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Abstract
Joint models for the association of a longitudinal binary and a longitudinal continuous process are
proposed for situations in which their association is of direct interest. The models are parameterized
such that the dependence between the two processes is characterized by unconstrained regression
coefficients. Bayesian variable selection techniques are used to parsimoniously model these
coefficients. A Markov chain Monte Carlo (MCMC) sampling algorithm is developed for sampling
from the posterior distribution, using data augmentation steps to handle missing data. Several
technical issues are addressed to implement the MCMC algorithm efficiently. The models are
motivated by, and are used for, the analysis of a smoking cessation clinical trial in which an important
question of interest was the effect of the (exercise) treatment on the relationship between smoking
cessation and weight gain.
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1. INTRODUCTION
In some longitudinal studies, although one time-varying outcome may be of primary interest,
several related processes are measured. Examples in smoking cessation studies include
smoking status and weight change and smoking status and alcohol use. In such studies, the
association between the processes can reveal a great deal about the mechanism of behavior
change. For example, a motivation for using exercise as an adjunct therapy for smoking
cessation is to reduce the dependence between weight gain and relapse back to smoking and
between the fear of weight gain and the inability to make a successful quit attempt. In this study
we built models in the setting of two processes: a longitudinal binary process (e.g., smoking
cessation) and a longitudinal continuous process (e.g., weight change). Our primary interest
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was to model the association between the two processes. We apply the models to a recent
smoking cessation trial (Marcus et al. 2003), where the investigators were interested in the
relation between smoking status and weight change.

Our approach builds on and extends recent research on joint modeling of mixed outcomes and
Bayesian variable selection. For joint modeling, a well-known technique of joint modeling of
mixed outcomes is based on introducing a partly observed random variable following a
bivariate normal distribution, where one component defines the continuous outcome and the
second, latent component defines the binary outcome through the common probit
transformation. Authors taking this type of approach include Catalano and Ryan (1992), Cox
and Wermuth (1992), Dunson (2000), Fitzmaurice and Laird (1995), Gueorguieva and Agresti
(2001), Regan and Catalano (1999), Roy and Lin (2000), and Sammel, Ryan, and Legler
(1997). In the present work, we extend this approach to longitudinal data with T individual
measurements by considering a partly observed random variable following a 2T-variate normal
distribution where the first T components define the binary outcomes by applying probit
transformations and the last T components are continuous outcomes. Moreover, the main
question of interest in previous studies was the effect of some treatment or therapy on the mean
of the response vector. The effect of the treatment on the association between two outcomes
was not of main interest. We propose similar models in which the association between two
processes is of concern. To do this, we use a Bartlett decomposition of the covariance matrix
(Bartlett 1933).

The association matrix induced by the Bartlett decomposition is high-dimensional and expected
to be sparse, so we borrow ideas from the Bayesian variable selection literature to reduce the
number of parameters (George and McCulloch 1993, 1997; Smith and Kohn 2002). Other
related work includes that of Carlin and Chib (1995), Chipman (1996), Hoeting, Raftery, and
Madigan (1996), and Wakefield and Bennett (1996). George and McCulloch developed
stochastic search variable selection (SSVS) to select promising subsets of a set of covariates
X1, . . ., Xp for further consideration in regression models. Smith and Kohn (2002) proposed
similar techniques for modeling a covariance matrix with high dimension for longitudinal data.
In this study we construct a hierarchical prior to parsimoniously model the association between
two longitudinal processes by extending the ideas of Smith and Kohn (2002). The hierarchical
specification has the advantage that potential 0’s in the association matrix can be identified
and estimates of the parameters can be calculated to account for the model uncertainty
associated with determining which elements are 0’s.

We develop a Markov chain Monte Carlo (MCMC) algorithm to estimate the posterior
distribution of the parameters in the models. To implement the MCMC algorithm more
efficiently, we address several technical issues, including efficiently sampling from truncated
multivariate normal (TMVN) distributions and efficiently sampling a correlation matrix from
its full conditional distribution. Geweke (1991) and Robert (1995) proposed a Gibbs sampling
algorithm to sample from a TMVN distribution. This algorithm is somewhat inefficient in that
it requires repeatedly evaluating conditional means and variances from univariate conditional
normals and can result in high autocorrelations in the chain. Barnard, McCulloch, and Meng
(2000) and Chib and Greenberg (1998) suggested using the Griddy Gibbs (GG) sampler and
the random-walk Metropolis-Hastings (RW-MH) algorithm to sample a correlation matrix.
Although the GG sampler is simple to implement, it is not computationally efficient. The RW-
MH algorithm has the problem of potentially slow mixing. We propose better ways to handle
these issues.

