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Abstract
In 2004, three wild sea otters were diagnosed with putative Sarcocystis neurona-associated
meningoencephalitis by histopathology and immunohistochemistry. Schizonts, free merozoites and
tissue cysts were observed in the brains of all three infected animals. Tissue cysts from sea otter 1
(SO1) stained positively using anti-S. neurona polyclonal antiserum. However, positive staining does
not preclude infection by closely related or cross-reactive tissue cyst-forming coccidian parasites.
Two immature tissue cysts in the brain of SO1 were examined using transmission electron
microscopy. Ultrastructural features included cyst walls with thin villous projections up to 1 μm long
with tapered ends and a distinctive, electron-dense outer lining layer composed of linearly-arranged,
semi-circular structures with a “hobnailed” surface contour. Small numbers of microtubules extended
down through the villi into the underlying granular layer. Metrocytes were short and plump with an
anterior apical complex, 22 subpellicular microtubules, numerous free ribosomes and no rhoptries.
Some metrocytes appeared to be dividing, with two adjacent nuclear profiles. Collectively these
ultrastructural features were compatible with developing protozoal cysts and were similar to prior
descriptions of S. neurona tissue cysts. Panspecific 18S rDNA primers were utilized to identify
protozoa infecting the brains of these otters and DNA amplification and additional sequencing at the
ITS1 locus confirmed that all three otters were infected with S. neurona. No other Sarcocystis spp.
were detected in the brains or skeletal muscles of these animals by immunohistochemistry or PCR.
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We believe this is the first ultrastructural and molecular confirmation of the development of S.
neurona tissue cysts in the CNS of any animal.
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Sea otter; Sarcocystis neurona; Tissue cyst; Central nervous system; Brain; Ultrastructure; 18S;
rDNA; ITS1

1. Introduction
Sarcocystis neurona is a single-celled apicomplexan parasite that causes severe, often fatal
systemic disease in a wide range of animals including horses, harbor seals and sea otters
(Dubey et al., 1991; LaPointe et al., 1998; Miller et al., 2001a; 2001b; Kreuder et al., 2003).
The definitive hosts for S. neurona are new world opossums, specifically Didelphis
virginiana and Didelphis albiventris (Dubey et al., 2001c, 2001d). These animals may shed
infective sporocysts in their feces for prolonged periods without showing clinical signs (Porter
et al., 2001). Several animals, including raccoons, (Dubey et al., 2001g; Stanek et al., 2002)
skunks (Cheadle et al., 2001b; Dubey and Hamir, 2000), fisher (Gerhold et al., 2005),
armadillos (Cheadle et al., 2001a), cowbirds (Mansfield et al., 2008), cats (Dubey and Hamir,
2000; Dubey et al., 2003a), dogs (Vashist et al., 2005), harbor seals (LaPointe et al., 1998) and
sea otters (Rosonke et al., 1999; Lindsay et al., 2000; Dubey et al., 2001f; Thomas et al.,
2007) serve as intermediate hosts for S. neurona, supporting the development of tissue cysts
(or sarcocysts) in skeletal muscle and myocardium. Tissue cysts from skeletal muscle of a sea
otter with S. neurona-associated meningoencephalitis were fed to an opossum, resulting in
fecal shedding of sporocysts (Dubey et al., 2001f). Horses were considered by some researchers
to be aberrant hosts for S. neurona that were unable to support the development of tissue cysts
(Dubey et al., 1991, 1993, 2001e). However, Mullaney et al. (2005) described putative S.
neurona tissue cysts from the tongue of a naturally infected horse, leaving the role of the horse
as a true or aberrant intermediate host unresolved.

For nearly all reports of S. neurona infection in naturally or experimentally infected animals,
the only parasite stages described in the brain and spinal cord are merozoites and schizonts
(Dubey et al., 1991,2001d,2001e,2001f;Dubey and Hedstrom, 1993;Lapointe et al.,
1998;Rosonke et al., 1999;Lindsay et al., 2001; Miller et al., 2001a,2001b;Kreuder et al.,
2003). Sarcocystis neurona tissue cysts have only been described from tissues located outside
of the CNS (Dubey, 1993;Dubey and Hedstrom, 1993;LaPointe et al., 1998;Rosonke et al.,
1999; Cheadle et al, 2001a,2001b; Dubey et al. 2001a,2001b,2001c,2001d,2001e,2001f,
2002;Stanek et al., 2002) with three notable exceptions. The first two reports note the presence
of S. neurona-like tissue cysts in brain tissue from a bird and a domestic cat (Dubey and Hamir,
2000;Dubey et al., 2003a). The third case described putative S. neurona tissue cysts from the
brains of five sea otters, based on microscopic examination and immunohistochemistry
(Thomas et al., 2007). However, S. neurona tissue cysts can react inconsistently with polyclonal
antisera raised against S. neurona and Sarcocystis falcatula merozoites (Stanek et al., 2002).
Without molecular or ultrastructural confirmation, no bona fide evidence currently exists to
establish whether S. neurona tissue cysts are capable of developing in the CNS of any animal
host.

Here we present necropsy findings from three wild sea otters with protozoal
meningoencephalitis. In all three cases tissue cysts, schizonts and merozoites were visualized
in the neuropil. Due to cross-reactivity and variable staining of monoclonal and polyclonal
antisera directed against S. neurona and S. falcatula, molecular and ultrastructural confirmation
was required to confirm that the tissue cysts were S. neurona. This report establishes that S.
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neurona tissue cysts are capable of developing in the CNS of naturally infected intermediate
hosts.

2. Materials and methods
2.1. Necropsy

During April and May of 2004, three sea otters (SO1, SO2 and SO3) were submitted to the
Marine Wildlife Veterinary Care and Research Center (MWVCRC) in Santa Cruz, California,
USA for necropsy. Necropsy procedures were as previously described (Kreuder et al., 2003).

SO1 was an adult male that stranded live near Morro Bay, California on April 22, 2004. At the
time of stranding the otter was hyperthermic (40.5° C), unresponsive to external stimuli and
quadriparetic. Severe head and front paw tremors were noted, especially when the animal was
handled or was trying to eat or swim. During the next 5 weeks of hospitalization, SO1 was
administered oral antiprotozoal therapy (Ponazuril, 5 mg/kg orally, once daily; Bayer
Corporation, Westhaven, Connecticut, USA). Due to continuing head and forelimb tremors,
caudal paraparesis and inability to self-groom or forage, the otter was euthanized in May, 2004.

