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Abstract
Crystallization has proven to be the most significant bottleneck to high-throughput protein structure
determination using diffraction methods. We have used the large-scale, systematically generated
experimental results of the Northeast Structural Genomics Consortium to characterize the biophysical
properties that control protein crystallization. Datamining of crystallization results combined with
explicit folding studies lead to the conclusion that crystallization propensity is controlled primarily
by the prevalence of well-ordered surface epitopes capable of mediating interprotein interactions and
is not strongly influenced by overall thermodynamic stability. These analyses identify specific
sequence features correlating with crystallization propensity that can be used to estimate the
crystallization probability of a given construct. Analyses of entire predicted proteomes demonstrate
substantial differences in the bulk amino acid sequence properties of human versus eubacterial
proteins that reflect likely differences in their biophysical properties including crystallization
propensity. Finally, our thermodynamic measurements enable critical evaluation of previous claims
regarding correlations between protein stability and bulk sequence properties, which generally are
not supported by our dataset.

Keywords
protein crystallization; protein thermodynamics; crystallization mechanism; surface entropy;
datamining; structural genomics

*Corresponding author: (212)-854-5443 voice; (212)-865-8246 FAX; jfhunt@biology.columbia.edu.

NIH Public Access
Author Manuscript
Nat Biotechnol. Author manuscript; available in PMC 2010 January 1.

Published in final edited form as:
Nat Biotechnol. 2009 January ; 27(1): 51–57. doi:10.1038/nbt.1514.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The ability to determine the atomic structures of macromolecules represents a great
achievement in molecular biology because of the unparalleled value of this information in
understanding the fundamental chemistry of life1–5. While nuclear magnetic resonance
represents an invaluable source of structural information, especially for small proteins, most
macromolecular structures are determined using x-ray crystallography. Capitalizing on the
recent proliferation of genomic sequence data, “structural genomics” consortia have been
organized worldwide to develop methods and infrastructure for high-throughput protein
structure determination. These groups have contributed to improvements in expression and
structure determination methods6, and the four largest U.S. consortia accounted for 45% of all
novel structures deposited in the Protein Data Bank (PDB) in 20077. While these efforts
contribute to the impressive progress of the structural biology community in characterizing the
full repertoire of protein structures, the rate of growth in sequence information nonetheless far
out-paces that of structural information. Given the ongoing acceleration of whole-genome
sequencing, the gap between the two will continue to expand without a breakthrough in
macromolecular structure determination methods.

The systematic efforts of structural genomics projects show that crystallization is the major
bottleneck to protein structure determination using diffraction methods. Analyses of results
scored by visual inspection of crystallization reactions have shown that only ~35% of purified
proteins form objects resembling crystals7. However, a substantially smaller proportion form
crystals of sufficient quality for structure determination. Among structural genomics consortia,
~12% of protein preparations yield crystal structures, with exact frequency varying based on
protein source and the quality control imposed during sample production7. However, even
limiting consideration to biochemically well-behaved proteins, the vast majority of constructs
do not yield crystals of sufficient quality for structure determination. This unfortunate fact
about naturally evolved proteins poses a severe technical obstacle in myriad projects. Drug-
discovery efforts are particularly handicapped by a lack of structural data because it prevents
use of structure-based ligand optimization methods8, 9. The lack of understanding and control
of the protein crystallization process represents a fundamental problem impacting many areas
of biomedical research.

To address this problem, we investigated the physical properties that control protein
crystallization. Mechanistic hypotheses were evaluated using materials and results from the
Northeast Structural Genomics Consortium (NESG). The availability of hundreds of
biochemically well-behaved proteins produced and evaluated using consistent methodology
should reduce the influence of sporadic factors affecting crystallization outcome and allow
sensitive detection of causally related properties. Experimental results and sequence
parameters were correlated with whether a protein yielded a crystal of sufficient quality for
determination of its atomic structure (i.e., a PDB deposition), rather than the more diffuse
criterion of forming an object visually identified as a crystal.