The article is organized as follows. We introduce a smoking cessation clinical trial that
motivates this research in Section 2. In Section 3 we propose joint models and hierarchical
priors used to parsimoniously model the association between two processes. In Section 4 we
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describe MCMC sampling techniques to estimate the posterior distribution of parameters and
address several technical issues regarding efficient implementation of the MCMC algorithm.
We discuss the deviance information criterion (DIC) for model comparison and the calibrated
posterior predictive p value for goodness of fit in Section 5. Finally, we present the results and
conclusions from the analysis of the clinical trial in Section 6.

2. APPLICATION: SMOKING CESSATION TRIAL
Commit to Quit II (CTQ II) (Marcus et al. 2003, 2005) was a 4-year randomized controlled
clinical trial designed to test the efficacy of moderate-intensity physical activity as an aid for
smoking cessation among women. This study was a logical progression of previous work (CTQ
I) (Marcus, King, Albrecht, Parisi, and Abrams 1997; Marcus et al. 1999) on the efficacy of
vigorous-intensity exercise to aid smoking cessation and weight regulation in women smokers,
because moderate-intensity exercise is less arduous and can be performed by healthy
individuals without medical supervision. In the CTQ II trial, 217 healthy women aged 18-65
who had regularly smoked 5 or more cigarettes per day for at least 1 year and who had routinely
participated in moderate or vigorous intensity physical activity for 90 minutes or less each
week were recruited and randomized to one of the two conditions (treatments): a moderate-
intensity exercise condition or a contact condition. These two treatments are designated
exercise and wellness. All recruited women participated in an 8-week cognitive-behavioral
group-based smoking cessation program, followed by a 12-month follow-up. Participants in
the exercise group were required to attend one supervised exercise session per week, on their
smoking cessation treatment night. They were also given written instructions for home
exercises. The duration and intensity of the exercise were gradually increased to 165 minutes
per week, which could be performed onsite or at home. Participants in the contact group
received lectures, films, and handouts on a variety of health and lifestyle issues. All participants
were encouraged to attend makeup sessions if they failed to attend any session during the 8
weeks of treatments. Smoking status was determined through self-report and carbon monoxide
testing at each session. In addition, participants were weighed on a weekly basis during the 8
weeks of treatment. This design allowed for a comparison of the effect of moderate-intensity
physical activity plus standard smoking cessation with the effect of contact plus standard
smoking cessation.

The primary outcome was quit status (a longitudinal binary outcome), but another outcome—
weight change (a longitudinal continuous outcome)—also was measured. The investigators
were interested in two questions:

1. Does moderate-intensity exercise have significant effects on smoking cessation? In
the study of the CTQ I trial, the investigators found significant differences between
vigorous activity and contact control group through 12 months of follow-up.

2. Does exercise effect smoking cessation by weakening the association between
smoking status and weight gain?

Question 2 motivates our development of joint models for the association of longitudinal binary
and continuous processes to examine the differential patterns of association across treatments
in Section 3. But our approach also allows us to answer question 1.

3. JOINT MODELS AND PRIORS
3.1 Joint Models

Several authors have developed joint models for the analysis of multivariate longitudinal data
using latent normal variables (Daniels and Normand 2006; Dunson 2003; Gueorguieva and
Sanacora 2006). In this section we propose similar joint models for the association of a
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longitudinal binary and a longitudinal continuous process. In our setting the time-dependent
covariance matrix is modeled as a function of predictors, however, and is of primary interest.

Denote the binary outcome (in our example, smoking status) for subject j in treatment i at week
t(i = 1, . . . , m;j = 1, . . . , ni; t = 1, . . . , T) by Qij,t, and denote the continuous outcome (in our
example, weight change) by Wij,t. Define the vectors of responses for binary and continuous
outcomes as Qij = (Qij,1, . . . , Qij,T)’ and Wij = (Wij,1, . . . , Wij,T)’. Also define a vector of latent
variables underlying the binary vector Qij as Yij = (Yij,1, . . . , Yij,T)’. Suppose that Vij is a vector

of joint processes such that . Then the joint distribution of binary and continuous
variables over time can be modeled using the multivariate normal specification