SO2 was an adult male that was recovered freshly dead (≤ 3 days post-mortem with
refrigeration) on April 19, 2004 in Pismo Beach, California and submitted for necropsy.

SO3 was a sub-adult male recovered freshly dead near Morro Bay, California on April 10,
2004 and submitted for necropsy.

2.2. Serology and parasite isolation
Pre- and post-mortem serum was tested for reactivity to Toxoplasma gondii and S. neurona by
indirect fluorescent antibody testing (IFAT), as previously described (Miller et al., 2002a). The
established cut-offs for IFAT seropositivity to T. gondii is ≥ 320 serum dilution. Cut-offs have
not yet been established through test validation for S. neurona in sea otters, so the same cut-
off was selected. Fresh, aseptically-collected cerebrum and cerebellum were processed for
parasite isolation in cell culture using rhesus monkey kidney (MA104) cells, as previously
described (Miller et al 2001a). Cerebrum, cerebellum and skeletal muscle were also
cryopreserved at -80° C.

2.3. Histopathology and immunohistochemistry
All major tissues were fixed in 10% neutral buffered formalin, trimmed, paraffin-embedded
and 5 μm sections were cut and stained with H&E. Immunohistochemistry to screen for
reactivity to antibodies against S. neurona, S. falcatula, T. gondii and Neospora caninum was
performed on formalin fixed, paraffin-embedded tissues as previously described (Miller et al.,
2002; Cooley et al., 2007). For detection of S. neurona antigens, both polyclonal antiserum
raised in rabbits (Dubey et al., 2001a) and a monoclonal antibody (Marsh et al., 2002) were
used to screen brain and muscle tissue from suspect animals. For all other protozoan species,
polyclonal antisera raised in laboratory animals infected with well-characterized strains were
used for antigen screening.

2.4. Transmission electron microscopy
A portion of formalin-fixed hippocampus from SO1 was also processed for transmission
electron microscopy (TEM), as previously described (Gozalo et al., 2007). Thin sections were
examined using a Zeiss 906E or Philips 400 transmission electron microscope at 60 kv
accelerating voltage.
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2.5. Molecular characterisation
DNA was extracted from cryopreserved brain, heart and skeletal muscle from SO1, SO2 and
SO3 using the DNeasy Tissue Kit (Qiagen). Genomic DNA preparations were screened for the
presence of T. gondii, S. neurona, and/or N. caninum DNA using 18S rDNA pan-specific hemi-
nested primers that were developed to facilitate this study (all primer sequences in the 5′-3′
orientation): 18S Forward External, GCAAGGAAGTTTGAGGCAAT, 18S Reverse External,
TGCAGGTTCACCTACGGAAA, 18S Reverse Internal,
TCCTTCCTCTAAGTGTTAAGGTTCA. PCR amplicons were sequenced to identify the
parasite(s) present in the tissue samples. Positive controls consisted of genomic DNA
preparations from well-characterized isolates of T. gondii (RH [Type I], 76K [Type II] and
CEP [Type III]), S. neurona (SN1 and SN3 [Marsh et al, 1999]) and N. caninum (NC-1 [ATCC
No. 50843]). Negative controls consisted of deionised water and purified genomic DNA from
non-infected sea otter brain tissue.

To distinguish among Sarcocystis spp. infecting sea otters, nested primers were developed
within the ITS1 locus that amplify an ∼500 nucleotide fragment from S. neurona and S.
falcatula, but not other Sarcocystis spp., T. gondii or N. caninum. DNA sequencing of the
resulting PCR amplicon differentiates between S. neurona and S. falcatula. To confirm
specificity, the ITS1500 primers were tested against DNA extracts from the related apicomplexa
Hammondia hammondi, N. caninum, T. gondii, S. falcatula, Sarcocystis campestris,
Sarcocystis cruzi and S. neurona. The primers were as follows (all sequences in 5′-3′
orientation): ITS1500 Forward External, TTCTCTTGTGTGTGCCCCTAC, ITS1500 Forward
Internal, CAAAATGAACGTGTCTATGTGTGA, ITS1500 Revrse External,
TGCGTCCTTCATCGTTGCGC ITS1500 Reverse Internal,
GAGCCAAGACATCCATTGCT. For each PCR reaction, 2-5 ul of genomic DNA were used
as template and reaction conditions were as previously described (Miller et al., 2008).
Amplification products were visualized using ethidium bromide staining in 1% agarose gels.
DNA sequencing was carried out by the Rocky Mountain Lab Core Genome Sequencing
Center, Division of Intramural Research (Hamilton, Montana, USA).

3. Results
3.1. Necropsy

Gross necropsy of SO1 revealed diffuse lymphadenopathy, splenomegaly, patchy orange-
white discoloration of the ventricular myocardium and mild serous pericardial effusion.

SO2 also had diffuse lymphadenopathy, with orange-white mottling and pallor of the
ventricular myocardium, marked hepatosplenomegaly, mild pulmonary edema and multi-
organ congestion. This animal was thin, with serous pericardial and pleural effusion. Moderate
pulmonary hyperinflation was accompanied by septal emphysema and pneumomediastinum
(perimortem dyspnea, presumptive). Small numbers of large (Corynosoma enhydri) and small
(Profilicollis spp.) acanthocephalan parasites were attached throughout the small and large
intestinal mucosa. At least 20 acanthocephalans (Profilicollis spp.) had migrated through the
intestinal wall and were scattered throughout the peritoneum. Streptococcus phocae was
isolated from heart blood and spleen, suggestive of perimortem bacteremia or sepsis secondary
to the acanthocephalan peritonitis.

Gross necropsy of SO3 revealed diffuse lymphadenopathy, pallor and orange-white mottling
of the ventricular myocardium, serous pericardial effusion, pulmonary edema and multi-organ
vascular congestion. This otter was thin, with moderate intestinal melena. Feces and heart blood
were negative for bacterial pathogens. For all three otters, urine was below minimum detection
limits for domoic acid (< 10 parts per billion) by HPLC/mass spectrophotometry (MS) analysis.
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3.2. Serology and parasite isolation
Ante-mortem serum collected when SO1 was first found alive on the beach was strongly
positive for S. neurona and T. gondii via IFAT (Table 1). Repeat testing using serum collected
after 5 weeks of hospitalization with antiprotozoal therapy revealed a significant reduction in
the S. neurona titer, but no change in the T. gondii titer. Parasite isolation in cell culture from
brain collected aseptically at necropsy revealed growth of intracytoplasmic parasites with
morphology consistent with S. neurona. However, these parasites disappeared after a few days
in culture and further attempts at cell passage were unsuccessful.

