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Linkage disequilibrium (LD)-based association mapping is often performed by analyzing either individual
SNPs or block-based multi-SNP haplotypes. Sliding windows of several fixed sizes (in terms of SNP
numbers) were also applied to a few simulated or real data sets. In comparison, exhaustively testing based
on variable-sized sliding windows (VSW) of all possible sizes of SNPs over a genomic region has the best
chance to capture the optimum markers (single SNPs or haplotypes) that are most significantly associated
with the traits under study. However, the cost is the increased number of multiple tests and computation.
Here, a strategy of VSW of all possible sizes is proposed and its power is examined, in comparison with
those using only haplotype blocks (BLK) or single SNP loci (SGL) tests. Critical values for statistical
significance testing that account for multiple testing are simulated. We demonstrated that, over a wide
range of parameters simulated, VSW increased power for the detection of disease variants by B1–15%
over the BLK and SGL approaches. The improved performance was more significant in regions with high
recombination rates. In an empirical data set, VSW obtained the most significant signal and identified the
LRP5 gene as strongly associated with osteoporosis. With the use of computational techniques such as
parallel algorithms and clustering computing, it is feasible to apply VSW to large genomic regions or those
regions preliminarily identified by traditional SGL/BLK methods.
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Introduction
Case–control association studies provide a powerful tool

for dissecting the genetic basis of complex human diseases,

especially for those with a late-age of onset.1 Recent

advances in high-throughput genotyping technologies

have allowed us to test allele frequency differences between

case and control populations on a genome-wide scale.2

The linkage disequilibrium (LD)-based association

analysis can be performed by analyzing either individual
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single-nucleotide polymorphism (SNP) loci or multi-SNP

haplotypes. For indirect LD association mapping, the

haplotype-based association method may be more power-

ful than the single locus test, as multi-SNP haplotypes may

capture the available LD information in a particular

region.3 However, single locus test may outperform the

haplotype-based analysis under some scenarios, for

example, when a causal locus is genotyped directly.4 In

practice, both single locus and haplotype-based analyses

are widely used in genetic association studies.

A challenge for association mapping is how to make full

use of the information embedded in a set of SNPs genotyped

in an analysis. So far, the haplotype-based association has

mainly been applied to haplotype blocks, which are defined

as discrete chromosome regions containing SNPs in high LD

and haplotypes with low diversity.5 Although a number of

algorithms have been developed for haplotype block

partitioning, the block structures and boundaries are some-

what discrepant across different methods.6,7

An alternative strategy is based on the sliding-window

methodology. A few studies applied this strategy with

several fixed window sizes. Durrant et al8 applied sliding

widows of sizes 4, 6, 8, and 10 markers through cladistic

analysis of SNP haplotypes. Cheng et al9 explored all

possible widths of haplotypes under the preset maximum

window size of five markers on the simulated data set from

the Genetic Analysis Workshop (GAW) 12, using both

population-based and family-based designs.10 More

recently, a graphical assessment of P-values from sliding

window haplotype tests of association were developed with

window sizes of 2–6.11 In addition, some investigators

performed sliding window analyses in fine mapping of

complex diseases (such as Alzheimer’s disease, hyperten-

sions, asthma and so on), candidate genes or regions.12 – 14

For a set of genotyped SNPs, the maximum detection

power for association with the study traits can be achieved

only when the authentic block or window or single SNPs

that contain or best capture LD with a disease susceptibility

locus is selected to conduct the association test.15 Single

SNPs may not best capture LD with a disease susceptible

locus. In block-based association mapping, it is possible to

miss the potential perfect window of SNPs, thus losing

power. This situation may also arise for the sliding window

approach when a limited number of window widths are

applied.

In contrast, exhaustive testing based on variable-sized

sliding windows (VSW) of all possible sizes over a genomic

region has the best chance to capture the optimum markers

(single SNPs of haplotypes) that are most significantly

associated with study traits. The strategy essentially

combines both the strength of single-marker analyses and

that of haplotype analyses and overcomes the potential

problems with defining haplotype blocks. However, the

potential cost is the increased number of multiple tests and

increased amount of computation.

In this study, we present a strategy that exhaustively tests

haplotypes based on VSW to analyze disease association

studies. Extensive simulations and an empirical data study

were conducted to probe the extent of power gain for this

strategy in contrast with traditional haplotype blocks (BLK)

and single SNP loci SGL tests. We also evaluated how

statistical power of VSW, in comparison with BLK and SLG

methods, varies with changes in magnitude of LD, sample

size and disease effects. Strategies are proposed for the

application of our VSW method when the capability of

computation becomes a problem in practice.