,

(1)

where Xij is the design matrix, β is the vector of regression coefficients, and

Using the probit formulation for the binary process, we have Qij,t = I{Yij,t > 0}. To estimate
the association between Qij and Wij, we need models for Σi,12 as a function of treatment (and/
or other subject specific covariates that might affect this relationship). But both Σi,12 and the
entire covariance matrix Σi are difficult to model, because of positive definiteness constraints
(Daniels and Kass 2001; Pourahmadi and Daniels 2002) and because it is high-dimensional
for each subject. To address this problem, we factor the joint distribution of Yij and Wij into
two components: a marginal model for Yij and a correlated regression model for Wij given
Yij, by extending the ideas of Fitzmaurice and Laird (1995) and Gueorguieva and Agresti
(2001). Let

then the new models can be expressed as

(2)

and

(3)

where Bi = Σi,21 Σ-1
i,11 is the matrix that reflects association between Yij and Wij, ε1i ~ N(0,

Σi,11), and  with . The reparameterization of Σi to

 is known in the literature as the Bartlett decomposition of a covariance matrix
(Bartlett 1933).
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It is easy to see that (2) is a correlated probit model and (3) is a standard correlated regression
model, conditional on the latent variable Yij. For identifiability, it is common to restrict Σi,11
to be a correlation matrix, Ri,11 (Chib and Greenberg 1998); in the rest of this article, we use
Ri,11 instead of Σi,11 as notation for the covariance matrix in (2). The advantage of this
factorization is that the components of Bi in (3) are directly related to the variance and
correlation terms in Σi,12. In addition, this factorization provides a convenient parameterization
for examining the association between Yij (Qij) and Wij, because the components of the Bi
matrix are unconstrained.

Beside being unconstrained, the association matrix Bi in model (3) can be easily interpreted.
The tth row of Bi reflects the association of the continuous process at week t with the binary
process at all weeks (t = 1, . . . , T). In particular, it corresponds to the regression model

 where bi,t = (bi,t1, . . . , bi,tT)’ is the tth row of Bi.
Because the covariates associated with bi,t, Yij - X1ijβ1, are centered with variance 1 (recall
that the marginal covariance matrix of Yij is a correlation matrix), the components of Bi are
standardized regression coefficients. This property of the components of Bi will facilitate
between-component comparisons and motivate ideas for modeling it parsimoniously.

3.2 Priors for Parameters in Joint Models
For Bayesian inference, we need to specify priors for parameters in the models described in
Section 3.1. Let bi denote the column vector obtained by stringing the rows of Bi (i = 1, . . . ,
m); that is, bi = (Bi,11, . . . , Bi,1T, . . . , Bi,TT)’. Let R1 = (R’1,11, . . . , R’m,11)’,

, and . We write the joint prior in our models as

(4)

This specification implies that β, bi, and  are a priori jointly independent of Ri,11 and,
marginally, β and  are a priori independent. Because we have little prior information for
β,  and Ri,11, we specify flat priors for β and  and a joint uniform prior (derived in
Barnard et al. 2000) for Ri,11,

(5)

(6)

and

(7)

where ri,jk (j ≠ k, j, k = 1, . . . ,T) is the off-diagonal element of the jth row and kth column in
Ri,11.
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3.2.1 Prior for the Elements of the Association Matrix—We now provide details on

the prior . Because the components of bi are the regression coefficients of Wij on
Yij, we expect many of the components of bi to be 0’s based on conditional independence
(Markov-type) arguments for longitudinal data. Consider, for example, the regression for
wij,t. Once we condition on {Yij,k : t - 1 ≤ k ≤ t + 1} (current value and lag 1 value forward and
backward), we might expect wij,t to be independent of {Yij,k : k > t + 1, k < t - 1} (values more
than lag 1 away). To incorporate these features into the model, we specify a hierarchical prior
distribution that essentially allows components of bi to be 0’s, borrowing ideas from Smith
and Kohn (2002). This also will facilitate reducing the number of dependence parameters,
which can be quite large.

A key feature of the hierarchical prior is that each component of bi (recall that each component
is on the same scale because they are standardized regression coefficients) can be exactly 0
with positive probability. To attain this, we introduce the latent indicator vector δi associated
with bi such that

where bi,tl is the component of the tth row and lth column in Bi and δi,tl is the corresponding
binary indicator of δi that is associated with bi,tl. The nonzero components of the vector bi (i.e.,
the components for which δi,tl = 1) are given a normal prior (conditional on δi,tl = 1) with mean

and covariance matrix

where Zij = Wij - X2ijβ2, Cijδ is obtained by removing from Cij the columns corresponding to
zero elements of bi, and Cij is T × T2 matrix with elements that are functions of Yij and the

tth row, .The vector δi is then given the
prior

(8)

(9)
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where δi = (δi,11, . . . , δi,1T, . . . , δi,T1, . . . , δi,TT)’; δi,tl (i = 1, . . . , m; l, t = 1, . . . , T) is the
element of δi associated with bi,tl, which is the regression coefficient of wij,t on yij,l, a0 is a
tuning parameter; and (ri, λi) are the corresponding hyperparameters.

