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Abstract
The three HLA class II alleles of the DR2 haplotype, DRB1*1501, DRB5*0101, and DQB1*0602,
are in strong linkage disequilibrium and confer most of the genetic risk to multiple sclerosis.
Functional redundancy in Ag presentation by these class II molecules would allow recognition by a
single TCR of identical peptides with the different restriction elements, facilitating T cell activation
and providing one explanation how a disease-associated HLA haplotype could be linked to a
CD4+ T cell-mediated autoimmune disease. Using combinatorial peptide libraries and B cell lines
expressing single HLA-DR/DQ molecules, we show that two of five in vivo-expanded and likely
disease-relevant, cross-reactive cerebrospinal fluid-infiltrating T cell clones use multiple disease-
associated HLA class II molecules as restriction elements. One of these T cell clones recognizes >30
identical foreign and human peptides using all DR and DQ molecules of the multiple sclerosis-
associated DR2 haplotype. A T cell signaling machinery tuned for efficient responses to weak ligands
together with structural features of the TCR-HLA/peptide complex result in this promiscuous HLA
class II restriction.
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Multiple sclerosis (MS)4 is considered a T cell-mediated autoimmune disease of the CNS, and
both genetic and environmental factors contribute to disease expression. The HLA-DR2
haplotype, which is dominant in Caucasian MS populations, confers most of the genetic risk
for MS (1). Three HLA class II molecules are expressed in this haplotype in strong linkage
disequilibrium: DRB1*1501 (DR2b), DRB5*0101 (DR2a), and DQA1*0102/DQB1*0602
(DQw6). Levels and patterns of linkage disequilibrium depend on several demographic factors
including population size, population structure, founder effect, inbreeding, and admixture, as
well as gene-specific factors such as rates of mutation and recombination, and also natural
selection (2-4). The last one is particularly pertinent to explain allelic associations over large
genetic distances and brings the possibility that coexpression of HLA class II loci in the DR2
haplotype can provide a survival advantage via efficient immune responses to common
infections; but at the same time, it might increase the risk for MS.

Our current understanding as to how the presence of certain HLA class II molecules confers
susceptibility to autoimmune diseases is limited, and several mechanisms have been
considered. Disease-associated HLA-DR and -DQ molecules could possess binding grooves
that lead to preferential presentation of specific sets of self peptides (e.g., myelin peptides in
MS) (5), but comparisons of polymorphic residues in the HLA-DR and DQ binding pockets
of MS-associated DR molecules have been inconclusive (6,7). As a variation of the above, it
was speculated that disease-associated HLA class II molecules could have binding
characteristics that allow only a limited number of peptides to bind, leading to incomplete
thymic negative selection (8). Diabetes-prone NOD mice are considered an example for this
situation (9). As another possibility, polymorphic residues of the TCR-exposed surfaces of the
α-helical regions of DR/DQ-α- and -β-chains such as the shared motif in rheumatoid arthritis-
associated class II molecules could select autoreactive T cells (10).

The ability of some TCRs to use different restriction elements, promiscuous restriction, has
been demonstrated previously (11-16) and likely plays a role in improving responses to
infectious agents. During an infection, T cell recognition of the same viral peptide by one TCR
in the context of two or more HLA molecules could assure more efficient activation if both or
all HLA molecules are expressed. Under conditions in which expression of one restriction
element is limited (e.g., the brain), promiscuous restriction could provide a safeguard and
would still allow T cell activation. Finally, recognition of different peptides on more than one
restriction element may increase the possibilities for cross-reactivity. HLA class II molecules
with structures that allow their recognition by a single TCR and are able to present identical
peptides to single T cells would be optimal in such a scenario. Coexpression of these molecules
could guarantee more efficient immune responses against infectious organisms, but it may, at
the same time, increase the risk for autoimmunity. The dose effect demonstrated in genetic
studies in which it was shown that homozygosity for the DR2 haplotype increases MS risk
(17) and the evidence that the DQw6 molecule, together with DR2a and DR2b or
independently, contributes to MS susceptibility in some MS populations (18,19) support this
hypothesis. In this study, we examined whether autoreactive T cells can recognize peptides
with several or all MS-associated HLA-DR/DQ molecules and particularly whether such
promiscuous restriction occurs with identical peptides.

An unbiased strategy to study promiscuous restriction of T cell recognition is testing positional
scanning synthetic combinatorial peptide libraries (PS-SCLs) with B cell lines expressing only
a single class II restriction element as an APC. Decapeptide PS-SCLs, containing 6 trillion