To form a high quality crystal, a protein must be immobilized in a lattice in a consistent
conformation with limited dynamic motion. Thus, thermodynamic stability could play an
important role in determining crystallization behavior. We evaluated this possibility using
large-scale experimental studies of protein-folding equilibria. Protein surface properties could
also play a determining role in controlling crystallization behavior because formation of tight,
geometrically precise inter-molecular contacts is required for lattice stability. While this
premise seems conceptually obvious10, 11, limited information was available on the specific
features involved and whether primary sequence analysis could detect them.

Previous research suggests that conformationally dynamic amino acid sidechains inhibit
crystallization based on the entropic cost of immobilizing them in stable interprotein contacts.
The “surface entropy reduction” method replaces high sidechain entropy, surface-exposed
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lysine, glutamate, and glutamine residues with lower entropy residues, especially alanine12–
17. Such substitutions have promoted improved crystallization of some proteins, although a
significant fraction of these mutant proteins have solubility problems that can hinder
crystallization screening14, 17. Several papers have also reported significant correlations
between bulk sequence properties and protein crystallization propensity18–22. These studies
have demonstrated that low average hydrophobicity18, 21, high isoelectric point18, 21, and long
stretches of backbone disorder18, 19 reduce crystallization probability. However, these studies
have not addressed the mechanistic origin of observed correlations. Other than the protein
engineering results described above, few available data relate protein surface properties to
crystallization propensity.

The large-scale experimental and datamining studies presented in this paper provide new
insight into the physical properties controlling protein crystallization. We present evidence that
the prevalence of low entropy, well-ordered surface features is the principal mechanistic
determinant of protein crystallization behavior, and our analyses suggest approaches to rational
mutational re-engineering of proteins to improve crystallization propensity. Our data also
permit evaluation of relationships between various biophysical and sequence properties of
proteins, allowing critical evaluation of trends previously proposed but not rigorously tested.

Results
Does protein stability influence crystallization?

We used several biophysical techniques to evaluate the relationship between protein stability
and crystallization outcome. Thermal denaturation experiments were carried out on 117
monodisperse proteins that had gone through the NESG crystallization pipeline. In these
experiments, melting temperature (Tm) was determined via the fluorescence of the dye SYPRO
Orange, which is enhanced upon partitioning into the hydrophobic regions of denatured
proteins23 (Fig. 1a). Chemical denaturation of 36 proteins by guanidinium hydrochloride was
monitored using circular dichroism spectroscopy (Fig. 1b). Finally, 121 proteins were
subjected to calibrated limited proteolysis using trypsin and proteinase K (Supplementary Fig.
1). Results from these three assays are consistent (Supplementary Fig. 2 & Supplementary
Table 1) and show no significant relationship between overall stability and successful crystal
structure determination if unfolded and hyperstable proteins are omitted (Fig. 1 &
Supplementary Fig. 1). Thermal denaturation data (Fig. 1a) show a statistically significant
correlation if all proteins are included in the analysis (p=0.008), but the significance is lost if
proteins with Tm’s under 30°C or over 90°C are excluded (p=0.4). Therefore, partially or fully
unfolded proteins may yield crystal structures less frequently, while hyperstable proteins
probably yield crystal structures somewhat more frequently. However, overall thermodynamic
stability is not a major determinant of crystallization propensity and may not have any influence
across the broad range of stabilities typical of folded mesophilic proteins (See Supplementary
Notes for further discussion).

A detailed discussion of the large-scale proteolysis results is presented in the Supplementary
Notes. Most saliently, the size of the dominant protected fragment in proteolysis studies, likely
a measure of the total content of disordered loops, significantly positively correlates with
crystallization success (Supplementary Fig. 1). Our large-scale experimental analyses also
allow evaluation of potential correlations between thermodynamic and sequence properties of
biochemically well-behaved proteins (see Supplementary Notes; Supplementary Fig. 2;
Supplementary Fig. 3; Supplementary Table 1). Most notably, our data on primarily bacterial
proteins do not support Uversky’s conclusion24 that specific combinations of hydrophobicity
and net charge reliably identify natively unfolded proteins. Finally, our data show insignificant
correlation between fluorescence enhancement of the hydrophobic reporter dye bis-ANS and
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either the folding state or crystallization propensity of a set of NESG proteins (see
Supplementary Notes; Supplementary Fig. 4).