The prior for bi, given δi, is derived based on

(10)

The rationale for (10) is that the prior provides only 1/nth of the weight provided by the
likelihood.

Based on this prior construction, the quantity  in prior (8) can be considered the prior
probability that bi,tl will require a nonzero estimate, and |t - l|1/a0 implies that bi,tl is more likely
to be 0 as |t - l|1/a0 grows larger. Here a0 is a tuning parameter that controls the rate of decay
of the probability of a nonzero component as a function of lag. Expression (8) implies that the
components of Bi become smaller a priori as they move away from the main diagonal (in the
longitudinal setting, become smaller as they move farther away in time). This exponent also
can be adjusted if we expect, a priori, a lagged relationship.

3.2.2 Using the Prior for the Association Matrix in Practice—A complication with

the prior for bi is that it is a function of , which complicates the form of the full
conditional distributions for the MCMC algorithm described in the Web appendix, Section I
(www.amstat.org/publications/jasa/supplemental_materials). To address this issue, we replace
the mean and covariance for the prior with μ^biδ and covariance Σ̂biδ, defined later. These

quantities are computed from an MCMC run with bi = 0 as  and

, where k indexes the posterior sample. An alternative would

be to just use a mean and variance with the posterior means of  plugged in.

3.2.3 Propriety of the Joint Posterior Distribution—Given that we have little prior
information on β,  and Ri,11, we propose using flat priors for β, , and Ri,11. Because
the priors for β and  are improper, we need to check that the joint posterior distribution is
integrable. In the Web appendix, Section II
(www.amstat.org/publications/jasa/supplemental_materials), we state (and prove) a theorem
that guarantees integrability of the posterior when four easily checked conditions are met. The
proof of this theorem extends some results of Chen and Shao (1999) for the propriety of
posterior distributions for multivariate categorical response models and of Daniels (2006) for
the propriety of the posterior for linear regression with cor related and/or heterogeneous errors.

4. POSTERIOR SAMPLING
4.1 The MCMC Sampling Algorithm

We develop an MCMC algorithm to sample from the posterior distribution of the parameter

, where , p = (p1, . . . , pm)’, and R1, b, and  are defined
as in (4). To simplify implementation of the algorithm, we include a data augmentation (DA)
step (Tanner and Wong 1987) that we use to impute the latent data and the missing values. Let
Qobs be the vector of observed binary outcomes, Qmis be the vector of missing binary outcomes,
Wobs be the vector of observed continuous outcomes, and Wmis be the vector of missing
continuous outcomes. Let Yobs denote the latent vector associated with Qobs and let Ymis denote
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the latent vector related to Qmis. Define Y to be  Q to be  and W to be

. We use the generic notation f for the distribution of responses, π for the prior
and posterior distributions of related parameters, and L for the likelihood function. Our
algorithm comprises a DA imputation (DAI) step and a posterior sampling step as follows:

1. DAI step. Sample latent data Y and missing values Wmis from f (Y, Wmis|θ,Qobs,
Wobs). To do this, factor this distribution as

(11)

2. PS step (posterior sampling step). Generate θ from f(θ|Y, W) using Gibbs sampling.
The DAI step involves sampling in the order from [Yobs|θ, Qobs, Wobs], [Ymis|θ,
Yobs, Wobs], and [Wmis|θ, Yobs, Ymis, Wobs]. Once we obtain latent data and missing
values, we need to sample from full conditional distributions of the components of
θ. This can be completed using the Gibbs sampler. All of the full conditional
distributions for the Gibbs sampler are derived in the Web appendix, Section I
(www.amstat.org/publications/jasa/supplemental_materials).

4.2 Technical Issues
To implement the MCMC algorithm efficiently, two technical issues must be addressed:
imputing the latent data and sampling the correlation matrix.

4.2.1 Imputing the Latent Data—One of the challenges with the multivariate probit models
is the simulation of latent variables from the TMVN distribution of Yobs given (θ, Qobs,
Wobs). We propose an algorithm to sample from this distribution efficiently.