Post-mortem serum from SO2 and SO3 was strongly seropositive for S. neurona (Table 1).
SO2 was also strongly seropositive for T. gondii, while SO3 was weakly seropositive.
Toxoplasma gondii was isolated from brain tissue from SO2 and S. neurona was isolated from
the brain tissue of SO3 in cell culture. All three otters were seronegative for N. caninum (<
320 serum dilution) and no parasites consistent with N. caninum were isolated.

3.3. Histopathology and immunohistochemistry
Based on histopathology, multiple lymph nodes and the splenic periarteriolar lymphoid sheaths
from SO1, SO2 and SO3 exhibited marked lymphoid hyperplasia and variable
lymphoplasmacytic and neutrophilic inflammation. Small aggregates of lymphocytes, plasma
cells, macrophages, rare neutrophils and microglia (glial nodules) were also visualized in the
cerebrum, cerebellum and brainstem in H&E-stained tissue sections. Small foci of necrosis
were present within or adjacent to the inflammatory lesions and nearby blood vessels were
sometimes ectatic and lined by plump, hyperplastic endothelium. Some white matter tracts
contained irregular clear spaces with a foamy appearance (edema).

H&E-stained tissue sections of brain from SO1 contained rare schizonts and free merozoites,
plus numerous round to elliptical, 20 to 40 μm diameter, thick-walled tissue cysts containing
tiny, (3 to 5 μm diameter) basophilic bradyzoites (Fig. 1A and B). At low power the cyst walls
appeared smooth, but at 600 x magnification fine villous protrusions were discernable on the
surface of some, but not all tissue cysts. There was no evidence of septation within the cysts
and the bradyzoites were somewhat loosely arranged, with prominent nuclei and pale,
basophilic cytoplasm. Larger, (100-200 μm long × 20-50 μm wide) tissue cysts, characterized
by thick cyst walls with prominent surface projections, were also present in the myocardium
(Fig. 1C), tongue, tunica muscularis of the gastric cardia and various skeletal muscles,
accompanied by mild lymphoplasmacytic inflammation.

Results for immunohistochemical staining of brains from SO1, SO2 and SO3 for S. neurona,
S. falcatula, T. gondii and N. caninum are summarized in Table 2. For SO1, all tissue sections
were negative for staining by T. gondii and N. caninum, but numerous merozoites in the
neuropil reacted positively to both monoclonal and polyclonal antibodies directed against S.
neurona (Fig. 2A and C), as well as polyclonal antiserum directed against S. falcatula (Fig.
2E). This variable and cross-reactive staining pattern was also observed for bradyzoites and
the tissue cyst wall (Fig. 2B, D and F). Similar staining characteristics have been observed for
merozoites in tissues of laboratory animals infected with well-characterized S. neurona and S.
falcatula strains (Table 2).

A total of 47 tissue cysts were measured from serial sections of brain from SO1. These cysts
stained positively when treated with anti-S. neurona polyclonal antiserum. The maximum
tissue cyst diameter and the minimum and maximum wall thickness were measured at 600 x
using a light microscope with a calibrated ocular micrometer. Tissue cysts ranged from 18 to
46 μm diameter (mean = 30 μm), with wall thicknesses ranging from just below 1 μm to 6
μm (average = 1 to 2 μm).
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The pyriform lobe from SO2 possessed a single, thick-walled, 38 μm diameter tissue cyst
containing 3-5 μm long, loosely arranged bradyzoites with prominent nuclei and uniformly
pale, basophilic cytoplasm. A thick (2 to 2.5 μm wide), pink to amphophilic cyst wall contained
prominent surface projections that were barely discernable at 600 x magnification (Fig. 3A).
This tissue cyst was absent from tissue recuts stained using antibodies to S. neurona, T.
gondii or N. caninum, although rare S. neurona-immunopositive merozoites and schizonts were
identified. A second cluster of three tissue cysts with distinct morphology were observed in
another region of the cerebrum of SO2 via immunohistochemistry, but were not visible in
H&E-stained tissue sections. In contrast to the tissue cyst from the pyriform lobe, the tissue
cysts in the cerebrum exhibited a thin (essentially invisible), smooth outer wall with no
discernable villous protrusions. Both the cyst wall and the enclosed bradyzoites stained
strongly positive for T. gondii using immunohistochemistry (Fig. 3B). Toxoplasma gondii was
also isolated from the brain of SO2 in tissue culture (Table 1), suggesting that SO2 was
concurrently infected with T. gondii and S. neurona.

H&E sections of SO3 identified a single small tissue cyst in the pyriform lobe adjacent to the
left posterior hippocampus (Fig. 3C). Similar to the unique tissue cysts described from the
brains of SO1 and SO2, this cyst exhibited a distinct pink to amphophilic cyst wall enclosing
numerous discrete, 3 to 5 μm diameter bradyzoites with prominent nuclei and pale, basophilic
cytoplasm. However, this latter cyst was smaller (21 μm), with a thinner cyst wall (0.75 to 1.5
μm) and no discernable surface villi. This latter cyst closely resembled structures described as
immature S. neurona tissue cysts by Thomas et al. (2007), but due to its small size and the lack
of definitive structural features, additional tests were required to rule out the possibility of co-
infection by T. gondii or N. caninum. The tissue cyst was not apparent in subsequent recuts for
immunohistochemistry, but low numbers of merozoites and schizonts were observed that
stained positive using polyclonal antiserum to S. neurona. Brain tissue from SO3 was negative
using polyclonal antiserum to T. gondii and no parasites in brain or muscle reacted to polyclonal
antiserum raised against N. caninum for any of the three otters.

3.4. TEM
Two small (20 μm diameter) tissue cysts from the hippocampus of SO1 were examined using
TEM. In both cases there was no clear delineation between the outer granular layer and the
ground substance separating the centrally-located zoites. These zoites were compatible with
metrocytes (bradyzoites were not present) (Fig. 4A). There were no visible internal septations
and the metrocytes were loosely and randomly arranged, with features suggestive of immaturity
and rapid division; they were short and plump, with an anterior apical complex, 22 sub-
pellicular microtubules and small numbers of anterior micronemes. Anterior rhoptries were
absent and centrally-placed nuclei were large and round with uniform, finely granular,
dispersed, electron-lucent chromatin. Small numbers of electron-lucent, membrane-bound
granules, a golgi apparatus, mitochondria and numerous free ribosomes were present in the
cytoplasm. Some metrocytes were dividing, with two visible nuclear profiles (Fig. 4A). The
tissue cyst wall was characterized by thin villous projections up to 1 μm long by 0.16 to 0.25
μm wide with tapered ends, a hobnailed surface and a fine, granular, electron-dense peripheral
layer (Fig. 4A and B). Low numbers of fine microtubules extended from the villous tips down
through the villi. There was mild constriction at the base of some villi with slight expansion
of the villous body, forming a pennate shape (Fig. 4B).