4Abbreviations used in this paper: MS, multiple sclerosis; DR2b, DRB1*1501; DR2a, DRB5*0101; DQw6, DQA1*0102/DQB1*0602;
PS-SCL, positional scanning synthetic combinatorial peptide library; TCC, T cell clone; CSF, cerebrospinal fluid; RR-MS, relapsing
remitting MS; SIPS-SCL, stimulation index to the PS-SCL; SI, stimulation index to peptides; BLS, bare lymphocyte syndrome; hrIL-2,
human recombinant IL-2; AUC, area under the curve; MBP, myelin basic protein.
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(1910) peptides, represent all possible peptides of a given length in systematically arranged
mixtures (20). The recognition of these mixtures by T cell clones (TCCs) suggests that many
peptides can contribute to the T cell response, because single-peptide species are present at
only extremely low concentrations, 10−10 μM, that is 108-fold lower than typically required
for CD4+ TCC activation. However, only the identification of stimulatory peptides can confirm
cross-reactivity. Data from screening PS-SCLs in combination with biometric analysis has
allowed the identification of stimulatory peptides (21,22). Using this approach, we studied
promiscuous restriction of in vivo-expanded cerebrospinal fluid (CSF)-infiltrating TCCs of a
relapsing remitting MS (RR-MS) patient during disease exacerbation. Our data indicate that
these cells exhibit not only cross-reactivity, but furthermore we observed promiscuous HLA
restriction in two of the five analyzed TCCs. As an unprecedented observation, one of these
TCCs was able to recognize numerous identical peptides on multiple HLA class II restriction
elements, among them all DR and DQ molecules of the MS-associated DR2 haplotype. The
structural and functional factors contributing to this highly promiscuous HLA restriction
include similarities of TCR-exposed areas of the DR/DQ-α- and -β-chains, as well as of bound
peptides, and also an increased sensitivity of the TCR-associated signaling machinery.

Materials and Methods
TCCs and APCs

TCCs were established from CSF of an untreated RR-MS patient during exacerbation by
limiting dilution at 0.3 and three cells per well with 2 × 105 irradiated PBMCs, and 2.5 μg
ml−1 PHA-P (Sigma-Aldrich) as an unbiased stimulus, in IMDM containing 100 U ml−1

penicillin/streptomycin, 50 μg ml−1 gentamicin, 2 mM L-glutamine (BioWhittaker), and 5%
human serum (Gemini Bio-Products). After 24 h, 20 U ml−1 human rIL-2 (hrIL-2; National
Cancer Institute, National Institutes of Health) were added. Cells were restimulated every 2
wk with 2.5 μg ml−1 PHA, 20 U ml−1 hrIL-2, and irradiated PBMCs, and hrIL-2 was added
every 3–4 days.

The following APCs were used: autologous PBMC; EBV-transformed homozygous typing
cells for DR13 (DRB1*1301, DRB3*0101); bare lymphocyte syndrome (BLS) cells
untransfected and transfected with single HLA class II molecules DR2a (DRBA1*0101,
DRB5*0101), DR2b (DRA1*0101, DRB1*1501), DQw6 (DQA1*0102, DQB1*0602),
DR4Dw14 (DRB1*0404), and DQw3.2 (DQB1*0302, DQA1*030101) (kindly provided by
G. Nepom and W. Kwok, University of Washington, Seattle, WA); and K-562, a myeloid cell
line devoid of surface HLA expression.

TCC characterization by flow cytometry
TCR Vβ-chain expression was assessed by 22 anti-TCRBV mAbs (23). CD4-FITC and CD8-
PE mAbs from BD Biosciences were used to characterize the TCC by flow cytometry. T cell
cultures were considered for further analysis if >97% of the CD4+ T cells stained with a single
TCRBV mAb. In the case in which none of the 22 TCRBV Abs stained the cells, probably
consistent with the presence of a monoclonal or oligoclonal population not covered by the Ab
panel, TCRBV expression was assessed by PCR (see below).

RT-PCR and sequencing of TCR rearrangements
TCC TCRV gene usage was analyzed by PCR using 21 TCRAV and 23 TCRBV family-
specific oligonucleotide primers (24). Nucleotide sequencing of PCR products was performed
as described previously (23). Vβ usage designations are in accord with Arden’s nomenclature
(25), and TCR gene is in accord with IMGT (ImMunoGeneTics database) (26).
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CDR3 spectratyping
To assure clonality and assess in vivo clonal expansion, high-resolution TCR β-chain CDR3
spectratyping was performed. PCR product (2.5 μl) from each TCRBV was used as a template
in a 12.5-μl primer-extension (runoff) reaction containing 1.25 μl of 5′FAM-labeled BV primer,
0.25 μl of 10 mM dNTP, 0.06 μl/PFU DNA polymerase, 1.25 μl/PFU reaction buffer, and 7.2
μl of H2O. After thermal cycling (95°C for 2 min, followed by 10 cycles of 94°C for 20 s, 55°
C for 45 s, and 72°C for 45 s, and a final extension of 72°C for 10 min), 2 μl of runoff product
were mixed with loading buffer containing four Cy-5-labeled DNA size markers, heat-treated
at 80°C for 2 min and run on a 6% polyacrylamide gel on an OpenGene (Visible Genetics)
sequencer. Electropherograms were analyzed for peak size (bp), peak height, and area under
the curve (AUC). The percentage represented by each CDR3 peak in a BV spectrum
(corresponding to the representation of clonal populations with a given CDR3 length) was
calculated according to the formula %AUC BVn = (AUC BVn/ΣAUC all BV) × 100. TCR
CDR1, CDR2, and CDR3 boundaries were defined according to the IMGT (26).