For simplicity, assume that Y is a T × 1 vector and Y ~ N(μ, Σ)IU1, where U1 ∈ CT is a truncation
region. If we partition Y, μ, and Σ as

and

then we have  where

(12)

Here U1t = {yt ∈ C : (yt, y(-t)) ∈ U1}. Geweke (1991) and Robert (1995) proposed a Gibbs

sampling algorithm for sampling Y. The kernel of the Markov chain  in this
algorithm was obtained by successively generating the components of y from their full
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conditional distributions . A disadvantage of this
algorithm is that it requires repeatedly computing the T means and variances given in (12) and
often results in high autocorrelations. The following proposition provides a simple way to
sample from the TMVN distribution without the need to compute (12) each time; we expect it
to provide lower autocorrelations as well.

Proposition 1: Suppose that Y~ TN(μ, Σ)IU1, where U1 is the truncation region of Y.
Decompose Σ as PP’, where P is a lower triangular matrix. If U1 is a convex set, then simulating
Y from TN(μ, Σ)IU1 is equivalent to first sampling Z from TN(ν,IT × T)IU2 and then translating
back to Y through Y = PZ. Here, ν = P-1μ, and U2 is the transformed version of U1 (see the
Web appendix, Section II for the proof).

This proposition is motivated by the integral calculation method mentioned by Chib and
Greenberg (1998, p. 354). The idea behind this proposition is to obtain a more efficient
implementation of the Gibbs sampler based on the new set of T conditional distributions of
components of Z. These distributions are simple in the sense that we do not need to compute
means and variances in (12), and the univariate truncation intervals U2t can be easily derived.
For example, in our model, Y~ TN(μ, R)IU1 with U1 = {y ∈ CT: S1y ≤ 0}, where S1 is an
diagonal matrix with S1 (t, t) = 1 if Qt = 0 and -1 if Qt = 1 (t = 1, . . . , T). By the transformation
Z = P-1Y, we have Z~ TN(ν, IT × T)IU2, where U2 = {z ∈ CT:S2z ≤ 0} and S2 = S1P.

Thus, at iteration k, , where νt is the tth element of
ν and U2t = {zt∈C:S2z ≤ 0}. Let S2(-t) be the matrix {s1, . . . , st-1, st+1, . . . , sT}’, and let z(-t)
denote the vector {z1, . . . , zt-1, zt+1, . . . , zT}’. Then U2t is given by

(13)

The Markov chain  in our implementation of the Gibbs sampler can be
obtained by first generating all components of z one by one from

(t = 1, . . . , T), and then translating back to y(k) by y(k) =
Pz(k).

4.2.2 Sampling the Correlation Matrix—Sampling correlation matrices in MCMC
algorithms can be problematic. In addition to the positive definite constraint of covariance
matrices, they have diagonal elements fixed at 1. The ideas for data augmentation and parameter
expansion, introduced by Liu, Rubin, and Wu (1998), Liu and Wu (1999), and van Dyk and
Meng (2001) to speed up convergence of algorithms (EM, DA, or others), provide a useful tool
for addressing this problem. Liu (2007) and Liu and Daniels (2006) developed two-stage
parameter expanded reparameterization and Metropolis-Hastings (PX-RPMH) algorithms for
sampling a correlation matrix R by extending this idea. In these algorithms, the difficulty of
simulating R can be overcome by creating an “expanded” model in which R can be transformed
to a less constrained covariance matrix Ψ by borrowing the scale parameters from an expansion
parameter matrix. In what follows, we derive an PX-RPMH algorithm for sampling the
correlation matrix Ri,11 in the joint models in Section 3. For notational convenience, we denote
Ri,11 as Ri in this section.

Define θ(-Ri) to be the parameter vector not including Ri, and define Di to be the expansion
parameter, which is a diagonal matrix that we introduce to transform Ri into a less constrained
covariance matrix, Ψi = DiRiDi. Consider the following one-to-one mapping from {Yij,

Ri,Bi to :
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(14)

where  for any t = 1, . . . , T. Given β, the step that draws Yij implicitly draws

 and Di, because , where Di,tt is the tth element of

Di and  is the tth row of X1ij. The space for  is higher-dimensional than that for

(Yij, Ri, Bi), because Ri has fewer parameters than ψi. The constraints  for any t =
1, . . . , T, are needed to make the candidate transformation a one-to-one mapping. By specifying
the candidate prior for Ri, given by

(15)

where ai is a constant to be determined, we can derive a (parameter-expanded) candidate
density (PXCD) for Ψi based on the following proposition. Note that the candidate prior is
introduced solely to derive a candidate density for the Metropolis-Hastings algorithm. It is not
used for inference.