Influence of other biophysical properties
The hydrodynamic properties of all NESG proteins are characterized using analytical gel
filtration chromatography monitored by static light scattering and refractive index detectors.
These data, acquired from a flash-frozen aliquot of the crystallization stock, provide a rigorous
description of the distribution of oligomeric species in each sample. Theoretical considerations
suggest that protein oligomers should crystallize more readily than monomers because a single
high quality packing epitope on the surface of one protomer can make repeated contacts, which
is especially beneficial in a lattice sharing the symmetry of the oligomer25. This inference has
been supported by a study where disulfide-crosslinking was used to produce non-native dimers,
which crystallized more avidly than the corresponding monomer26. Statistical analysis of
NESG large-scale crystallization results proves this inference, showing that monomers yield
solvable crystals at a significantly lower rate than dimers or larger oligomers (Fig. 2a).

The hydrodynamic homogeneity of the stock significantly correlates with successful crystal
structure determination (Fig. 2b). Monodisperse proteins (≥90% in a single hydrodynamic
species) more frequently yield crystal structures than predominantly monodisperse or
polydisperse proteins (70–90% or <70%, respectively). The few aggregated proteins that
entered the NESG pipeline during the period analyzed here failed to yield structures (Fig. 2b).
Preliminary analysis of results from a substantially larger dataset containing over 100
aggregated proteins shows an equivalent trend (data not shown). Therefore, while formation
of specific, homogeneous oligomers promotes successful crystallization (Fig. 2a),
heterogeneous self-association inhibits successful crystallization (Fig. 2b).

Finally, the number of unvalidated crystallization hits observed in a 1536-well robotic high-
throughput microbatch screen27 correlates strongly with crystal structure solution
(Supplementary Fig. 5). We hypothesize that proteins crystallizing more promiscuously
possess more potential interprotein interaction sites on their surfaces, or more strongly
interacting sites, and that at least one of these properties is a significant determinant of the
ability to form a high quality crystal lattice under some condition. The fact that structures were
determined for only ~6% of proteins failing to give a hit in initial high-throughput screening,
in spite of performing ≥500 additional vapor diffusion reactions, demonstrates that
crystallization propensity is an intrinsic protein property even though it can be influenced by
solution contents (see Supplementary Notes).

Datamining historical crystallization results
We examined the relationship between bulk sequence properties of NESG proteins and success
in depositing their crystal structures into the PDB. The dataset comprised 679 strongly
expressed and well-behaved proteins, predominantly but not entirely from bacterial organisms,
of which 157 of yielded crystal structures. These proteins were taken through the entire NESG
pipeline6 including quality-control assays and crystallization screening. Proteins with
predicted transmembrane α-helices or >20% low complexity sequence were excluded from the
pipeline. The dataset included just one construct for each protein target and excluded proteins
identified by static light-scattering as aggregated in their crystallization stocks. Samples
yielding crystals of insufficient quality for structure determination were considered failures
even if diffraction was observed, as was true for 39 of the 679. Analyses presented in
Supplementary Figure 20 retrospectively justify this strategy by showing that some key
sequence features in these 39 proteins are more similar to proteins not yielding diffracting
crystals than proteins yielding crystal structures. Target selection and classification are
described in Supplementary Methods.
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Sequence properties that were analyzed include the frequency of each amino acid, mean
hydrophobicity (GRAVY28 – GRand AVerage of hydropathY), mean sidechain entropy33

(<SCE>), total and net electrostatic charge, isoelectric point (pI), the fraction of residues
predicted disordered by DISOPRED229, and chain length. Logistic regressions, explained
briefly in the Supplementary Notes, were performed to evaluate the dependence between the
continuous variable representing the bulk sequence parameter and the binary outcome of the
crystallization effort, i.e., success or failure in depositing the construct’s crystal structure into
the PDB. The p-value, regression slope, and predictive value of each variable are presented in
Fig. 3.