Peptide combinatorial libraries and individual peptides
A synthetic N-acetylated, C-amide L-AA decapeptide combinatorial library in a positional
scanning format (PS-SCL; 200 mixtures) was prepared as described previously (20). PS-SCLs
were used in the O-X9… X4-O-X5…X9-O format, where O stands for one of the 20 L-AA and
X stands for a randomized position (i.e., all 20 L-AA mixed together without C to avoid
secondary structures). Each O-X9 mixture consists of 3.2 × 1011 (199) different decamer
peptides at approximately equimolar concentration. Individual decamers were synthesized with
a custom multiple-peptide synthesizer using solid-phase Fmoc chemistry. The purity and
identity of each peptide were characterized by mass spectrometry.

Proliferative assays and cytokine production
TCC proliferation to PS-SCL mixtures or individual decapeptides was tested by seeding in
duplicate 2 × 104 T cells, 1 × 105 irradiated PBMCs (3,000 rad), or 5 × 104 irradiated B cell
lines (30,000 rad), with or without PS-SCL mixtures or individual decapeptides. Because the
specificity of TCC was unknown, PHA-P stimulation served as a positive control. Proliferation
was measured by methyl-[3H]-thymidine (Amersham Biosciences) incorporation. The
stimulation index for a PS-SCL mixture with an AA defined at one position (SIPS-SCL) was
calculated as SIPS-SCL = SI′/mean all SI′ in the library, where SI′ = mean (duplicates cpm
mixture) − mean (cpm background). The stimulation index (SI) for individual peptides was
calculated as SI = mean (duplicates cpm peptide)/mean (cpm background). Responses to
individual peptides were considered as positive when SI > 3, cpm > 1000, and at least 3 SDs
above average background cpm in at least three independent experiments. Forty-eight-hour
cultures with/without 10 μg−1 peptide and IFN-γ, GM-CSF, IL-4, and IL-10 levels were
analyzed by ELISA (BioSource International).

Biometric analysis and database searches
Responses to PS-SCL mixtures were analyzed as described previously (21,22). A positional
scoring matrix was generated by assigning a value to the stimulatory potential to each of the
20 defined AA in each of the 10 positions. Based on a model of independent contribution of
individual AA to peptide Ag recognition, the predicted stimulatory score of a given peptide is
the sum of the stimulatory potential of all AA contained in the peptide in each position. Using
a web-based search tool (27), the scoring matrix was applied to rank, according to their
stimulatory score, all natural overlapping 10-mer peptides in the protein sequences within the
GenPept database (version 136; ftp://ftp.ncifcrf.gov/pub/genpept) that contains 429,962,538
decapeptides. We analyzed peptides with scores higher than 0.7 of the predicted maximal
theoretical score (Smax). The cut-off of 0.7 of Smax is based on previous experience on the
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sensitivity and accuracy of the approach (28,29); however. it is important to note that predicted
peptides with lower scores can also be stimulatory. The total number of predicted peptides with
scores higher than 0.7 of Smax in GenPept for each restriction element was 3507 peptides for
DR2a, 4767 for DR2b, and 7003 for DQw6 and 2746 DR13.

HLA-DR/DQ structure alignment
The Ag-presenting domains of the different MHC molecules were aligned in three dimensions
using the program Lsqkab from the CCP4 suite (Collaborative Computational Project, 1994).
The figure was generated by the program MolScript (30) and rendered by the program raster3D
(31).

Analysis of TCR signaling
T cells (2 × 106) were placed in lysis buffer containing 1% Nonidet P-40 (Pierce), 10 mM Tris-
HCl (pH 7.2), 140 mM NaCl, 2 mM EDTA, 5 mM iodoacetamide, 1 mM Na3VO4 (Sigma-
Aldrich), and complete protease inhibitor mixture (Boehringer Mannheim) for 25 min on ice.
After removal of nuclear debris, supernatants were immunoprecipitated or mixed with SDS-
PAGE sample buffer and analyzed by immunoblotting. Zap70 was immunoprecipitated by
incubation of lysates with optimized amounts of polyclonal antisera on ice for 2 h, collected
using Pansorbin (rabbit Ab; Calbiochem), and analyzed by SDS-PAGE and immunoblotting.
The following Abs were used: rabbit anti-Zap70; 4G10, a mouse mAb to phosphotyrosine
(Upstate Biotechnology); rabbit polyclonal Abs to Lck (BD Pharmingen); rabbit antiserum to
ζ (32); C-14, rabbit polyclonal Abs to ERK ERK-2 (Santa Cruz Biotechnology); rabbit
polyclonal Abs to SHP-1 (Santa Cruz Biotechnology); TRIM-04, a mouse mAb to TRIM
(Abcam); and peroxidase-linked goat Abs to mouse and rabbit Ig (Bio-Rad). Quantitative data
were obtained from multiple film exposures using a Kodak ImageStation 440CF and Kodak
Digital Sciences 1D software.

Results
Promiscuous HLA class II restriction of in vivo-expanded and cross-reactive CSF-infiltrating
TCCs

We decided to analyze promiscuous restriction in five TCCs (MN10, MN19, MN27, MN36,
and MN47) generated from the CSF of an untreated HLA-DR2/DR13-positive RR-MS patient
during disease exacerbation by limiting dilution and using PHA as an unbiased stimulus (33,
34). Growing colonies were characterized for CD4/CD8 and TCR Vβ expression, and clonality
was confirmed by TCR Vα and β-chain sequencing (Fig. 1). These five TCCs were selected
because they have been identified as clonally expanded cells by TCR CDR3 spectratyping (Fig.
1) (35), and we assume that in vivo clonally expanded CSF-infiltrating T cells are relevant to
MS. Each clone gave clear and reproducible responses to the PS-SCL.