Proposition 2: If we choose priors as specified in Section 3.2, then, from the likelihood
function for the complete data in (2), transformation (14) and candidate prior (15), we obtain

(16)

where νi = ni - T, , , and . That is,
, Bi, β has an inverse-Wishart distribution with degrees of freedom νi and scale

parameter Si (see the Web appendix, Section II for the proof).

Proposition 2 gives the PXCD of Ψi to use as the proposal density in the Metropolis-Hastings
stage. In this stage, we first simulate Ψi from (16), and then obtain the correlation matrix Ri

through the reduction function . Second, we keep the candidate Ri with
probability αi (the acceptance rate in the Metropolis-Hastings algorithm). Sampling Ri based
on this algorithm is given in the following theorem.

Theorem 1: Assume that θ(-Ri) and Ri are a priori independent, that is, π(θ(-Ri)), Ri) = π(θ
(-Ri)π(Ri). If we choose priors as specified in Section 3.2 for θ(-Ri) and Ri, then, under
transformation (14) and candidate prior (15), simulating Ri is equivalent to simulating Ψi first
from the inverse-Wishart distribution (16) and then translating it back to Ri through

 in (14) and accepting the candidate Ri using a Metropolis-Hastings step with

some acceptance rate αi, where  at iteration k + 1 (see
the Web appendix, Section II for the proof).
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Theorem 1 provides a simple way to simulate the correlation matrix in the models proposed
in this study.

4.2.3 Efficiency of the New Algorithms—Previous work (Liu 2007; Liu and Daniels
2006) has shown that the PX-RPMH algorithm is more efficient than other methods, such as
the GG sampler (Ritter and Tanner 1992) and RW-MH algorithms (Chib and Greenberg
1998), for sampling a correlation matrix. Those authors compared the performance of the
algorithms in detail, and the algorithms will generalize to our setting, the joint models specified
in Section 3.

For sampling from the TMVN as described in Section 5.2.1, we conducted several simulations
to compare our method with the Gibbs sampling technique of Robert (1995). In particular, we
evaluated the mixing of Markov chain output from the two algorithms by calculating the lag-
n (n = 1, 2, 3,. . .) autocorrelation of each component of Y. (The faster the decay of
autocorrelation, the faster the mixing.) We denote our algorithm by LD-A and that of Robert
(1995) by R-A. The decay of the autocorrelation was much faster for the LD-A algorithm than
for the R-A algorithm; see the Web appendix, Section III
(www.amstat.org/publications/jasa/supplemental_materials) for additional details. We next
provide some summary remarks.

Remark 1: One computational inefficiency of the R-A for sampling from the TMVN
distribution is that we need to repeatedly compute conditional means and variances in (12).
The LD-A does not require this updating. The computational gains from this aspect are
minimal, however.

Remark 2: The mixing of the chain from the R-A grows slower as the truncation region U1
increases; however, the LD-A has the advantage of fast mixing, regardless of the volume of
U1. Specifically, when the truncation region approaches infinity (i.e., no truncation), the LD-
A provides an iid sample.

Remark 3: The correlation between components of Y has little influence on the mixing of the
chain from the LD-A, whereas it affects the performance of the R-A. We see this when
comparing the two algorithms for various choices for Σ.

5. MODEL SELECTION AND GOODNESS OF FIT
5.1 Model Comparison

We now consider the problem of comparing alternative models. For the models in Section 3,
competing models arise from restrictions on the prior for the association matrix Bi, correlation
matrices Ri,11, and/or conditional covariance matrices  For example, we might assume that
Ri,11 = R11 and  when there are insufficient data to estimate all of the parameters.
Although Bayes factors and marginal likelihoods are appealing, these approaches are very
difficult to implement in a complex hierarchical model, such as the one proposed in this article
(Liu 2006). As a result, we derive the deviance information criterion (DIC) (Spiegelhalter,
Best, Carlin, and van der Linde 2002) to compare the alternative models. A main reason that
we use the DIC is that its computation will be a ready byproduct of the MCMC simulations.
But we note its drawbacks, which include lack of invariance to reparameterization and potential
ambiguity in the choice of likelihood.