The frequencies of five amino acids significantly correlate with successful crystal structure
determination, as do several more complex sequence metrics. Ala, gly, and phe frequency
positively correlate with successful structure determination, while glu and lys frequency
negatively correlate (Fig. 4 and Supplementary Fig. 8). GRAVY positively correlates, while
<SCE> and fraction of predicted disordered residues negatively correlate (Fig. 4), as do
fractional positive (arg + lys) or negative (asp + glu) charge (Supplementary Fig. 11;
Supplementary Table 3). Fractional values (i.e., normalized to chain length) are uniformly
more predictive than total values for significantly correlated parameters (Supplementary Fig.
7). While fractional positive or negative charge considered independently both significantly
oppose successful crystallization, neither net charge (positive minus negative residue counts)
nor its absolute value are predictive, nor are any electrostatic variables without length
normalization (Supplementary Table 3; Supplementary Fig. 11). Note that the current analysis
has limited sensitivity in detecting the influence of rare or weakly predictive amino acids, due
to the size of our dataset (see Supplementary Notes).

Protein pI (Supplementary Fig. 9) and chain length (Supplementary Fig. 10) both show bimodal
effects, with the rate of success initially increasing and later decreasing with increasing
parameter values. The bimodal dependence prevents assessment of statistical significance
using logistic regression, and the 95% confidence limits of all parameter bins substantially
overlap in our dataset. However, similar dependencies have been reported in independent
datasets18–22 and can be observed in analyses of whole genome distributions (see below),
suggesting that these parameters influence crystallization outcome but not strongly enough to
be significant in our dataset.

Predicted backbone disorder inhibits crystallization
We further analyzed the effect of backbone disorder in opposing successful crystallization (Fig.
4) by performing multiple logistical regression on the fraction of predicted disordered
residues29 located in continuous segments at either the N- or C-terminus of the protein or at
internal positions (summed together). The regression slopes in Table 1B demonstrate that
predicted disorder has the same size effect opposing crystallization irrespective of location
within the protein chain.

Surface entropy effects dominate other effects
GRAVY and <SCE>, which both strongly influence crystallization outcome (Fig. 3–Fig. 4;
Table 1A), are anti-correlated (Supplementary Table 3). Analyzing them simultaneously in a
double logistic regression demonstrates that their influence is redundant: GRAVY shows weak
and insignificant additional correlation with crystallization outcome when considered
simultaneously with <SCE> (Table 1C). The statistical dominance of <SCE> over GRAVY
indicates that it is more strongly correlated and therefore likely to be the mechanistically
significant parameter. This evidence supports Derewenda and Vekilov’s hypothesis that the
thermodynamic cost of immobilizing high entropy sidechains tends to inhibit their participation
in crystal-packing contacts15, 16, 30. As their prevalence on the protein surface increases and
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fewer well-ordered sites are available for packing, it increases the probability that
thermodynamically unfavorable immobilization of high SCE residues will be needed to form
a stable contact15, 16. The comparatively weak anti-correlation of some high SCE residues
(e.g., arg in Fig. 3) may be attributable to an energetically favorable interaction tendency of
the sidechain’s functional group partially offsetting the entropic cost of immobilizing it. (See
Supplementary Notes)

This mechanistic hypothesis implies that residues influencing crystallization should be
localized on the protein surface. Therefore, we segregated the amino acids in each protein
sequence by their predicted location (buried vs. surface-exposed) according to PHD/PROF31

