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Abstract
Current yeast interactome network maps contain several hundred molecular complexes with limited
and somewhat controversial representation of direct binary interactions. We carried out a comparative
quality assessment of current yeast interactome datasets, demonstrating that high-throughput yeast
two-hybrid (Y2H) provides high-quality binary interaction information. As a large fraction of the
yeast binary interactome remains to be mapped, we developed an empirically-controlled mapping
framework to produce a “second-generation” high-quality high-throughput Y2H dataset covering
~20% of all yeast binary interactions. Both Y2H and affinity-purification followed by mass

+To whom correspondence should be addressed. Email: marc_vidal@dfci.harvard.edu.
*These authors contributed equally to this work.
Supporting Online Material SOM Text Figs. S1-35 Tables S1-5 References

NIH Public Access
Author Manuscript
Science. Author manuscript; available in PMC 2009 September 18.

Published in final edited form as:
Science. 2008 October 3; 322(5898): 104–110. doi:10.1126/science.1158684.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



spectrometry (AP/MS) data are of equally high quality but of a fundamentally different and
complementary nature resulting in networks with different topological and biological properties.
Compared to co-complex interactome models, this binary map is enriched for transient signaling
interactions and inter-complex connections with a highly significant clustering between essential
proteins. Rather than correlating with essentiality, protein connectivity correlates with genetic
pleiotropy.

A crucial step towards understanding cellular systems properties is mapping networks of
physical DNA-, RNA- and protein-protein interactions, the “interactome network”, of an
organism of interest as completely and accurately as possible. One approach consists in
systematically testing all pairwise combinations of predicted proteins to derive the “binary”
interactome. Early attempts at binary interactome mapping used high-throughput yeast two-
hybrid (Y2H), in which a protein interaction reconstitutes a transcription factor that activates
expression of reporter genes. High-throughput Y2H maps have been generated for
Saccharomyces cerevisiae (1-3), Caenorhabditis elegans (4-6), Drosophila melanogaster (7),
and human (8-10). An alternative approach consists in generating “co-complex” interactome
maps, achievable by high-throughput co-affinity purification followed by mass spectrometry
(AP/MS) to identify proteins bound to tagged baits, as done for Escherichia coli (11,12), S.
cerevisiae (13-16), and human (17).

To investigate fundamental questions of interactome network structure and function, it is
necessary to understand how the size and quality of currently available maps, including
thorough evaluation of differences between binary and co-complex maps, might have affected
conclusions about global and local properties of interactome networks (18,19). Here, we
address these issues using the yeast S. cerevisiae as a model system.

First, we compared the quality of existing high-throughput binary and co-complex datasets to
information obtained from curating low-throughput experiments described in the literature
(Fig. 1A). For binary interactions we examined: (i) the subset found by Uetz et al. in a proteome-
scale all-by-all screen (“Uetz-screen”), excluding the pairs found in a focused, potentially
biased experiment involving only 193 baits (“Uetz-array”) (2); and (ii) the Ito et al. interactions
found three times or more (“Ito-core”), independently from those found one or two times (“Ito-
noncore”), a distinction recommended by the authors but seldom applied in the literature (3).
For co-complex associations, we investigated two high-throughput AP/MS datasets referred
to as “Gavin” (15) and “Krogan” (16). For literature-curated interactions, we only considered
those curated from two or more publications (“LC-multiple”) (20), which we considered of
higher quality than those curated from a single publication.

To experimentally compare the quality of these datasets, we selected a representative sample
of ~200 protein interaction pairs from each one and tested them by means of two independent
interaction assays, Y2H and a yellow fluorescent protein complementation assay (PCA) (21)
[Supporting Online Material (SOM) I]. In PCA, bait and prey proteins are fused to non-
fluorescent fragments of yellow fluorescent protein that, when brought in close proximity by
interacting proteins, reconstitute a fluorescent protein in mammalian cells. In contrast,
reconstitution of a transcription factor in Y2H experiments takes place in the nucleus of yeast
cells. In terms of assay designs, Y2H and PCA can be considered as orthogonal assays and can
be used to validate each other's results.