The DIC is defined as a classical estimate of fit plus a penalty,
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where  is the posterior mean of the deviance and  is the effective number
of parameters in the model. Given that we have missing data from subjects dropping out, we
use the observed data likelihood as the likelihood to construct the DIC (Celeux, Forbes, Robert,
and Titterington 2006; Daniels and Hogan 2008). Thus  is defined as

and pD is given by

where θ = (β, Σ), and θ‾ is the posterior mean. Details of the computation of the DIC for the
joint models are given in the Web appendix, Section IV
(www.amstat.org/publications/jasa/supplemental_materials).

5.2 Model Checking
The “best” model chosen from models under consideration according to the DIC still may not
fit the data well. To check model fit, we use posterior predictive checks based on a discrepancy
function (Gelman, Meng, and Stern 1996). The “significance” of these checks often is
summarized with the posterior predictive p value (ppp) (Gelman et al. 1996); however, the ppp
has the major problem that its distribution under the null tends to concentrate around .5 (Robins,
Ventura, and van der Vaart 2000). As a result, we check the goodness of fit of the selected joint
models based on the calibrated ppp (cppp) (Hjort, Dahl, and Steinbakk 2006), defined as

(17)

where u = (Q’,W’)’, ppp(uobs) is the ppp derived by Gelman, Mechelen, Verbeke, Heitjan,
and Meulders (2004), and U has the distribution implied by the prior and the model. Note that
uobs corresponds to the observed vector of responses along with the data augmented responses
sampled at each iteration (i.e., Qmis and Wmis). We discuss the form of the discrepancy function
in the example. Hjort et al. (2006) showed that the distribution of ppp(U) is a Uniform(0,1)
and that the cppp in (17) is a proper p value. To calculate ppp(U) in (17), we need to first
produce a sample of U. We can obtain U by first sampling θ from (4) and then drawing U from
f (U|θ). The problem arises in sampling θ from π(θ), because in (4), we specified flat priors for
β and . We address this sampling issue next.

To approximately sample β and  from flat priors, we use the following diffuse priors in
place of the improper priors for β and  As we did for the prior for bi in Section 3.2.2, we
run the independence model with bi = 0 to obtain the posterior mean and covariance of β
(denoted by μβ and Vβ) and the posterior mean of  (denoted by ). Then the approximate
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diffuse prior for β can be set as a normal with mean μβ and covariance matrix Vβ multiplied
by the number of subjects (as with a unit information prior [Kass and Wasserman 1996]), and
the diffuse prior for  can be set as an inverse-Wishart with degrees of freedom T and scale
matrix . Note that to sample Ri,11 from the uniform prior, we use the algorithm of Joe
(2006).

6. DATA ANALYSIS
We use the methodology described in Sections 3-5 to analyze the association of longitudinal
quit status and weight change in the CTQ II clinical trial described in Section 2. We removed
the observations at week 1 and 2 from the data, because the quit rates in these two weeks were
very low (0 and 1.10%) due to the design of the study in which subjects were not supposed to
try to quit smoking until week 3. Although participants were encouraged to make up missed
sessions, there still existed intermittent missing values in quit status and/or weight gain. In
addition, a large number of subjects dropped out before the end of the experiment. In what
follows, we assume this missingness is ignorable.

For the mean of the two longitudinal responses as a function of covariates, we set β in (1) to
be the vector of means at each time point across treatments; thus, the tth row of the design
matrix is a vector of 0’s, with a 1 in the tth slot. Exploratory analysis suggested setting a0 in
(8) to be 4; this implies a slower decrease than the raw lag.

6.1 Comparing the Competing Models
We considered several models arising from restrictions on the association matrixes Bi, the prior
for the association matrices Bi, the correlation matrices Ri,11 and conditional covariance
matrices . We fit a total of nine models to the CTQ II trial data. Denote the kth alternative
model by Mk. Table 1 gives the details of all of the models considered.

For each model in Table 1, we computed the DIC using the methodology derived in Section
5. The DICs for all of the models are given in Table 2. From Table 2, we can see that the DIC
is the smallest for model M5 and the largest for model M3. In general, the models using
shrinkage priors for association matrices fit better.

6.2 Checking the Goodness of Fit
For the CTQ II data, we defined the discrepancy function to be weekly quit rates or weekly
average weight gains. Table 3 gives the cppp for quit rates and average weight gains at each
week across treatments for model 5 (M5). These p values were calculated based on comparison
of 2,000 pairs of [ppp(u), ppp(uobs)], with the ppp obtained using 5,000 iterations after burn-
in. From this table, we can see that there are no extreme p values (<.05 or >.95). These checks
suggest that the joint models (M5) fit the mean structure of the CTQ II clinical trial data well.