(Table 1A). This analysis strongly supports the hypothesis, showing that successful
crystallization correlates with <SCE> in predicted exposed residues (<SCE>pe) but not
predicted buried residues. In contrast, the correlation with GRAVY is inconsistent in direction
and substantially weaker when residues are segregated by predicted location. The direction of
the GRAVY correlation in exposed residues (Table 1A) is consistent with it being a surrogate
for <SCE> because higher hydrophobicity correlates with lower SCE (Supplementary Table
4). Furthermore, when sets of proteins are assembled with equivalent <SCE> distributions but
systematic differences in GRAVY, they show no significant differences in crystal structure
determination rates (Supplementary Fig. 12). These results all reinforce the conclusion that
increasing exposed sidechain entropy, rather than decreasing hydrophobicity, impedes
successful crystal structure determination by inhibiting formation of stable packing contacts.

Like GRAVY, other sequence properties observed to have a significant influence on
crystallization outcome strongly correlate with sidechain entropy. Ala and gly have the lowest
sidechain entropies and their frequencies correlate most strongly with successful
crystallization, while lys and glu have among the highest sidechain entropies and their
frequencies anti-correlate most strongly. Multiple logistic regression analyses suggest that all
fractional charge effects (Supplementary Table 3) and all single amino acid effects are
redundant with <SCE>pe except for the frequencies of predicted buried gly and exposed phe,
which remain significant when considered simultaneously with <SCE>pe (Table 1D).
Furthermore, in sets of proteins assembled to have equivalent <SCE>pe distributions but
systematic differences in individual amino acid frequencies, higher fractional content of gly,
ala, or phe significantly increases crystal structure determination rate while higher fractional
content of lys, glu, or charged residues does not significantly alter outcome (Supplementary
Fig. 12). These results suggest that effects of the latter parameters represent proxies for the
mechanistically dominant effect of <SCE>, while gly, ala, and phe may have mechanistically
independent positive effects. These residues may preferentially mediate crystal-packing
contacts. The significant effect of fractional ala content in the analysis of sets of proteins with
equivalent <SCE>pe distributions (Supplementary Fig. 12) but not in multiple logistic
regression (Table 1D) is likely attributable to the fact that its influence on crystallization rate
does not match the logistic functional form as well as those of gly or phe (Supplementary Fig.
8).

The “buried” glycine effect
While the glycines that promote crystallization are predicted by PHD/PROF to be buried, the
same program also predicts them to be preferentially localized in loops 6–15 residues in length.
The Supplementary Notes present detailed analyses of this ostensibly inconsistent
categorization. In brief, manual inspection of crystal structures suggests that the predicted
“buried” loop category is dominated by well-ordered gly residues partially exposed on the
surface of the protein, which may be favorable sites to form crystal-packing contacts.

Price et al. Page 6

Nat Biotechnol. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



PXS: probability of crystal structure determination
Having identified four non-redundant sequence features showing statistically significant
correlation with crystallization success, we combined these into a single predictive metric
(Supplementary Fig. 14):

PXS represent the probability of solving a crystal (xtal) structure, Diso the fraction of residues
predicted to be disordered by DISOPRED2, <SCE>pe the mean sidechain entropy of predicted
exposed residues, Gpb the fraction of predicted buried gly, and F the fraction of total phe (used
because this parameter predicts more strongly than exposed phe alone). This metric provides
an accurate description of the behavior of the training dataset up to bins with ~35% success in
depositing a crystal structure (P = 5.3×10−9) (Fig. 5). More importantly, it provides a similarly
accurate description of a validation dataset comprising 200 proteins that passed through the
NESG pipeline after metric development (P = 0.0014). A webserver performing this calculation
is available at http://www.nesg.org/PXS/.