Methods
Test statistic

For demonstration, here we use a simple test statistic for

the haplotype association test in case–control study with

unrelated individuals. Suppose that N affected individuals

(cases) and N unaffected individuals (controls) are geno-

typed. For each window or block, the haplotype frequency

data can be arranged in a 2*k contingency table, where k is

the number of distinct haplotypes. The null hypothesis H0

to be tested is that haplotype frequencies in affected

and unaffected individuals will be equal. A conventional

w2 statistic for testing H0 can be written as follows:

w2
HT ¼ 2N

Xk

i¼1

ðp̂i�cases � p̂i�controlsÞ2

p̂i�cases þ p̂i�controls

ð1Þ

where p̂i�cases and p̂i�controls are the observed frequencies of

the ith haplotype in cases and controls respectively. Under

the null hypothesis of no association, the above statistic

has an asymptotical w2 distribution with k�1 d.f.4 The test

statistic using individual marker allele data is the same as

wHT
2 except that haplotype frequencies are replaced by the

observed marker allele frequencies in the cases and

controls, respectively.

For the VSW strategy, a set of all possible windows

wbre(b, e) consisting of consecutive markers were con-

structed in a simulated genomic region beginning at

position B and ending at position E, where bZB and

erE. Haplotype association analyses described above were

performed to search for associations of any single SNPs

and/or possible haplotype window with the disease.

Haplotypes with very low frequency (o0.001) were pooled

together to avoid bias on association test. The association

evidence at a marker position x in the region is defined as

the smallest P-value among all analyses of this marker and/

or all possible haplotype windows containing this marker,

pðxÞ ¼ min
b;e:x2½b;e�

pðwb	eðb; eÞÞ; where ½b; e� 
 ½B; E�: ð2Þ

We then conducted power comparison between strategies

that use VSW, BLK, and single SNP loci (SGL) to analyze

disease association studies respectively. For easy demon-

stration, we formulated our comparisons based on standard
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w2 statistics which are conceptually straightforward

and have been widely applied in many association

studies.1,16 We utilized Java to implement this approach,

which includes the module of functions for performing

permutations.

For the BLK approach, block partitioning was accom-

plished through a commonly used algorithm proposed by

Gabriel et al,17 the default block partition algorithm used in

Haploview18 for HapMap data. Specifically, intervals for D0

(D0 ¼D/Dmax, proportion of observed LD of maximum

possible LD) values for all pairs of SNPs are first estimated

by bootstrap method. Then, SNP pairs are defined to be in

‘strong’ LD if the one-sided upper 95% confidence bound is

larger than 0.98 and the lower bound is larger than 0.70.

A haplotype block is identified when at least 95% of SNP

pairs within a chromosomal region meet the criteria for

strong LD.

Simulation scheme for power comparison

We simulated SNP haplotypes through the coalescent

process with a recombination rate implemented in

program MS.19 To simulate regions with different extents

of LD, the recombination rate per site per generation is set

to 10�9, 10�8, and 10�7, corresponding to high, moderate

LD region, and low LD region, respectively. In each

simulation, with an effective population size of 10 000,

genealogies of 2000 haplotypes were generated for a 30 kb

human chromosome region, containing 30 SNPs with

minor allele frequencies over 0.05. One SNP with minor

allele frequency in the range of 0.10–0.12 was randomly

selected as the disease-causing variant in the region. Then

each subject of the simulated sample was created by

randomly pairing the haplotypes according to different

sample sizes. The disease status was determined by the

commonly used multiplicative disease model. Based on

this model,4 suppose that D and d are the high- and low-

risk alleles at the disease locus, the probability of being

affected for genotypes DD, Dd, and dd are f, fg, and fg2,

separately, where f is the phenocopy rate and g is the

relative risk. Given disease prevalence P, g and disease allele

frequency q, f can be calculated using the following

equation:

f ¼ P

q2g2 þ 2qð1 � qÞgþ ð1 � qÞ2
ð3Þ

For the simulation, we set the disease prevalence to be 0.05

and four levels for the genotype relative risk (1.5, 1.75, 2.0,

and 2.25). Different sample sizes (600, 800, 1000, and

1200) including equal number of cases and controls were

considered in the simulations. Before statistical analysis,

genotypic information of the selected causal SNP was

removed from the simulated haplotypes for all cases and

controls. We took haplotype phase and frequency of the

simulated data set as unknown, and used EM algorithm for

estimation.