6.3 Inference on the Quit Rates and Association
Given the results presented in Sections 6.1 and 6.2, we base inference on model M5 (Table 1).
We ran the MCMC algorithm described in Section 4.1 until convergence (determined by
examining trace plots of multiple chains) and based inference on the last 10,000 iterations after
burn-in.

Posterior means and 95% credible intervals (CIs) for quit rates across treatments are given in
Table 4. The quit rates over time were slightly lower in the exercise treatment than in the
wellness treatment. The 95% CI for the difference of quit rates between two treatments at the
final week was (-.014, .150), marginally significant. This suggests that the exercise treatment
does not have a positive effect on smoking cessation (more later).
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We now turn our attention to the association between smoking cessation and weight gain. The
pi (i = 1, 2) defined in (9) can be viewed as a summary measure of the overall magnitude of
the association between quit status and weight gain for the two treatments. The estimates of
pi are p1 = .26 (no exercise) and p2= .18 (exercise); the 95% CI for their difference is (.025, .
134). These results support the hypothesis that exercise weakens the association between quit
status and weight gain.

This weakening also can be seen by examining the posterior means of association matrixes
across treatments, as given in Table 5. We have removed from the table those elements of the
Bi matrix with probabilities of the corresponding indicators being equal to 1 of <.1. The
weakened associations between smoking cessation and weight gain is obvious by noting the
presence of more 0’s under the exercise treatment and the larger magnitude of the
(standardized) coefficients.

Table 6 shows the posterior means of pairwise correlations with 95% credible intervals;
correlations whose 95% credible intervals covered 0 are excluded. We can see that smoking
cessation and weight gain appear to have a lagged correlation structure, and that exercise
weakens pairwise correlations. In particular, we point out the 2 × 2 blocks in the upper right
corners of pairwise correlation matrixes under both treatments (in bold-type). For the wellness
treatment, the four pairwise correlations between weight gain at the beginning of the study and
quit status at weeks 5 and 6 are all negative. This means that people who gain weight early in
the trial are more likely to be smoking at the end. The corresponding correlations are essentially
0’s (no longer significant) under the exercise arm. In addition, looking at the last row in Table
6 for the wellness arm, the correlations indicate those who quit early in the study are more
likely to gain weight by the end (week 6); the corresponding relationship in the exercise arm
is weaker.

7. CONCLUSIONS AND DISCUSSION
We have developed joint models for the association of longitudinal binary and continuous
processes and applied them to the analysis of the CTQ II clinical trial to gain insight into the
joint evolution of smoking status and weight gain. The results show that moderate-intensity
exercise was not successful for smoking cessation, but that it did appear to weaken the
association between smoking status and weight gain, supporting the hypothesis that exercise
has an effect on smoking cessation by weakening the association between quitting smoking
and gaining weight.

But we should be cautious in overinterpreting these results, because of the low compliance in
the exercise arm. We might expect the low compliance to negatively bias the smoking cessation
results (probability of quitting was too low) on the exercise arm; that is, the intention-to-treat
effect (randomization to the exercise arm) reported here might be expected to be quite different
from the causal effect (adherence to the exercise regimen). But the ability to still see the
weakened association between weight gain and smoking on the exercise arm despite the low
compliance supports this as the mechanism of action for exercise as a therapy for smoking
cessation. In future work, we will extend these joint models to estimate causal effects and allow
for nonignorable dropout.

An alternative way to factor model (1) is to decompose it into a marginal model for Wij and a
conditional probit regression model for Yij, conditioning on Wij. This factorization could
potentially greatly increase the computational burden in sampling the correlation matrix if the
diagonal elements of Σi,11 were still fixed at 1 (due to not being identified); however, this
computational problem could be avoided by fixing the diagonal elements of the conditional

covariance matrix  to be l’s (i.e., make this matrix a correlation
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matrix). For interpretation of the mean parameters, β, this computationally simpler approach
would require adjusting the β components corresponding to the longitudinal binary process
with the diagonal elements of the marginal covariance matrix Σi,11, which in this case would
have nonidentical diagonal elements.

The general methodology proposed here can be applied to analysis of other data sets where
there are two processes and the question of interest is the association between the two processes.
The methodology also can be directly extended to other longitudinal cases, such as modeling
the association between longitudinal ordinal and continuous processes or between two
continuous processes (Liu 2006).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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