To analyze promiscuous restriction of these TCCs of unknown specificity, we tested cells with
PS-SCL mixtures (initially for practical reasons only with 40 mixtures, 20 with AA defined at
position 6 and 20 at position 7; X5-O-X4 and X6-O-X3), presented by transfectant B cells
expressing different single autologous HLA DR/DQ molecules. Due to the low concentration
of individual peptides in these complex mixtures, the recognition by a TCC implies that
different Ags contribute to the response, which can be viewed as a marker of cross-reactivity.
The highest stimulation indices (SIPS-SCL) obtained for each TCC in response to these 40 PS-
SCL mixtures in the context of the different restriction elements are shown in Fig. 2 (top
panel). All TCCs recognized the PS-SCL mixtures on at least one restriction element indicating
cross-reactivity. Furthermore, two of five TCCs, MN47 and MN27, demonstrated promiscuous
HLA restriction by recognizing mixtures on multiple HLA class II molecules. MN27
proliferated to PS-SCL mixtures using at least five different class II molecules including all
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class II molecules of the DR2 haplotype that is dominant in Caucasian MS populations (1,
36), HLA-DR13 that is associated with MS in patients of different ethnic background (36), and
the non-autologous HLA-DR4Dw14 molecule. However, peptide mixtures were not
stimulatory in the context of DQw3.2. Detailed proliferative responses of MN27 to 20 PS-SCL
mixtures with AA defined at position 7 are shown in Fig. 2 (bottom panel). T cells alone or in
the presence of class II negative APCs (untransfected BLS cells) or HLA class I and class II
negative APCs (K-562) did not respond to the mixtures, indicating that T cells are not self-
presenting. Promiscuous restriction in response to PS-SCL mixtures indicates cross-reactivity
in the context of each restriction element. However, it does not allow distinguishing if identical
peptides are presented in the context of the different HLA class II molecules.

Promiscuous restriction in the context of MS-associated HLA-DR/DQ molecules
To address whether MN27 was able to recognize identical peptides presented by all of these
HLA class II molecules, we first compared the recognition of the 200 mixtures of a complete
decapeptide PS-SCL presented by DR2a, DR2b, DQw6, and DR13. Fig. 3a shows the PS-SCL
mixtures inducing the strongest responses (SIPS-SCL > 3) in the context of the four restriction
elements (indicated by black boxes). Interestingly, very similar recognition patterns were
observed with all four HLA class II molecules. In 5 of 10 positions, the same one or two
mixtures were stimulatory on all four HLA molecules, suggesting that the same or very similar
peptides can be presented by these different class II molecules. The response patterns in the
context of DR2a and DR2b were more similar with respect to the number of shared mixtures
in each position and the nature of the defined AA (e.g., charge) compared with those in DQw6
and DR13. It is important to note that DR2a and DR2b are the two class II molecules with the
strongest association with MS. The next closest response pattern following DR2a and DR2b
was observed with DQw6, the third class II molecule of the DR2 haplotype. The DR13
recognition pattern differs mainly at positions 7 and 10 (Fig. 3a).

To assess the similarities between the different class II molecules at the level of predicted
peptides rather than PS-SCL mixtures, we predicted stimulatory peptides for each class II
molecule combining the proliferation data from testing MN27 with the complete decapeptide
PS-SCL (200 mixtures) and a biometrical analysis as described previously (22). Based on a
model of independent contribution of individual AA to peptide Ag recognition, a positional
scoring matrix was generated by assigning a value of the stimulatory potential to each of the
20 defined AA in each of the 10 positions. The predicted stimulatory score of a given peptide
is the sum of the stimulatory potential of all AA contained in the peptide in each position. This
scoring matrix was applied to rank, according to their stimulatory score that is predictive of
their stimulatory potency, all natural overlapping 10-mer peptides in the protein sequences
within the GenPept database. This analysis allowed us to identify the peptide with the
theoretical maximal stimulatory score (Smax) and to rank all natural peptides in the GenPept
database according to their score. A high number of peptides with scores >0.7 of the Smax has
been predicted for each restriction element; specifically, 3507 peptides have been predicted
for DR2a, 4767 peptides have been predicted for DR2b, 2746 peptides have been predicted for
DR13, and 6780 peptides have been predicted for DQw6. Comparing all of these peptides, we
observed that the highest number of identical peptides predicted to be recognized by MN27 in
two different class II molecules was for DR2a/DR2b (818 peptides) (Fig. 3b). For three
different molecules, the highest number of identical predicted peptides was found for DR2a/
DR2b/DQw6 (46 peptides), the three class II molecules of the HLA-DR2 haplotype.