No single assay is expected to detect 100% of genuine interactions, and the actual fraction of
positives detected is inherently linked to the stringency at which the assay is implemented. To
identify the optimal scoring condition of each assay we selected a set of ~100 well-documented
yeast protein-protein interaction pairs [“positive reference set” (PRS)] and a set of ~100 random
pairs [“random reference set” (RRS)] (Fig. 1B; SOM II). Because RRS pairs were picked
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uniformly from the 14×106 possible pairings of proteins within our yeast ORFeome collection
(22) (excluding those reported as interacting), these pairs are extremely unlikely to be
interacting.

Sampled pairs from binary Uetz-screen and Ito-core datasets tested positive at levels as high
as the positive control PRS, demonstrating their high quality (Fig. 1C). A sample of literature-
curated LC-multiple interactions tested slightly lower with Y2H, while being indistinguishable
by PCA (Fig. 1C), demonstrating that high-throughput Y2H datasets can be comparable in
quality to literature-curated information. In striking contrast, sampled pairs from Ito-noncore
tested at levels similar to the negative control RRS, confirming the low quality of this particular
dataset (Fig. 1C).

Sampled pairs from Gavin and Krogan high-throughput AP/MS datasets tested poorly in our
two binary interaction assays (Fig. 1C), albeit at levels similar to Munich Information Center
for Protein Sequences (MIPS) complexes, a widely-used gold standard (23). This observation
demonstrates that, at least for detecting binary interactions, Y2H performs better than AP/MS

Our experimental data quality assessment shows that binary Uetz-screen, Ito-core, and LC-
multiple datasets are of high quality, while Ito-noncore should not be used. AP/MS datasets,
although of intrinsically good quality (15,16), should be used with caution when binary
interaction information is needed.

Our experimental results contrast strikingly with computational analyses that suggested that
high-throughput Y2H datasets contain more false positives than literature-curated or high-
throughput AP/MS datasets (24,25). In computational analyses, the quality of a dataset is often
determined by the fraction of interactions also present in a pre-defined gold standard set (24).
Generally, MIPS complexes have been considered as gold standard with all proteins
constituting a given complex modeled as interacting with each other. Such modeling results in
limited and biased sampling issues against binary interactions since not all proteins in a
complex contact each other directly (fig. S1), and not all direct physical interactions occur
within complexes (fig. S2; SOM III). Hence, while MIPS complexes are appropriate for
benchmarking co-complex membership datasets, they are not for binary interaction datasets.
This distinction is corroborated by the poor experimental confirmation rate of pairs from MIPS
complexes using binary assays (Fig. 1C).

To computationally re-examine the quality of existing yeast interactome datasets we assembled
a binary gold standard set (“Binary-GS”) of 1,318 high-confidence physical binary interactions
(Fig. 1B; SOM III). Binary-GS includes direct physical interactions within well-established
complexes as well as conditional interactions (e.g., dependent on posttranslational
modifications) and thus represents well-documented direct physical interactions in the yeast
interactome (26). When measured against Binary-GS, the quality of high-throughput Y2H
datasets (with the exception of Ito-noncore) was substantially better (SOM IV and V) than that
of high-throughput AP/MS datasets (Fig. 1D). Our results demonstrate the distinct nature of
binary and co-complex data. Generally, Y2H datasets contain high quality direct binary
interactions, whereas AP/MS co-complex datasets are composed of direct interactions mixed
with preponderant indirect associations (SOM VI).

The proteome-wide binary datasets, Uetz-screen and Ito-core, contain 682 and 843 interactions,
respectively (2,3). The overlap between these two datasets appears low (3,24): 19% of Uetz-
screen and 15% of Ito-core interactions were detected in the other dataset. Given our
demonstration of high quality for these datasets (Fig. 1C, D), we conclude that the small overlap
stems primarily from low sensitivity (i.e., many false negatives) rather than from low specificity
(i.e., many false positives as previously suggested).
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Several factors might affect sensitivity. First, the space of pair-wise protein combinations
actually tested in each dataset might have been considerably different. We refer to the fraction
of all possible pairs tested in a given screen as the “completeness”. For example, missing 10%
of ORFs in each mapping project could reduce the common tested space down to 66%
[(0.9×0.9) × (0.9×0.9)] of all possible pair-wise combinations. Second, different protein
interaction assays or even different versions of the same assay detect different subsets of pairs
out of all possible interactions, explaining partly the limited overlap between datasets obtained
with different Y2H versions. For any assay, the “assay-sensitivity” is estimated as the fraction
of PRS interactions detected, which for our Y2H assay was determined empirically to be ~20%
(Fig. 1C). Finally, when screening tens if not hundreds of millions of protein pairs in any tested
space, that search space might need to be sampled multiple times to report all or nearly all
interactions detectable by the assay used. The fraction of all theoretically detectable
interactions by a particular assay found in a given experiment is its “sampling-sensitivity”.
These three parameters fully account for the seemingly small overlap between Ito-core and
Uetz-screen (SOM VII), demonstrating that a large fraction of the S. cerevisiae binary
interactome remains to be mapped. Therefore, we carried out a new proteome-scale yeast high-
throughput Y2H screen (fig. S3).

