Comparison of Mitotracker staining of strains described in this study. For each strain, the upper image is DIC at 

60x magnification, and the lower image is the Mitotracker signal from the same field. Materials and methods are identical to the 
Mitotracker CMXRos protocol described in the main text. 
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Tables S1-S4 are available for download as Excel files at http://www.genetics.org/cgi/content/full/genetics.109.105254/DC1. 