Peptides that are stimulatory for TCC MN27 in the context of multiple restriction elements
Next, we selected peptides from human pathogens and human self-proteins that had been
predicted for the different restriction elements, synthesized them, and tested their stimulatory
capacity in proliferation assays using PBMCs as APCs. Table I shows the most stimulatory
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peptides (SI > 3 tested at 1 μg/ml on PBMCs in bold) from human pathogens, and Table II
shows those from human proteins. Next, these peptides were tested in proliferation assays, now
using as APC B cell transfectants expressing only one HLA class II molecule (Tables I and
II). We identified a total of 87 stimulatory peptides for TCC MN27 (SI > 3 at 1 μg/ml), of
which 60.9% were recognized with more than one restriction element. Particularly, 21.8% of
stimulatory peptides were recognized on two different class II molecules, 10.3% on three
different restriction elements, and 28.7% on four different restriction elements. No response
was detected when peptides were tested using BLS cells transfected with non-autologous class
II molecules (DR4Dw14 and DQw3.2) or with untransfected BLS cells as APCs (data not
shown). Interestingly, we observed a clear correlation between the stimulatory potential of
each peptide, when tested at 1 μg/ml on PBMCs, and the capability to be presented on different
restriction elements. The more stimulatory peptides were recognized on four restriction
elements, peptides with an intermediate proliferation-inducing capacity could be presented by
three or two different restriction elements, whereas peptides with lower stimulatory potential
were only recognized in one restriction element. Also of interest, when peptides are recognized
on only three or two restriction elements, DR2a and DR2b are more frequently used, followed
by DQw6 and never DR13. These data suggest that there may be a certain degree of overlap
between peptide pools presented by DR2 molecules and class II molecules that are not part of
the DR2 haplotype, such as DR13. However, the pools of peptides that TCC MN27 is able to
recognize in the context of the two alleles with the strongest association with MS (DR2a and
DR2b) is more similar than the peptides recognized in the third DR2 molecule (DQw6) or in
a class II molecule that is not part of the DR2 haplotype, such as DR13. We did not identify a
single peptide recognized only in the context of DR13 or DQw6, probably due to the small
number of peptides that were synthesized for each restriction element (25 peptides).

The most stimulatory peptides identified for TCC MN27 that also are recognized in the context
of four restriction elements include interesting peptides from human pathogens and
autoantigens. Among them, three are from human herpesvirus 6, a human neurotropic virus
that has been related with MS. Among the autoantigens, eight are from proteins relevant in the
context of the CNS including the purinergic receptor PX2A expressed on oligodendrocytes
and astrocytes, the adenylyl cyclase type IX highly expressed in the brain and critical for
neuronal signaling, the α 2C adrenergic receptor with a critical role in neurotransmission in
central and peripheral sympathetic neurons, the Na+/Ca+ exchanger important for calcium
regulation in myelinated tissue, and the molecule Sacsin described to cause a
neurodegenerative disorder. It is important to notice that the stimulatory peptides identified
from both foreign agents and human proteins represent only a small fraction of the total number
of predicted peptides and have been selected due to their putative relevance for MS. Therefore,
the identification of stimulatory peptides from one specific organism or tissue (e.g., the brain)
does not imply that the TCC preferentially recognizes these peptides, but rather that these
peptides are included among the most stimulatory ones.

Using the web tool PropPred (37) that uses quantitative matrices (38), we have predicted the
binding affinities for DR2a, DR2b, and DR1* 1301 (the only available) for the 25 peptides
recognized in four different HLA class II molecules (data not shown). The range of predicted
binding affinities is broad and, for some peptides affinities, was very low for the three class II
molecules. Despite their low binding affinity, these peptides were good stimulators for TCC
MN27.

The recognition of six of these peptides by MN27 on four restriction elements was based on
proliferation (Fig. 4a) and paralleled by secretion of IFN-γ and GM-CSF (Fig. 4b). Each peptide
induced high levels of IFN-γ (Fig. 4b) and GM-CSF (data not shown) but neither IL-4 (Fig.
4b) nor IL-10 (data not shown), consistent with a Th1 profile.
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Structural explanations for promiscuous HLA restriction
Promiscuous HLA class II restriction of MN27 requires interactions of its TCR with similar
surfaces on 1) the α-helical regions of the DR/DQ-α- and -β-chains that flank the peptide-
binding groove and 2) the bound peptides.

To evaluate the first requirement, crystal structures of DR2a (39), DR2b (40), DR3 (41), and
DQw6 (42) were superposed through their α1 and β1 domains (Fig. 5a). DR3 was used instead
of DR13 because no structures are available for the latter MHC class II molecule, but sequence
alignments show a high degree of similarity. The TCR MHC contact positions highlighted in
Fig. 5a are derived from two recent trimolecular complexes of two myelin basic protein (MBP)-
specific TCRs with DR2a or DR2b complexed with MBP peptide (43,44). Because all DR
molecules share the α-chain, we first compared DRα (DRA1*0101) with DQα (DQA1*0102).
Four of six potential contacts are identical between DR and DQ (Fig. 5a). DR A61α is replaced
by DQ R61α, thereby introducing one positive charge at TCR-contacting positions in DQα.
With respect to the β-chains, five of nine potential TCR-contacting residues are identical
between DRβ and DQβ. At the four positions that differ, only 70β results in change in charge
in only one allele DR2a (Fig. 5a). These similarities in the surfaces of DR2a, DR2b, DR13,
and DQw6 contacted by the MN27 TCR can facilitate promiscuous HLA class II restriction.