Genome-wide analyses of crystallization propensity
In addition to possible bias from inconsistent methods and effort being applied to different
proteins, genome-wide crystallization results are systematically influenced by protein
expression and solubility characteristics, factors intentionally excluded from the analyses
reported above so as to isolate parameters influencing crystallization. As described in the
Supplementary Notes, to begin characterizing the interplay of potentially conflicting factors
influencing the successive steps required to go from gene to protein structure, and to explore
the generality of PXS, we analyzed proteome-wide distributions of its value and the underlying
sequence parameters. In brief, PXS is significantly predictive of the crystal structures obtained
from the human and E. coli proteomes, as are all individual sequence parameters predictive in
the NESG dataset, except for <SCE>pe (Supplementary Fig. 16, Supplementary Fig. 17).
Sequence parameter distributions differ dramatically between E. coli and human proteins,
which have on average more backbone disorder, lower GRAVY, and lower <SCE>
(Supplementary Fig. 16). Human but not E. coli proteins have a very high prevalence of low
SCE residues, especially gly and pro, in disordered sequences (Supplementary Fig. 18). The
Supplementary Notes also present a metric developed to predict the conglated probability of
expressing and determining the crystal structure of a human protein (PC-XS-Hs – Supplementary
Fig. 19).

Discussion
Statistical analysis of our large-scale protein crystallization results demonstrates that the mean
entropy of exposed sidechains and predicted backbone disorder both anti-correlate strongly
and significantly with successful structure determination. Combining these results with the
observation that stability is not a significant determinant of success leads to the conclusion that
the dominant factor determining protein crystallization outcome is the prevalence of well-
ordered surface epitopes capable of mediating stereochemically specific interprotein packing
interactions. Beyond providing rigorous confirmation of longstanding suspicions12–16, our
results provide a quantitative metric to assess crystallization propensity (PXS) and suggests
possibilities for engineering protein sequences to improve outcome. While previously reported
sequence correlations with crystallization propensity18–22 appear to be surrogates for surface
entropy, the frequencies of gly, ala, and phe have statistically significant independent effects
improving success. We hypothesize that these residues are particularly effective in mediating
crystal-packing interactions, presumably via amide backbone interactions for gly and ala and
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hydrophobic interactions for phe. Our experimental studies demonstrate that heterogeneous
self-association in a protein stock solution significantly reduces crystallization probability.
Thus, successful crystallization requires minimal self-interaction in dilute aqueous buffers but
strong self-interaction under the low water-activity conditions used to form a crystal, which is
a non-physiological protein aggregate, albeit one with consistent intermolecular contacts and
spatial organization. These requirements fundamentally tend to conflict. The charged residues
lys and glu promote solubility but impede crystallization (Fig. 3), while low solubility and
crystallization are both driven by low-affinity, non-physiological intermolecular interactions.
Optimal crystallization eptitopes should mediate strong stereospecific interactions under low
water-activity conditions without promoting promiscuous surface interaction in dilute aqueous
buffers. Well-ordered, surface-exposed gly’s may be particularly efficacious in this regard
compared to residues with stronger hydrophobic character, which tend to promote non-specific
interactions. The Supplementary Notes present a more detailed discussion of related issues.

Materials and Methods
Protein crystallization

Protein expression, purification, and analysis methods are described in the SI. Initial high-
throughput crystallization screening was conducted using the 1536 well microbatch robotic
screen at the Hauptmann-Woodward Institute27. Proteins failing to yield rapidly progressing
crystal leads were subjected to vapor diffusion screening, typically 250–300 conditions
(Crystal Screens I & II, PEG-Ion, and Index screens from Hampton Research or equivalent
screens from Qiagen) at both 4° C and 20° C, which was conducted in the presence of substrate
or product compounds if commercially available. Crystal optimization, diffraction data
collection at cryogenic temperatures, structure solution using single or multiple-wavelength
anomalous diffraction techniques, and refinement were conducted using standard methods.