3.5. Molecular analysis
To help confirm that these thick-walled tissue cysts were from S. neurona, molecular analysis
was performed using pan-specific primers that bracket a variable region of the highly conserved
18S rDNA gene. These primers amplify DNA from most tissue-cyst forming coccidian parasite
species and DNA sequencing of the PCR products can be used to discern the presence of mixed
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infections in tissue specimens. Over the region amplified, a single polymorphism distinguishes
S. neurona from S. falcatula, and four polymorphisms differentiate between S. neurona and
either N. caninum or T. gondii (Fig. 5A). DNA extracts from the related tissue-cyst forming
coccidia H. hammondi, N. caninum, T. gondii, S. falcatula, S. campestris, S. cruzi and S.
neurona were used to confirm that the 18S rDNA primers amplified all of these species, when
present in tissue matrices (Fig. 5B).

DNA extracted from skeletal muscle and brain of SO1, SO2 and SO3 were tested using the
18S rDNA primers (Fig. 5B). DNA sequencing of amplified PCR products derived from brain
tissue from SO1 and SO3 (Fig. 5B) yielded only one homogenous sequence that was identical
to S. neurona. However, DNA sequencing of PCR products from SO2 revealed a sequence
possessing four heterozygous dinucleotide sites that corresponded to polymorphisms shared
between S. neurona and either T. gondii or N. caninum. Next, T. gondii-specific B1 primers
(Grigg and Boothroyd, 2001) were applied to brain tissue from SO2 and T. gondii DNA was
detected, confirming that SO2 was co-infected by S. neurona and T. gondii, but not N.
caninum (data not shown). No otters possessed 18S rDNA sequences consistent with co-
infection by S. falcatula or any other Sarcocystis spp. except S. neurona.

To help confirm that the brain infections of SO1, SO2 and SO3 were due to S. neurona and
not another closely related Sarcocystis spp., nested ITS1500 primers were applied that amplified
only ITS1 DNA from S. neurona and S. falcatula (Fig. 5B). Over the region amplified, at least
16 polymorphisms exist between S. falcatula and S. neurona (data not shown). Sequencing of
the PCR products amplified using the ITS1500 locus unequivocally identified S. neurona as the
pathogen infecting the brains of SO1, SO2 and SO3 (Table 1).

4. Discussion
Here we present, to our knowledge, the first ultrastructural and molecular confirmation of the
development of S. neurona tissue cysts in the CNS of any animal. Tissue cysts were observed
in the brains of three wild sea otters at necropsy and S. neurona-associated meningoencephalitis
was confirmed via serology, histopathology, immunohistochemistry, parasite isolation and
DNA sequencing and PCR. Although co-infection by T. gondii was confirmed in one otter,
concurrent infection by additional Sarcocystis spp. or N. caninum was not detected in any of
the three animals via immunohistochemistry or DNA amplification and sequencing of the 18S
rDNA and ITS500 loci. Brain tissue cysts from SO1 were also examined using TEM;
ultrastructural features were consistent with prior descriptions of S. neurona tissue cysts from
naturally or experimentally-infected intermediate hosts (Table 3), but distinct from those
described from sea and river otters with PCR-confirmed, Sarcocystis spp. infections (Dubey
et al., 2003b; Walstrom et al., 1999).

The large number of S. neurona tissue cysts found within the brain of SO1 provided a unique
opportunity for comparison with prior descriptions of S. neurona tissue cysts from muscles of
cats, birds, armadillos, raccoons, birds, a horse, a dog, a fisher, skunks, sea otters and harbor
seals (Table 3). In these other species, tissue cysts ranged from 15 to 700 μm diameter, with
smaller tissue cysts often reported as immature stages. Fine surface villi were reported in nearly
all cases, except for paraffin sections where villi can be difficult to visualize. Tissue cysts from
the brain of SO1 were smaller than those in muscle, with no visible septae, thick cyst walls
and fine peripheral villous protrusions that were often difficult to appreciate by light
microscopy. In the absence of additional tests, it would be difficult to determine whether these
tissue cysts were those of Sarcocystis spp. or N. caninum by light microscopy alone (Barr et
al., 1991). However, ultrastructural features were compatible with descriptions of S. neurona
tissue cysts from experimentally infected hosts (Dubey et al., 2000,2001c;Cheadle et al.,
2001a) and muscles of naturally infected sea otters (Dubey et al., 2001f), including long, narrow
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surface villi that taper towards the ends, a distinct “hobnailed” peripheral membrane
immediately overlying a uniform electron dense layer, and microtubules that extend from the
villous tips to the underlying granular layer (Table 3). An indistinct or poorly developed
granular layer encompassed low numbers of plump, loosely arranged, dividing metrocytes, a
lack of mature bradyzoites or internal septation and the presence of small, short villi on the
outer cyst wall (Fig. 4A and B), suggesting that some tissue cysts were immature.

Ultrastructural features that distinguish S. neurona tissue cysts from those of related
Sarcocystis spp. include differences in the electron-dense layer, microtubules and the shape of
surface villi (Dubey and Lindsay, 1999; Dubey et al., 1999; Saville et al., 2004). However,
ultrastructural features of S. neurona sarcocysts resemble those of S. facatula (Dubey et al.,
2001c). Because many Sarcocystis spp. produce tissue cysts with surface villi, ultrastructural
features should be interpreted in the context of PCR amplification and sequencing of
appropriate genetic loci, using primers capable of identifying concurrent infection with > 1
Sarcocystis spp., as was performed in the current study.

Sea otters, a bird and a domestic cat have all been reported with putative S. neurona tissue
cysts in the brain on histopathology (Dubey and Hamir, 2000; Dubey et al., 2001b; Thomas et
al., 2007). The bird was concurrently infected with a second Sarcocystis species and the authors
could not be sure of the identity of the single tissue cyst observed in the neuropil. The cat died
due to post-surgical encephalomyelitis attributed to S. neurona; cysts observed in the brain
were comparable in size and morphology to prior descriptions of S. neurona tissue cysts (Table
3), but confirmation was not possible because they were not present in subsequent paraffin
sections. Putative immature S. neurona tissue cysts were described from the brains of sea otters
by Thomas et al. (2007). However, confirmation of the identity of these tissue cysts as S.
neurona was based solely on immunohistochemistry; no PCR or ultrastructural confirmation
was reported.