To test the second requirement, we examined whether peptides recognized in the context of
all four class II molecules are positioned in a similar way in the HLA class II grooves, which
vary substantially in their anchor residues and the floors of the binding grooves (45-49). Using
A-scans for six peptides and additional conservative substitutions (R/K, and vice versa), we
determined that R at position 5 is the primary TCR contact of the peptides in all restriction
elements. Substitution of R5 by nonconservative AA (A) and conservative AA (K) completely
abrogated recognition of peptide LIYTRQRRLC (as one example) with all four HLA
molecules (Fig. 5b). The overall, very similar recognition pattern of the A-scan peptides
indicates that this peptide is positioned in the same register in DR2a, DR2b, DR13, and DQw6.

On the TCR side, we focused on TCR β because MN27 and MN36 share the identical α-chain;
however, only MN27 displays promiscuous restriction. We therefore assumed that structural
explanations for the promiscuous restriction are more likely to be found in TCR β. Fig. 5c
compares TCR β sequences of MN27 and MN36 (BV7–8 and BV7–1, respectively). Given
the additional positively charged AA in DQα relative to DRα (see above) and the prevalence
of R in stimulatory peptides (Tables I and II), it is notable that CDR3β of MN27 contains a
central D (Fig. 5c), absent from the MN36 β-chain, that would be positioned at the tip of the
CDR3β loop. Because CDR3β generally contacts both peptide and MHC in known TCR/MHC
structures (50), this D possibly interacts with positively charged residues of the peptide or
DQα, contributing to promiscuous HLA class II recognition.

T cell signaling in TCC MN27 showing promiscuous restriction
Next, we addressed whether differences in the signaling machinery can contribute to
promiscuous restriction. For this purpose, we analyzed molecules that are involved in proximal
TCR signaling events and in TCR signaling feedback pathways in three resting TCCs, TCC
MN27 with promiscuous restriction and two TCCs (MN19 and MN36) restricted by only one
HLA class II molecule, 14 days after the last stimulation (Fig. 6). The results indicated that the
expression of the negative TCR regulator SHP-1 is reduced in MN27 compared with the other
TCC. SHP-1 dephosphorylates and inactivates TCR proximal kinases Zap70 and Lck
(51-53) and terminates TCR signaling. Very low SHP-1 expression in MN27 translates into
very weak TCR-negative feedback and hence prevents decay of a partial agonist-induced signal
facilitating activation with weak ligands. Interestingly, the expression of the transmembrane
adaptor protein (TRIM) that up-regulates TCR expression by inhibiting TCR internalization
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and stabilization of surface TCR (54) was increased in MN27. No or only small differences
were detected for other TCR signaling proteins.

Discussion
The ability of some TCRs to use different HLA restriction elements, promiscuous restriction,
likely provides an advantage during infections. The recognition of identical foreign peptides
by one TCR in the context of several HLA molecules could lead to more efficient activation
if some HLA molecules are coexpressed. Under circumstances of reduced HLA molecule
expression of one or several class II molecules such as in the brain, promiscuous restriction
would still allow T cell activation. Despite such a potentially favorable role in protective
immune responses, promiscuous restriction could also have an undesirable influence by
facilitating autoimmune responses. In this study, we demonstrate that two of five in vivo-
expanded and likely disease-relevant CSF-infiltrating TCCs were able to use different HLA
class II molecules for Ag recognition. One of these TCCs was able to recognize identical
peptides in the context of all MS-associated class II molecules coexpressed in the HLA-DR2
haplotype, which is dominant in Caucasian MS populations, suggesting that an overlapping
Ag-presenting function of these molecules could play a role in their association with MS. The
structural and functional factors contributing to this highly promiscuous HLA restriction
include similarities of TCR-exposed areas of the DR/DQ-α- and β-chains and bound peptides
and also an increased sensitivity of the TCR-associated signaling machinery.

Several examples of promiscuous restriction have been reported previously, although always
for one or a few peptides recognized in the context of another than the primary restriction
element (11-16) and never for all DR and DQ molecules coexpressed in a disease-associated
haplotype. In this study, applying a new strategy that combines PS-SCL based biometrical
analysis and B cell transfectants expressing single class II molecules, we show for the first time
that promiscuous restriction can be much broader than previously anticipated and that one TCC
(MN27) can recognize several different peptides with different DR molecules and also several
identical peptides in the context of different DR and even DQ molecules. The last observation
was unexpected when taking into account the considerably different binding grooves of these
HLA-DR and -DQ molecules (45-49). Peptides with ideal MHC binding motifs that bind well
to more than one class II molecule with different binding pockets not only have to contain the
required MHC anchor AA for all class II molecules but also to contain the correct spacing to
allow for strong binding to the different class II molecules in different registers. Consequently,
it is unlikely that such peptides are recognized by the same TCR. The well studied MBP peptide
(83-99) is the prototypic example. It contains ideal MHC anchor motifs for both DR2a and
DR2b and binds well to these MS-associated HLA-DRs, but with a register shift of three AA
(39). Accordingly, none of the MBP (83-99)-specific TCC from different laboratories
recognized the peptide on both DR2a and DR2b (55-58). In this context, the recognition by
MN27 of identical peptides on DR and DQ restriction elements with considerably different
binding grooves implies that these peptides do not have good MHC anchor motifs nor strong
binding affinities. Although binding experiments have not been done, the predicted binding
affinities using quantitative matrices indicated low binding affinities for some peptides. Despite
these presumably low binding affinities, the clear correlation between the stimulatory potential
of these peptides tested at 1 μg/ml using PBMCs and their ability to be presented on different
restriction elements strongly supports a physiological role of promiscuous restriction in
facilitating T cell activation and probably enlarging the set of stimulatory peptides.