Construction of null distribution under H0

For the VSW strategy, overlapping sliding windows and

correlated neighboring SNPs may confound the issue of

multiple testing. Bonferroni correction1 is overly conser-

vative to correct for multiple testing in the presence of

correlation and information overlapping. Simulations

under H0 are usually employed to construct the null

distribution of a new test statistic. Many genetic mapping

studies have used such simulations to establish significance

levels while accounting for multiple testing and related

testing.20,21 In this study, 10 000 replications were first

generated to construct the null distribution for each set of

parameters to determine the critical value of P for a given

false-positive error rate (a¼ 0.05) over the simulated

region, that is, the smallest P-value of each replication

over the simulated region were collected to form the null

distribution. We used the same genealogies of haplotypes

generated for power study and then we randomly assigned

the affection status independent of the individual geno-

type. Subsequently, according to the established critical

values, we assessed the power (the rate of declaring

association is based on the smallest P-values over the

simulated region at the significant level of corresponding

critical values) to detect the disease association under

varying conditions, such as the extent of LD, sample size,

and risk effect.

Results
Simulation studies
Critical values under the null hypothesis Table 1 dis-

plays the critical values for all the three strategies based on the

given significant level of a¼0.05 over the simulated haplo-

type region. As expected, the critical values of VSW strategy

were most conservative, ranging from 0.0011 to 0.0023.

Table 1 Empirical critical values (a¼0.05)

Sample size

600 800 1000 1200

High LD region ra¼10�9

VSWb 0.0023 0.0021 0.0020 0.0021
BLKc 0.0092 0.0091 0.0090 0.0089
SGLd 0.0043 0.0039 0.0039 0.0037

Medium LD region r¼10�8

VSW 0.0018 0.0018 0.0016 0.0018
BLK 0.0085 0.0081 0.0082 0.0078
SGL 0.0036 0.0035 0.0034 0.0034

Low LD region r¼10�7

VSW 0.0014 0.0013 0.0012 0.0011
BLK 0.0043 0.0041 0.0042 0.0042
SGL 0.0019 0.0020 0.0020 0.0019

ar represents the recombination rate per site per generation.
b,c,dVSW, BLK, and SGL denote association-mapping strategy using
variable-sized sliding windows, haplotype blocks, and single SNP loci,
respectively.

Association mapping with sliding window
Y Guo et al

787

European Journal of Human Genetics



Less conservative critical values were obtained for SGL. BLK

achieved the least stringent critical values. The extent of LD

may have an influence on the determination of the critical

values over the simulated regions. We noted that critical

values were slightly more conservative in lower LD regions.

However, critical values for different sample sizes were found

to be similar for each method.

P-value distribution under the alternative hypothesis To

intuitively compare the P-values between the three

proposed strategies, Figure 1 shows the distribution of

P-values obtained by each of the proposed strategies in an

example randomly selected from the power simulation

studies. To be convincing, empirical P-values for each

strategy were obtained through 10 000 permutations based

on this simulated sample. In this region, SNP 12 was

selected and removed as the causal locus (Figure 1).

Five blocks with high LD, with sizes ranging from 2 to 16

SNPs, were identified by Gabriel’s block-partitioning

method.17 As expected, the most significant P-value

(�log10P¼5.2143, empirical P¼0.0073) for BLK strategy

was achieved at the biggest block consisting of SNPs from 8

through 24, covering the causal variant. Impressively, the

VSW approach successfully detected the disease locus with

the highest peak (�log10P¼7.2171, empirical P¼0.0005)

obtained at the nearest SNP. The best window (consisting

of SNP 7 to SNP 13) for VSW strategy was much more

narrow than the most significant block of BLK, with five

markers (SNP 8, SNP 9, SNP 10, SNP 11, SNP 13)

overlapping. The SGL analysis almost missed the associa-

tion signal, with all values of �log10P were less than three

(the smallest empirical P¼0.0174).

Power comparison Based on our simulation studies, the

power to detect an association between the putative allele

and disease status was affected by risk effect, sample size

and recombination rate (see Figure 2). With larger risk

effect, larger sample size, and lower recombination rate,

the detection power for all three proposed methods

increased, which is consistent with previous findings.22

Almost full power (over 90%) was achieved when detecting

putative locus with a large relative risk (2.25) in the high

LD region. In all cases, the detection power for VSW

strategy was consistently greater than the other two

strategies (B1–15%), and the improved performance was

more significant in the lower LD region with larger risk

effect and larger sample size.