For T. gondii and N. caninum, the dominant antigenic epitopes expressed by tachyzoites
continue to be expressed by bradyzoites. As a result, immunohistochemistry using polyclonal
antisera raised against tachyzoites is an effective means for detection of tachyzoites,
bradyzoites and tissue cyst walls in infected tissues (Table 2 and Fig. 3B) (Conley et al.,
1981;Uggla et al., 1987;Barr et al., 1991). In contrast, a more dramatic loss of expression of
dominant merozoite epitopes is apparent for bradyzoites and tissue cyst walls of S. neurona,
S. falcatula and possibly other Sarcocystis spp. As a result, monoclonal and polyclonal antisera
raised against merozoite antigens may not reliably label bradyzoites and cyst walls of the same
Sarcocystis spp., and may cross-react with those of closely related species. For example,
monoclonal and polyclonal antisera derived against culture-derived merozoites of S.
neurona and S. falcatula react variably and inconsistently with bradyzoites and tissue cyst walls
of these same parasites (Fig. 2B, D and F) (Dubey et al., 2001a;Stanek et al., 2002). The S.
neurona monoclonal antibody 2G5 did not react with bradyzoites or the cyst wall of S.
neurona tissue cysts from experimentally infected animals (data not shown) and for brain tissue
cysts from SO1, this same monoclonal antibody failed to react with the tissue cyst wall but
reacted weakly with bradyzoites (Fig. 2D). This lack of reactivity is comparable with that
observed for known S. neurona tissue cysts from experimentally infected cats (Marsh et al.,
2002). Conversely, the S neurona polyclonal antiserum used in the current study reacts
positively with tissue cyst walls but not bradyzoites of well characterized S. neurona tissue
cysts (Butcher et al., 2002) and it reacts with the walls of S. falcatula tissue cysts (Dubey et
al., 2001a). Evaluation of two polyclonal antisera directed against S. falcatula merozoites
revealed negative or weak reactions to known S. falcatula bradyzoites (Dubey et al., 2001a).
“Down-modulation” of dominant surface antigens with increasing zoite maturity might explain
the variable bradyzoite reactivity using polyclonal antisera that has ranged from negative, to
weak (B. Barr, personal communication), to positive, with the latter reported for bradyzoites
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only in immature S. neurona tissue cysts by Stanek et al. (2002). As a result,
immunohistochemistry is of limited diagnostic value when evaluating tissue cyst stages of S.
neurona and S. falcatula; parasite identity should be confirmed using TEM or PCR.

Of note, SO1 was treated with antiprotozoal medication for 5 weeks post-stranding. Merozoites
were rare, but were still apparent in the brain after 5 weeks and numerous histologically
unremarkable tissue cysts were observed in skeletal muscle and brain, demonstrating that tissue
cysts are refractory to Ponazuril therapy. The potential for these cysts to reactivate under natural
conditions or after cessation of anti-protozoal therapy is debated, but remains unproven (Dubey
et al., 1989; Thomas et al., 2007; Miller, 2008). Recrudescence from tissue cysts is reported
for the related apicomplexans T. gondii and N. caninum (Tenter et al., 2000; Guy et al.,
2001). If recrudescence from tissue cysts occurs in S. neurona-infected marine species, it would
significantly reduce the clinical value of antiprotozoal therapy.

Prolonged antiprotozoal therapy may also explain why parasites resembling S. neurona were
initially isolated from the brain of SO1 but then disappeared. SO2 was co-infected with T.
gondii and S. neurona; isolation of T. gondii, but not S. neurona, on cell culture from SO2 may
reflect differences in parasite growth properties and/or cell line compatibility. When both
parasites are present concurrently in cell monolayers, T. gondii can overwhelm S. neurona
parasites in culture unless limiting dilutions are prepared to separate the two (Miller et al.,
2001a).

Given the recent introduction of the definitive hosts (opossums) to coastal California (Grinnell,
1915), the development of S. neurona tissue cysts in the brains of sea otters could be a product
of evolving host-parasite relationships or unique strain(s) of S. neurona infecting otters.
Interestingly, all three otters stranded in 2004 during a localized, S. neurona-associated
epizootic. Many of the tissue cyst profiles for SO1, and the only tissue cyst profiles observed
in the brains of SO2 and SO3, were located within or adjacent to the hippocampus and pyriform
lobe. Parasite-associated inflammation and vascular congestion also appeared particularly
severe within this region. Given recent reports on the ability of T. gondii to moderate behavior
of infected laboratory animals and humans (Berdoy et al., 2000; Flegr et al., 2002; Wang et
al., 2007), the potential for apicomplexan parasites to preferentially infect the archipallium and
paleopallium, resulting in disturbances in behavior and mentation, merits careful evaluation.