At the structural level, the recognition of identical peptides in different restriction elements
requires that the surfaces of the MHC/peptide complexes look similar or identical. The two
main prerequisites that need to be met for this to occur are as follows: 1) such peptides have
to be positioned in the different class II binding grooves in a similar way without shift of main
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TCR contacts; and 2) the TCR-exposed parts of the DR/DQ surfaces (i.e., the α-helical regions
of DR/DQ-α and DR/DQ-β) have to allow binding of the TCR. Testing A/K-scans of
LIYRTQRRLC peptide (Fig. 5b) on either DR2a, DR2b, DR13, or DQw6, we demonstrated
that R in position 5 serves as primary TCR contact in the context of all four HLA class II
molecules, indicating that the peptide is positioned in the same way. With respect to similarities
in the TCR-exposed surface of DR/DQ α/β regions, we compared the superposed structures of
the four HLA class II molecules and found that most (9 of 15 total; 4 of 6 in the α-chain and
5 of 9 in the β-chain) of the potential TCR contacts are shared (Fig. 5a). The lesser relevance
of the DR- and DQ-β-chains for the promiscuous restriction is supported by the fact that MN27
and MN36 express an identical TCR-α-chain, but only MN27 is promiscuous to HLA.
Interestingly, in a recent study, the crystal structure between an autoreactive murine TCC and
a MBP (1-11) peptide presented by class II I-Au shows that the recognition of the MHC is
dominated by the Vβ domain of the TCR (59). It has been demonstrated that CDR3α loop
flexibility helps to explain TCR cross-reactivity (60). The fact that MN27 and MN36 share the
same CDR3α does not contradict this observation because both TCCs are cross-reactive;
nevertheless, CDR3α does not appear to be responsible for the promiscuous HLA restriction
of MN27. The extra positive charges (R61, H68) on DQα may interact with negatively charged
AA of TCR-β CDR2, whereas the extra negative charge of TCR-β CDR3 probably contacts
the primary TCR contact of the peptide (R5) (Fig. 5c). Hence, sharing between structural
features in the common DR-α- and the DQ-α-chains are the plausible explanation for
promiscuous restriction of MN27 even by class II molecules with considerably different
peptide binding properties. Although the structural comparisons provide insight as to how the
TCC MN27 TCR can interact with different HLA/peptide complexes, only the analysis of the
crystal structures of these TCR-HLA/peptide complexes will prove the structural interactions
that allow promiscuous restriction.

Besides the above structural factors, we found a lower amount of protein tyrosine phosphatase
SHP-1 in TCC MN27 compared with SHP-1 expressed in TCC MN36 and MN19 (Fig. 6).
SHP-1 is a negative regulator of the TCR signaling molecule Lck (51-53), and its aberrant
expression contributes to longer-lasting signaling and less stringent ligand discrimination
translating into more efficient functional activation and reactivity to a broader spectrum of
ligands. In concert with the relatively higher expression of the membrane adaptor protein TRIM
that prevents TCR down-modulation, both the low SHP-1 expression and the activity of TRIM
are probably critical in inhibiting the decay of a weak/partial TCR signal and hence increasing
the sensitivity of MN27. It will be interesting and important to address whether the higher
sensitivity of TCC MN27 or similar clones to weak ligands is the consequence or the cause of
promiscuous restriction. Because it is unlikely that the expression of these signaling molecules
was fixed during thymic maturation, we assume that the regulation of these molecules reflects
the history of activation of the TCC. We hypothesize that the capability of a TCC to recognize
peptides on different restriction elements is initially mainly determined by its TCR structure.
The capability to recognize peptides on different restriction elements allows easier and frequent
activation of the TCC that could result in lower expression of SHP-1 and higher of TRIM. The
regulation of these molecules may act as a positive feedback on promiscuous restriction
facilitating the recognition of suboptimal or weak HLA/peptide ligands.

We assume that promiscuous restriction is more likely to occur for low-affinity TCRs.
Although the physiological role of low-affinity TCRs during protective immune responses is
not clear, autoreactive T cells probably express mostly low-affinity TCRs. This notion is
supported by observations that it has been difficult to generate MHC class II tetramers for
autoreactive T cells, that attempts to cocrystallize autoreactive TCRs with their respective
MHC/peptide ligands appear more difficult, and that many encephalitogenic T cell lines or
clones in the experimental allergic encephalomyelitis model or human MBP-reactive TCCs
show low sensitivity to Ag recognition in dose titration experiments.