Empirical data analyses

We evaluated and compared the relative performance of

the study strategies by analyzing a published empirical data

set from Xiong et al.23 In their studies, a Chinese cohort

including the genotypes of 21 SNPs of 733 unrelated

participants (369 men and 364 women) was collected to

study the genetic association between the LRP5 gene and

osteoporosis. The subjects were selected from an expanded

database for osteoporosis research by choosing those

having top (366 controls) and bottom (367 cases) bone

mineral density (BMD) values at the total hip.23

In our analyses, we used the three proposed strategies to

perform association analyses between BMD statuses and

the LRP5 gene. Haplotype frequencies for this sample were

estimated through EM algorithm.24 We also conducted

10 000 permutations to obtain the empirical P-values based

on the studied sample. The results are summarized in

Figure 3. The most significant association signals were

obtained at rs312778 and rs643981 (�log10P¼10.48,

empirical Po0.0001) by VSW. Block 3 consisting of four

SNPs (rs312778, rs643981, rs312788, rs160607) defined by

BLK captured less significant association results

(�log10P¼9.70, empirical P¼0.0001). SGL strategy only

achieved the smallest P-value of 0.0006 at rs643981

(empirical P¼0.0049). These findings are much more

significant than those from Xiong et al,23 in which BMD

was treated as a quantitative trait.

Discussion
We implemented and investigated a strategy of exhaus-

tively testing haplotypes based on VSW to detect disease

0
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Figure 1 The �log10 of raw P-values obtained through the three
proposed strategies in an example randomly selected from the power
simulation studies and its LD structure. VSW, BLK and SGL denote
association-mapping strategy using variable-sized sliding windows,
haplotype blocks, and single SNP loci, respectively. Four hundred cases
and an equal number of controls were simulated, with medium
recombination rate (10�8 per site per generation). The x axis shows
the simulated loci and the 4-point star in the middle of x axis indicates
the location of the putative locus with relative risk of two. The dashed
line on top, covering SNP 7 to SNP 13, indicates the best window with
which the smallest P-value for VSW was achieved. LD block structure is
shown in the bottom frame. The color from white to black represents
the increasing strength of LD.
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association. We compared the performance of this

approach with those using BLK and SGL through both a

range of simulated conditions and an empirical data

analysis. To the best of our knowledge, this is the first

study to demonstrate that under a variety of simulation

conditions, the statistical power of VSW is uniformly

greater than both BLK and SGL, in the framework of

standard w2 statistics. This suggests that the VSW strategy

might gain potential valuable association results, which

could be missed by using SGL or BLK. Therefore, with
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available genotypes for dense markers, the VSW mapping is

strongly recommended to capture the greatest number of

significant signals.

As genome-wide association studies on complex disease

become increasingly visible, the VSW strategy for haplo-

type association mapping can be ideally used for replica-

tion, follow-up, and fine mapping of previously identified

genomic regions of interest. A common finding in genome-

wide association studies is to have only a small number of

SNPs or block regions that exceed the specific significance

level (ie, 10�7). However, many of the less significant but

suggestive markers or regions are usually ignored because

of their lack of statistical significance. This raises the

possibility of missing certain causal loci due to a failure to

use the best window size for constructing the test. Based on

the findings of the current study, the application of the

VSW strategy is highly recommended for additional

haplotype association analyses around such suggestive

regions in a genome-wide association study.

Compared with the BLK/SGL approach, VSW has its own

advantages. First, VSW in nature has the advantages of

both single-marker analyses and haplotype analyses.

Second, VSW does not require a priori knowledge of the

most appropriate haplotype window size for detecting a

susceptibility site. Rather, it examines haplotypes in each

sliding window of varying size. If the susceptibility loci are

detectable in the study sample, exhaustively testing based

on VSW of all possible sizes over a genomic region is most

likely to discover the optimum markers or regions that are

significantly associated with the study traits. Third, it also

does not require prior knowledge of the LD structure,

which is a requirement of BLK for haplotype block

partition, thus avoiding the potential problems of haplo-

type block boundaries. With considerable haplotype

variation among global populations25 because of

locus-specific factors (recombination, mutation, and gene

conversion) as well as population-specific factors

(recent migration and admixture, expansions and bottle-

necks and random drift),26 VSW is helpful for association

mapping of complex diseases in those isolated populations

without proper reference LD structure in the International

HapMap data.27

The power gain for VSW over lower LD regions is

reasonable. According to common application, we used

indirect association mapping strategy in our simulation

study. The genotype information of the causal locus was

removed and thus was unavailable to analysis methods.

In lower LD region, SGL has very low detection power

because single marker carries very little information about

the causal locus. BLK in low LD region will identify limited

small haplotype blocks, which may not cover the causal

locus at all. For VSW, it tests all the possible windows in the

region and will always cover the causal locus. This may

help VSW gain more power over low LD regions. However,

we realize that all the methods are far from powerful in low

LD regions.