In conclusion, here we present, to our knowledge, the first ultrastructural and molecular
confirmation of the development of S. neurona tissue cysts in the CNS of any animal. We
confirmed the development of S. neurona tissue cysts in the brain of wild sea otters with
protozoal meningoencephalitis using immunohistochemical, ultrastructural and molecular
techniques. Tissue cysts were also examined using TEM and ultrastructural features were
consistent with prior descriptions of putative S. neurona tissue cysts. Brain tissues from all
three sea otters were confirmed positive for S. neurona via PCR and DNA sequencing of the
18S rDNA and ITS1500 loci. No additional Sarcocystis spp. were detected via histopathology,
immunohistochemistry or PCR. Variation in S. neurona tissue cyst reactivity to antibodies
raised to well-characterized S. neurona and S. falcatula strains was also demonstrated,
underscoring the importance of completing ultrastructural or molecular characterization of
suspect tissue cysts.
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Fig. 1.
Sarcocystis neurona tissue cysts from formalin fixed, paraffin-embedded brain and heart from
sea otter #1 (SO1), stained with H&E. A) Hippocampus; densely packed neurons extend from
top to bottom in the center of the figure together with two, 30 to 40 μm diameter, thick-walled
protozoal tissue cysts (arrows) (bar = 100 μm). B) Higher magnification view of a 45 × 40
μm tissue cyst from the brain of SO1, demonstrating the 2.5 μm thick, pink to amphophilic
cyst wall with fine surface villi. Within the cyst are hundreds of 3 to 5 μm diameter bradyzoites,
characterized by an outer rim of pale basophilic cytoplasm and a central round, deeply
basophilic nucleus (bar = 50 μm). C) Cardiac myofiber from SO1 containing a 175 × 40 μm
tissue cyst. Note the presence of fine surface villi and numerous bradyzoites (bar = 65 μm).
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Fig. 2.
Variation in immunohistochemical staining properties of various protozoal structures
(merozoites, bradyzoites and the outer tissue cyst wall) from the brain of sea otter #1, an animal
with PCR-confirmed Sarcocystis neurona infection. A and B) Application of polyclonal
antiserum to S. neurona: strong positive staining of merozoites (A) and the tissue cyst wall (B)
is noted but with negative staining of bradyzoites (B). C and D) Application of monoclonal
antibody (SN2G5) to S. neurona: strong positive staining of merozoites (C) contrasts with
negative staining of the tissue cyst wall (D) and sparse, patchy labeling of the enclosed
bradyzoites (D). E and F) Application of polyclonal antiserum to Sarcocystis falcatula: results
are similar to those from application of the S. neurona monoclonal antibody, with strong
positive staining of merozoites (E) contrasting with negative staining of the tissue cyst wall
(F) and sparse, patchy labeling of the enclosed bradyzoites (F) (bar = 50 μm).
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Fig. 3.
Tissue cysts from formalin-fixed, paraffin-embedded brains of sea otters #2 (SO2) and #3
(SO3). A) A single 38 μm diameter tissue cyst was observed in the pyriform lobe of SO2. Fine
villous protrusions were barely discernable at the top center of the thick, pink to amphophilic,
2.5 μm thick outer cyst wall. (H&E stain, bar = 35 μm). B) Tissue cysts from another area of
the cerebrum of SO2, showing strong labeling with polyclonal antiserum to Toxoplasma
gondii (immunoperoxidase reaction, bar = 35 μm). C) Putative immature Sarcocystis
neurona tissue cyst in cerebrum of SO3. Compared with those from SO1 and SO2, this cyst is
smaller (21 μm diameter) with a thin cyst wall and no visible surface villi, similar to immature
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S. neurona tissue cysts that have been described in other studies (Table 3). (H&E stain, bar =
30 μm).
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Fig. 4.
Transmission electron micrograph (TEM) of a 20 μm diameter tissue cyst from the brain of
sea otter #1 (SO1). A) Within the tissue cyst are large numbers of metrocytes, including some
that are dividing, indicated by the presence of two nuclear profiles within a single metrocyte
(arrows). Prominent surface villi are apparent along the outer cyst wall (bar = 2.5 μm). B)
Higher magnification view of the outer wall of the same tissue cyst (enlarged area indicated
by box and small arrowheads at the lower left corner of A). Note the slight basal constriction
of surface villi, with an increase in diameter at the midpoint, then narrowing to a tapered tip.
The villous surface has a prominent, electron-dense outer layer with a “hobnailed” or beaded
appearance (arrowhead). Within each microvillus, two or more fine, linear, electron dense,
filamentous structures (microtubules - arrow) extend longitudinally from the villous tip to the
outer portion of the granular layer that comprises the inner cyst wall. Villi are approximately
1 μm long by 0.2 μm wide (bar = 0.25 μm).
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Fig. 5.
Differentiation among tissue cyst-forming parasites infecting sea otters by PCR and DNA
sequencing. A) DNA sequence analysis using coccidia-specific 18S rDNA locus primers
amplifies a small polymorphic region that distinguishes among common coccidia infecting
warm-blooded vertebrates. Polymorphic sites that exist between Sarcocystis neurona
(Genbank accession number U07817), Sarcocystis falcatula (U35077), Toxoplasma gondii
(EF472967.1) and Neospora caninum (U17346) are highlighted for the region amplified.
Periods (.) indicate identity with S. neurona. The numerical position annotated refers to the
numbered sites in the published sequence U07817. 5. B) Sarcocystis spp.-specific ITS1500
primers were tested for specificity using DNA from S. neurona, Sarcocystis campestris,
Sarcocystis cruzi, S. falcatula, T. gondii, N. caninum, and Hammondia hammondi 18S rDNA
control primers established that parasite DNA was present and the ITS1500 primers were highly
specific for only S. falcatula and S. neurona. DNA extracts from skeletal muscle (M) and brain
(B) of SO1, SO2 and SO3 were amplified using both the 18S rDNA and ITS1500 primers, PCR
products were separated in a 1% ethidium bromide-stained agarose gel.

Miller et al. Page 18

Int J Parasitol. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Miller et al. Page 19
Ta

bl
e 

1
St

ra
nd

in
g 

da
ta

 a
nd

 te
st

 re
su

lts
 fo

r t
hr

ee
 se

a 
ot

te
rs

 w
ith

 p
ut

at
iv

e 
Sa

rc
oc

ys
tis

 n
eu

ro
na

 ti
ss

ue
 c

ys
ts

 in
 b

ra
in

 ti
ss

ue
.

O
tte

r
nu

m
be

r
Se

x/
ag

e
St

ra
nd

 d
at

e
St

ra
nd

ed
al

iv
e/

de
ad

IF
A

T
tit

er
:

T
G

a

IF
A

T
tit

er
:

SN
a

Pa
ra

si
te

is
ol

at
io

n

H
is

to
pa

th
ol

og
y

IH
C

a
(B

ra
in

)
PC

R
a

(B
ra

in
)

T
E

M
a

(B
ra

in
)

B
ra

in
M

us
cl

e

1
M

al
e/

ad
ul

t
22

 A
pr

il 
20

04
A

liv
e

81
,9

20
10

,2
40

SN
, l

os
t

ea
rly

b
SN

SN
SN

SN
SN

2
M

al
e/

ad
ul

t
19

 A
pr

il 
20

04
D

ea
d

81
,9

20
10

,2
40

TG
SN

SN
SN

, T
G

SN
, T

G
N

D
a

3
M

al
e/

su
ba

du
lt

10
 A

pr
il 

20
04

D
ea

d
32

0
81

,9
20

SN
SN

SN
SN

SN
N

D

a IF
A

T 
= 

in
di

re
ct

 fl
uo

re
sc

en
t a

nt
ib

od
y 

te
st

, T
G

 =
 F

in
di

ng
s c

on
si

st
en

t w
ith

 T
ox

op
la

sm
a 

go
nd

ii,
 S

N
 =

 F
in

di
ng

s c
on

si
st

en
t w

ith
 S

. n
eu

ro
na

, I
H

C
 =

 im
m

un
oh

is
to

ch
em

is
try

, P
C

R
 =

 P
C

R
 +

 re
st

ric
tio

n 
le

ng
th

po
ly

m
or

ph
is

m
s a

nd
 se

qu
en

ci
ng

 o
f I

TS
1 

an
d 

Sn
SA

G
3 

ge
no

m
ic

 D
N

A
, T

EM
 =

 tr
an

sm
is

si
on

 e
le

ct
ro

n 
m

ic
ro

sc
op

y,
 N

D
 =

 n
ot

 d
on

e.

b O
tte

r w
as

 tr
ea

te
d 

fo
r 5

 w
ee

ks
 w

ith
 a

nt
ip

ro
to

zo
al

 m
ed

ic
at

io
n 

(P
on

az
ur

il 
5 

m
g/

kg
 o

ra
lly

 o
nc

e 
da

ily
) p

rio
rto

 e
ut

ha
na

si
a.