Sospedra et al. Page 10

J Immunol. Author manuscript; available in PMC 2009 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In this study, we demonstrate that in vivo-expanded, CSF-infiltrating T cells in MS are highly
cross-reactive and that two of five TCCs exhibit promiscuous HLA restriction. In one of these
TCCs (MN27), promiscuous restriction was particularly broad and extended beyond
recognition of several different peptides on different DR molecules to activation by multiple
identical peptides using all MS-associated DR and even DQ molecules. Assuming an avidity-
based model of peripheral T cell activation similar to that demonstrated for thymic selection
(61), the density of HLA/peptides complexes becomes a key determinant for activation.
Because physiological APCs coexpress on their surface different HLA class II molecules, the
threshold of activation for a TCC with promiscuous restriction would be lower, and this in turn
would facilitate activation. At the same time, the overlapping Ag-presenting function of these
linked class II molecules could translate into susceptibility to autoimmunity and may explain,
in part, the strong association between the HLA-DR15/DQw6 haplotype and a CD4+ T cell-
mediated autoimmune disease as MS. Structural features of the TCR/MHC peptide interaction
and an increased sensitivity of the TCR signaling machinery allow this phenomenon. Further
systematic examination of promiscuous MHC restriction of CD4+ T cells will be interesting
not only to establish whether this is a characteristic of autoimmunity but also in the context of
other immune responses.
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FIGURE 1.
Characterization of in vivo-expanded TCCs. All five TCCs are CD4+ (dot plots; second
column), expressing various TCR α- and β-chains. The third column shows the TCR AV
rearrangement established by RT-PCR and sequencing (*Arden’s and **IMGT
nomenclatures). The fourth column includes histograms showing TCC staining with the panel
of anti-TCR BV Abs. The percentage of positive cells with a single mAb (in red) is indicated.
Two TCCs (MN10 and MN27) did not stain with any of the Vβ-specific mAbs. The fifth column
shows the TCR BV rearrangement established by RT-PCR and sequencing. The sixth and
seventh columns show the length of the CDR3 for each TCC as base pairs and the percentage
of contribution (expressed as AUC) of the CDR3 peak of the TCC to all CDR3s with the same
BV chain in the CSF. All TCCs with the percentage of contribution of >25% are considered
in vivo-expanded TCCs.
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FIGURE 2.
Promiscuous restriction on in vivo-expanded CSF-infiltrating TCCs. Top, Checkerboard graph
illustrating the highest SIPS-SCL obtained in proliferative responses testing TCCs with 40 PS-
SCL mixtures (20 with AA defined at position 6 and 20 at position 7) in the context of different
single autologous and non-autologous HLA class II molecules. The shading indicates the
SIPS-SCL ranges. Bottom, Proliferative responses of TCC MN27 to 20 mixtures of the
decapeptide PS-SCL with AA defined at position 7, in the context of autologous and non-
autologous HLA class II molecules. The graphs represent the SIPS-SCL.
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FIGURE 3.
Proliferative responses of TCC MN27 to a complete PS-SCL on different restriction elements.
a, Checkerboard graph illustrating the response of MN27 to a complete decapeptide PS-SCL
(200 mixtures) in the context of four different restriction elements (DR2a, DR2b, DR13, or
DQw6). The black boxes are mixtures inducing SIPS-SCL >3. b, Number of identical peptides
predicted to be recognized in the context of multiple MS-associated DR/DQ molecules.
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FIGURE 4.
Peptides that activate TCC MN27 in the context of four different restriction elements. a,
Proliferation (shown as SI) of MN27 to different concentrations of six decapeptides in the
context of four different restriction elements (DR2a, DR2b, DR13, and DQw6). Peptide
sequences are indicated at the top. b, IFN-γ and IL-4 production by MN27 to 10 μg ml−1 of six
identified decapeptides in the context of four different restriction elements.
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FIGURE 5.
Structural and functional interactions underlying the promiscuous HLA restriction of TCC
MN27. a, Left, Superposition of the DR2a, DR2b, DR13, and DQw6 heterodimers without
peptide. green, α-Chains; cyan, β-chains; yellow, TCR contacts of DR molecules; brown, TCR
contacts of DQ molecules (43,44). Right, Summary of MHC residues in TCR contacts of α-
and β-chains. Residues different between DR and DQ are shown in bold, and residues
representing changes in charge are shown in red. b, Proliferation of MN27 to A-scans and R
by K (conservative) substitutions of peptide LIYTRQRRLC in the context of four HLA class
II molecules. The main TCR contact (R5) is shown in red. c, TCR β-chain sequences for MN27
and MN36. CDR1–CDR3 are shown. Different AA residues between MN27 and MN36
representing charge change are underlined. The residue change in CDR3 (D) is shown in red.
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FIGURE 6.
Expression of molecules involved in proximal TCR signaling and feedback pathways. T cell
lysates from resting cells were analyzed by SHP-1, TRIM, Zap70, Lck, ERK-2, and z chain
immunoblotting.
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Table I
Stimulatory Peptides from Human Pathogensa

a
Peptides are organized by the number of restriction elements in which they can be presented and then sorted by the Sl at 1 μg/ml on PBMCs
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Table II
Stimulatory Peptides from Human Proteinsa

a
Peptides are organized by the number of restriction elements in which they can be presented and then sorted by the Sl at 1 μg/ml on PBMCs
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