Datamining methods
Datamining analyses were conducted on native sequences with tags removed. Hydrodynamic
data from the SPINE were manually verified. The frequency of each amino acid and the
compound sequence metrics of charge, pI, GRAVY, SCE, length, and DISOPRED29 were
individually evaluated for correlation with the binary outcome of success or failure in
depositing a crystal structure of the target protein into the PDB. Charge parameters were
calculated as signed or unsigned sums of the frequencies of appropriate combinations of
arginine, lysine, glutamate, and aspartate residues. Isoelectric point was calculated using the
EMBOSS algorithm32 at ExPASy33. GRAVY was calculated using the Kyte-Doolittle
hydropathy parameters28. The Creamer scale33 was used for the SCE values of the individual
amino acids34. DISOPRED scores were calculated using a locally installed copy of the
DISOPRED229 program with a 5% false positive rate. Calculations of predicted burial/
exposure and secondary structure were performed with the PHD/PROF algorithms from the
PredictProtein server31, 35. Mean exposed SCE was calculated as the mean for all residues
predicted to be exposed, while all calculations based on secondary structure class used total
chain length as the denominator. In data graphs, the observed frequencies of successful PDB
deposition in equally spaced parameter bins on the abscissa are plotted at the bin center, except
for the terminal bin of unbounded variables which is plotted at the average parameter value in
the bin.

Statistical analyses
Logistic regressions were performed in STATA (Statacorp, College Station, TX) with
significance determined from Z-scores for individual variables and chi-squared distributions
for models. The significance of oligomeric state, aggregation state, and the dividing line in the
charge/hydrophobicity chart (Supplementary Fig. 4) were determined by evaluating
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contingency tables with a 2-tailed Fisher’s exact test. Counting-statistics-based 95%
confidence intervals were calculated using Bayesian maximum likelihood estimates of the
binomial distribution.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Protein stability does not strongly influence success in crystal structure solution
Denaturation experiments were performed on biochemically well-behaved NESG proteins
drawn from the set of 679 used in the datamining studies reported below (as described in detail
in the Supplementary Methods). The graphs show the fraction of proteins for which crystal
structures were successfully determined and deposited in PDB in each stability bin. The error
bars represent 95% confidence limits calculated from counting statistics using the numbers in
each bin. (a) Crystallization success vs. thermal denaturation midpoint temperature (Tm)
determined via fluorescence enhancement of the hydrophobic reporter dye SYPRO
Orange23. Logistic regression analyses of the probability of the observed relationships
occurring at random indicate P = 0.0076 for all proteins (N = 117), P = 0.19 for those with
Tm ≤ 90°C (N = 110), P = 0.020 for those with Tm ≥ 30°C (N = 114), and P = 0.40 for those
with Tm ‘s between 30°C and 90°C (N = 107). (b) Crystallization success vs. ΔG of unfolding
from guanidinium hydrochloride denaturation experiments monitored by circular dichrosism
spectroscopy (P = 0.2, N=36 for all proteins).
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Figure 2. Hydrodynamic properties strongly influence success in crystal structure solution
The graphs show the fraction of proteins for which crystal structures were successfully
determined and deposited in PDB, with the error bars representing 95% confidence limits
calculated from counting statistics using the numbers in each bin. (a) Crystallization success
vs. oligomeric state (P = 0.0005 for monomers compared to dimers, P = 0.0002 for monomers
compared to larger multimers, and P = 0.000007 for monomers compared to all oligomers).
(b) Crystallization success vs. aggregation status (P = 0.01 for monodisperse compared to all
other classes and P = 0.03 for at least predominantly monodisperse compared to polydisperse
and aggregated).
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Figure 3. Correlations between sequence characteristics and success in crystal structure solution
Logistic regressions based on success in crystal structure determination (i.e., PDB deposition)
were performed on a dataset comprising 679 proteins from the NESG protein expression and
crystallization pipeline. Variables evaluated included the fractional content of each amino acid,
mean residue hydrophobicity (GRAVY28 – GRand AVerage of hydropathY), chain length,
mean charge (fraction arg+lys+asp+glu), pI, mean net charge, and mean sidechain entropy
(<SCE>). (a) Predictive value of each parameter, which is defined as the product of its logistic
regression slope and the standard deviation of its distribution in the dataset. (b) Logistic
regression slope. (c) Negative log of logistic regression p-value.
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Figure 4. Four major predictors of success in crystal structure solution
Graphs show the fraction of 679 NESG pipeline proteins for which crystal structures were
successfully determined and deposited in PDB. Error bars represent 95% confidence limits
calculated from counting statistics using the numbers in each bin, while gray lines show the
functional forms of the optimized logistic regression equations. (a) GRAVY28 or mean residue
hydrophobicity, a positive predictor (P = 0.0000135). (b) <SCE>33 of PHD/PROF31 predicted
exposed residues, a negative predictor (P = 0.0001). (c) Fractional gly content of PHD/
PROF31 predicted buried residues, a positive predictor (P = 0.0005). (d) Fraction of residues
predicted to be disordered by DISOPRED229, a negative predictor (P = 0.0003).
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Figure 5. Performance of the PXS metric predicting probability of successful crystal structure
determination
Box and whisker plot shows fraction of NESG pipeline proteins in PDB with 95% confidence
limits calculated from counting statistics using the numbers in each bin, binned as a function
of PXS value. Black represents the 679 proteins used to develop/train the metric, while gray
represents 200 proteins produced at later dates that were used for validation. The solid lines
represent the functional form of the logistic regression equation describing PXS as applied to
the sequences in training (dotted black) or validation (solid gray) sets. The table shows the
number of proteins falling into each bin on the graph for the training and validation sets.
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Table 1
Single and multiple logistic regression results1.