Int J Parasitol. Author manuscript; available in PMC 2010 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Miller et al. Page 20
Ta

bl
e 

2
Im

m
un

oh
is

to
ch

em
ic

al
 s

ta
in

in
g 

of
 p

ro
to

zo
a 

in
 ti

ss
ue

 f
ro

m
 la

bo
ra

to
ry

-in
fe

ct
ed

 c
on

tro
ls

 a
nd

 s
ea

 o
tte

rs
 w

ith
 e

nc
ep

ha
lit

is
 u

si
ng

 a
nt

is
er

a
di

re
ct

ed
 a

ga
in

st
 S

ar
co

cy
st

is
 n

eu
ro

na
, S

ar
co

cy
st

is
 fa

lc
at

ul
a,

 T
ox

op
la

sm
a 

go
nd

ii 
an

d 
N

eo
sp

or
a 

ca
ni

nu
m

.

O
rg

an
is

m
 (a

nd
 h

os
t t

is
su

e)
SN

 P
ol

ya
ba

SN
2G

5 
M

ab
a

SF
 P

ol
ya

ba
T

G
Po

ly
ab

a
N

C
 P

ol
ya

ba
C

om
m

en
ts

Po
si

tiv
e 

an
d 

ne
ga

tiv
e 

co
nt

ro
ls

Sa
rc

oc
ys

tis
 n

eu
ro

na
(m

ou
se

 b
ra

in
)

m
er

oz
oi

te
s

++
++

++
-

-

Sa
rc

oc
ys

tis
 fa

lc
at

ul
a

(b
ud

ge
rig

ar
 lu

ng
)

m
er

oz
oi

te
s

-/+
-

++
-

-

To
xo

pl
as

m
a 

go
nd

ii
 

(m
ou

se
 b

ra
in

/lu
ng

)
ta

ch
yz

oi
te

s
-

-
-

+
-

br
ad

yz
oi

te
s

-
-

-
+

-

 
tis

su
e 

cy
st

 w
al

l
-

-
-

+
-

N
eo

sp
or

a 
ca

ni
nu

m
(m

ou
se

 b
ra

in
)

ta
ch

yz
oi

te
s

-
-

-
-

+

 
br

ad
yz

oi
te

s
-

-
-

-
+

tis
su

e 
cy

st
 w

al
l

-
-

-
-

+

Se
a 

ot
te

r 
#1

 (S
O

1)
(b

ra
in

)
m

er
oz

oi
te

s
++

++
+/

++
-

-
N

um
er

ou
s S

N
 ti

ss
ue

cy
st

s o
n

H
&

E 
an

d 
IH

C
a .

C
ys

ts
 a

ls
o

ex
am

in
ed

 v
ia

tra
ns

m
is

si
on

el
ec

tro
n

m
ic

ro
sc

op
y.

br
ad

yz
oi

te
s

-
-(

ra
re

 fa
in

t +
)

-(
so

m
e 

fa
in

t +
)

-
-

tis
su

e 
cy

st
 w

al
l

-/+
+

(m
os

t +
+)

-
-

-
-

Se
a 

ot
te

r 
#2

 (S
O

2)
(b

ra
in

)
m

er
oz

oi
te

s
++

++
++

++
b

-
1 

SN
 ti

ss
ue

 c
ys

t o
n

H
&

E
se

ct
io

ns
b . C

ys
t n

ot
vi

si
bl

e 
on

IH
C

 re
cu

ts

Se
a 

ot
te

r 
#3

 (S
O

3)
(b

ra
in

)
m

er
oz

oi
te

s
++

++
++

-
-

1 
SN

 ti
ss

ue
 c

ys
t o

n
H

&
E

se
ct

io
ns

. C
ys

t n
ot

vi
si

bl
e 

on
IH

C
 re

cu
ts

.

a SN
 =

 S
. n

eu
ro

na
, S

F 
= 

S.
 fa

lc
at

ul
a,

 T
G

 =
 T

. g
on

di
i, 

N
C

 =
 N

. c
an

in
um

, P
ol

ya
b 

= 
po

ly
cl

on
al

 a
nt

is
er

um
, M

ab
 =

 m
on

oc
lo

na
l a

nt
ib

od
y,

 IH
C

 =
 im

m
un

oh
is

to
ch

em
is

try
.

b O
tte

r w
ith

 H
&

E,
 P

C
R

 a
nd

 c
ul

tu
re

-c
on

fir
m

ed
 S

N
 a

nd
 T

G
 in

fe
ct

io
n:

 R
ar

e 
tis

su
e 

cy
st

s t
ha

t w
er

e 
TG

-p
os

iti
ve

 o
n 

IH
C

 d
id

 n
ot

 st
ai

n 
w

ith
 a

nt
is

er
a 

to
 S

N
 o

r S
F.

Int J Parasitol. Author manuscript; available in PMC 2010 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Miller et al. Page 21
Ta

bl
e 

3
Pr

io
r r

ep
or

ts
 o

f p
ut

at
iv

e 
Sa

rc
oc

ys
tis

 n
eu

ro
na

 ti
ss

ue
 c

ys
ts

 in
 b

ra
in

 o
r m

us
cl

e:
 m

ic
ro

sc
op

ic
 a

nd
 u

ltr
as

tru
ct

ur
al

 fe
at

ur
es

.

H
os

t s
pe

ci
es

E
xp

er
im

en
ta

l
in

fe
ct

io
n?

T
is

su
e 

cy
st

lo
ca

tio
n

C
ys

t s
iz

e
Su

rf
ac

e 
V

ill
i?

M
ic

ro
tu

bu
le

s
ex

te
nd

 to
gr

an
ul

ar
la

ye
r?