Although VSW is a more powerful test, using it to

estimate large haplotypes with multiple SNPs (ie, EM

algorithm) may be fraught with delays due to a heavy

computation load and limitations of computer memory,

because the analysis grows exponentially with the number

of loci. For whole genome, or a chromosome, exhaustive

searching with the window size as big as that of a

chromosome is impossible. A question is raised regarding

how to decide the maximum window size to balance

between the detection power and the computational

complexity. One choice is to preset the maximum window

size, larger than that chosen by Cheng et al,9,10 possibly up

to 500 kb, as most LD blocks are less than 500 kb.28

However, as LD patterns are expected to vary widely across

genome regions, this pre-fixed maximum window size may

cause problems where there are too many haplotypes in a

hot-spot region. At the time of this writing, Li et al29

suggested a method to decide the maximum window size

based on the local haplotype diversity and the available

sample size. To minimize the computation load and

maximize the feasibility of VSW for whole genome

association, we suggest the following strategies: first carry

out a preliminary SGL/BLK analysis for the whole genome;

then, select those loci with suggestive signals (eg, Po10�3)

and determine the maximum window sizes for each region

according to Li et al,29 that is, the number of distinct

haplotypes in a window should be no greater than the

sample size; and finally limit VSW analysis to these regions.

The initial scan of whole genome association may

potentially miss some signals. It is a problem faced by

many current analysis methods for GWAS. Without a better

choice, we would focus on those most likely regions with

suggestive evidences, such as Po10�3. Our proposed VSW

strategy may thus be better suited for replication, follow-up

and fine mapping particular genomic regions of interest.
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To illustrate that the proposed method is computation-

ally practical, we assessed the CPU time required by the

program in simulation and empirical data analyses. All the

analyses were carried out on a computer with Intels

Pentiums 4 3.4 GHz dual processors and 2.0 GB RAM. It

took B3.2days (76 h 40 min) for VSW to complete simula-

tion analyses for all 20 simulated scenarios (including

power and critical values analyses) and 1 h 55 min for the

empirical data set analyses (including 10 000 permutations

to get the empirical P-values). That is, an average of B0.69 s

(76 h 40 min divided by 20 simulation combinations and

20 000 simulation replicates) is required to analyzing one

set of simulated data. This indicates that the computation

time required for simulation and empirical data analyses is

acceptable, and thus our method is practical for association

analyses in the field of candidate gene/region. Further-

more, with improvements in computer technology, com-

putationally efficient methods such as parallel programs

that are widely used in many scientific fields (ie, multiple

eQTL/QTL interval mapping) can be applied. Distributing

the heavy computing load into clustered processors is

another alternative approach, which can significantly

reduce the computing time, making tasks such as exhaus-

tively searching sliding windows feasible.

To address the multiple-testing problem, which is still a

challenge in genome-wide association studies; we

performed a large number of simulations under the null

distribution to determine the expected significance thresh-

old for our simulated region. The Bonferroni correction for

multiple testing is usually too conservative in the presence

of correlated markers. Another option is to use the

permutation for each replication. For VSW, the computa-

tional cost becomes a problem in a huge number of

permutations for large numbers of simulation replications.

Fortunately, in experimental practice, the considerable

amounts of permutations are relatively easy to carry out to

obtain empirical P-values for the studying sample (eg, we

did permutations for our experimental data), as imple-

mented in several association mapping programs, for

example, PlINK.30 To make power comparison, we utilized

simulations under the null hypothesis to determine the

empirical critical values for each proposed method,

keeping the false-positive error rates under the region-wide

level (a¼ 0.05).

The VSW strategy can be easily extended to other

haplotype association mapping algorithms. In recent years,

extensive efforts have been devoted to exploring a number

of statistical methods for association analysis.1 The VSW

strategy implemented in this study is in terms of the most

natural w2 statistic, which is commonly used in genetic

association literature. A more efficient association method

could be incorporated straightforward into an association

mapping strategy based on sliding windows. For example,

haplotype clustering methods were proposed for dealing

with low frequency concern and reducing the haplotype

dimensionality.31 Moreover, an approach has been sug-

gested to quantitatively incorporate existing information

of SNPs (conservation, functional category, linkage, and so

on) into the analysis to enrich the association signal.32

In summary, the haplotype association mapping strategy

based on VSW outperforms the other two approaches in

both our simulated studies and an experiment data set,

with an expense of higher computation cost. With rapid

advances in computation technology, the application of

VSW is feasible for large genomic regions or those

regions preliminarily identified by the traditional SGL/BLK

methods. With the promise of genome-wide association

studies for revealing genetic mysteries that underlie

complex diseases, such improvements are therefore neces-

sary and welcome.
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