Regression Variable Slope SD*Slope P value

GRAVY 1.68 0.43 0.0000135

<SCE> −5.99 −0.47 0.000000915

Gly 10.685 0.26 0.0046

Pb <SCE> −1.15 −0.072 0.431

A Pe <SCE> −3.24 −0.33 0.0001

Pb GRAVY −0.413 −0.25 0.0085

Pe GRAVY 0.744 0.26 0.0044

Pb Gly 9.16 0.32 0.0005

Pe Gly 3.03 0.089 0.08

DISOPRED2 −4.21 −0.46 0.0003

N/C/Internal DISOPRED2 0.0009

B N-terminal DISOPRED2 −4.37 −0.18 0.15

C-terminal DISOPRED2 −4.14 −0.21 0.093

Internal DISOPRED2 −4.19 −0.31 0.013

<SCE> + GRAVY 0.00000181

C <SCE> −4.52 −0.36 0.0066

GRAVY 0.73 0.19 0.16

Pb/e SCE + Amino Acids .000085

Pb <SCE> 2.68 0.17 0.20

Pe <SCE> −3.66 −0.40 0.038

Pb Ala 3.68 0.17 .015

Pe Ala 2.89 0.11 .036

Pb Glu 3.86 0.037 0.72

D Pe Glu −.0186 −0.00080 0.99

Pb Gly 12.1 0.42 0.00020

Pe Gly −1.51 −0.045 0.71

Pb Lys −14.7 −0.10 0.38

Pe Lys 2.0 0.096 0.50

Pb Phe 3.71 0.17 0.10
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Regression Variable Slope SD*Slope P value

Pe Phe 19.5 0.22 0.02
1
Logistic regressions evaluating success in depositing a crystal structure in the PDB as a function of various bulk sequence parameters were performed

on a set of 679 biochemically well-behaved NESG proteins (157 of which yielded structures). For multiple logistic regressions, parameters for the individual
component variables are shown in plain type while the overall results are shown in bold type. All p-values below 0.05 are shown in bold type. The
“predictive value” is the product of the regression slope for each variable times the standard deviation of its distribution in the dataset. GRAVY represents

the GRand AVerage of hydropathY28, <SCE> mean Monte Carlo sidechain entropy33, and DISOPRED229 the fraction of predicted backbone disorder
predicted by this program (at a false positive rate of 5%). Pb and Pe refer to the fraction of residues predicted to be buried or surface-exposed, respectively,

by the PHD/PROF algorithm as implemented by the PredictProtein server31. N-terminal and C-terminal refer to continuous stretches of amino acids at
the ends of the protein, while internal refers to all internal positions combined together.
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