E
le

ct
ro

n
de

ns
e 

su
rf

ac
e

pr
ot

ru
si

on
s

W
al

l
th

ic
kn

es
s

R
ef

er
en

ce

R
ac

co
on

Y
es

M
us

cl
e

≤ 
27

0×
50

 μ
m

Y
 (≤

 5
×0

.7
 μ

m
)

Y
Y

≤ 
1.

5 
μm

St
an

ek
 e

t a
l.

20
02

R
ac

co
on

Y
es

M
us

cl
e

≤ 
12

5×
10
μm

Y
N

R
a

N
R

<0
.5

 μ
m

D
ub

ey
, e

t a
l.,

20
01

g

Sk
un

k
Y

es
M

us
cl

e
27

.7
 μ

m
Y

 (3
.0

 μ
m

)
Y

Y
∼

1.
5 
μm

C
he

ad
le

 e
t

al
., 

20
01

b

Sk
un

k
N

o
M

us
cl

e
≤ 

50
0×

40
 μ

m
Y

Y
Y

1-
2 
μm

D
ub

ey
 e

t a
l.,

20
02

Fi
sh

er
N

o
M

us
cl

e
≤ 

20
0×

30
 μ

m
Y

 (≤
 2

.2
×0

.4
μm

)
Y

Y
1-

3 
μm

G
er

ho
ld

 e
t

al
., 

20
05

D
om

es
tic

 c
at

Y
es

M
us

cl
e

N
R

Y
 (≤

 2
.5
μm

)
Y

Y
N

R
D

ub
ey

 e
t a

l.,
20

00

D
om

es
tic

 c
at

Y
es

M
us

cl
e

≤ 
70

0×
50

 μ
m

Y
 (≤

 2
.8

×0
.4
μm

)
Y

 (s
om

et
im

es
)

Y
1-

2 
μm

D
ub

ey
 e

t a
l.,

20
01

c

D
om

es
tic

 c
at

Y
es

M
us

cl
e

N
R

, >
 5

0 
μm

in
 p

ho
to

Y
 (≤

2.
4 
μm

)
N

R
N

R
∼

2 
μm

B
ut

ch
er

 e
t

al
., 

20
02

D
om

es
tic

 c
at

b,
 c

N
o

B
ra

in
90

×8
0 
μm

Y
N

R
N

R
∼

2 
μm

D
ub

ey
 e

t a
l.,

20
03

a

D
og

N
o

M
us

cl
e

∼
10

0×
40

 μ
m

Y
 (≤

 0
.8

×0
.2
μm

)
N

o
Y

N
R

V
as

hi
st

 et
 al

.,
20

05

A
rm

ad
ill

o
N

o
M

us
cl

e
N

R
Y

N
R

Y
N

R
C

he
ad

le
 e

t
al

., 
20

01
a

St
ra

w
-n

ec
ke

d
ib

is
b,

 c
, d

N
o

B
ra

in
∼

60
 ×

 2
0 
μm

Y
N

R
N

R
∼

1.
5-

2 
μm

D
ub

ey
 e

t a
l.,

20
01

b

C
ow

bi
rd

b
N

o
M

us
cl

e
∼

60
0 

× 
20

 μ
m

Y
N

R
N

R
N

R
M

an
sf

ie
ld

 e
t

al
., 

20
08

H
ar

bo
r s

ea
l

N
oc

M
us

cl
e

30
×2

0 
μm

N
R

N
R

N
R

2.
5 
μm

La
Po

in
te

 e
t

al
., 

19
98

Se
a 

ot
te

r
(E

nh
yd

ra
 lu

tr
is

ke
ny

on
i)

N
o

M
us

cl
e

20
×9

0 
μm

ra
ng

e
Y

(∼
2 
μm

)
N

R
N

R
N

R
R

os
on

ke
 e

t
al

., 
19

99

Se
a 

ot
te

r
(E

. l
. k

en
yo

ni
)

N
o

M
us

cl
e

∼
35

0×
20

0 
μm

Y
 (1

.3
×0

.2
5μ

m
)

N
o

Y
 (5

0-
75

nm
)

∼
1.

5 
μm

D
ub

ey
 e

t a
l.,

20
01

f

Se
a 

ot
te

rb,
 c

(u
ns

pe
ci

fie
d)

N
o

B
ra

in
 a

nd
m

us
cl

e
17

 to
 4

0 
μm

di
am

et
er

N
R

N
R

N
R

N
R

Th
om

as
 e

t
al

., 
20

07

Int J Parasitol. Author manuscript; available in PMC 2010 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Miller et al. Page 22

H
os

t s
pe

ci
es

E
xp

er
im

en
ta

l
in

fe
ct

io
n?

T
is

su
e 

cy
st

lo
ca

tio
n

C
ys

t s
iz

e
Su

rf
ac

e 
V

ill
i?

M
ic

ro
tu

bu
le

s
ex

te
nd

 to
gr

an
ul

ar
la

ye
r?

E
le

ct
ro

n
de

ns
e 

su
rf

ac
e

pr
ot

ru
si

on
s

W
al

l
th

ic
kn

es
s

R
ef

er
en

ce

Se
a 

ot
te

r
(E

nh
yd

ra
 lu

tr
is

ne
re

is
)

N
o

B
ra

in
 a

nd
m

us
cl

e
15

 to
 6

0 
μm

di
am

et
er

Y
 (2

 ×
 0

.2
 μ

m
)

Y
Y

1-
4 
μm

Th
is

 re
po

rt

a N
R

 =
 n

ot
 re

po
rte

d.

b D
es

cr
ip

tio
n 

ba
se

d 
on

 li
gh

t m
ic

ro
sc

op
y 

on
ly

.

c Ti
ss

ue
 c

ys
ts

 w
er

e 
no

te
d 

in
 th

e 
ce

re
br

um
 o

n 
hi

st
op

at
ho

lo
gy

 o
r i

m
m

un
oh

is
to

ch
em

is
try

, b
ut

 p
ar

as
ite

 id
en

tit
y 

as
 S

. n
eu

ro
na

 w
as

 n
ot

 c
on

fir
m

ed
 u

si
ng

 P
C

R
 o

r t
ra

ns
m

is
si

on
 e

le
ct

ro
n 

m
ic

ro
sc

op
y

d Sp
ec

ie
s n

ot
 d

et
er

m
in

ed
-m

ay
 n

ot
 b

e 
S.

 n
eu

ro
na

.

Int J Parasitol. Author manuscript; available in PMC 2010 October 1.