We used 5,796 Gateway-cloned ORFs available in the yeast MORF collection (22). After
subcloning these ORFs into Y2H vectors and removing auto-activators (27,28), our search
space became 3,917 DB-Xs against 5,246 AD-Ys, representing a completeness of 77% (Fig.
2A; SOM VI), comparable to that of recent AP/MS datasets (15) (~78%; SOM VI).

To address sampling-sensitivity, we determined what fraction of all detectable interactions is
found in each pass after eight trials in a search space of 658 DB-X and 1,249 AD-Y ORFs. A
single trial identified about 60% of all possible interactions that can be detected with our high-
throughput Y2H, whereas three to five repeats were required to obtain 80-90% (Fig. 2B; SOM
VI). We decided to screen the whole search space three times independently to yield an
estimated sampling-sensitivity of 85% (Fig. 2B). In total ~88,000 colonies were picked, of
which 21,432 scored positive upon more detailed phenotyping (SOM I). After identifying all
putative interaction pairs by sequencing, phenotypically retesting them using fresh cultures
from archival stocks, and eliminating de novo auto-activators (28), we obtained a final dataset,
“CCSBYI1”, of 1,809 interactions among 1,278 proteins.

To validate the overall quality of CCSB-YI1, we tested 94 randomly-chosen interactions by
PCA and mammalian protein-protein interaction trap (MAPPIT; SOM I) (21,29). MAPPIT
takes place at the mammalian cell membrane and measures interactions via activation of
STAT3-dependent reporter expression. Using both PCA and MAPPIT the confirmation rate
of CCSB-YI1 was similar to those of Ito-core and Uetz-screen (Fig. 1C). The precision [i.e.,
fraction of true positives in the dataset (30)] of CCSB-YI1 is estimated at 94-100% (Fig. 2C;
fig. S4; SOM VI). Additionally, the performance of our high-throughput Y2H approach was
confirmed via a larger RRS of 1,000 random pairs (30) (Fig. 1B), none of which tested positive
(SOM II).

The overlaps of Uetz-screen (27%) and Ito-core (35%) with CCSB-YI1 (Fig. 2D) can be
explained by the completeness, assay- and sampling-sensitivity of the three experiments (SOM
VII) and agree well with the results of the pairwise confirmation of those two datasets (Fig.
1C). Similar principles apply to other large-scale experiments such as AP/MS, likely
accounting for the low overlap between Krogan and Gavin (~25%; fig. S5B).

Factoring in completeness, precision, assay-, and sampling-sensitivity, we estimated that the
yeast binary interactome consists of ~18,000±4,500 interactions (SOM VI), experimentally
validating previous computational estimates of 17,000 to 25,000 interactions (31,32). To obtain
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a more comprehensive map of the binary yeast interactome we combined the three available
high-quality proteome-scale Y2H datasets (SOM VII). The union of Uetz-screen, Ito-core, and
CCSB-YI1, “Y2H-union”, contains 2,930 binary interactions among 2,018 proteins, which,
according to our empirical estimate of the interactome size, represents ~20% of the whole yeast
binary interactome (Fig 3A).

We re-examined global topological features of this new yeast interactome network, facing
lower risk of over-interpreting properties due to limited sampling and various biases in the data
(18). To contrast topological properties of the binary Y2H-union network with that of the co-
complex network, we used an integrated AP/MS dataset (33), which was generated by
combining raw high-throughput AP/MS data (15,16). This “Combined-AP/MS” dataset,
composed of 9,070 co-complex membership associations between 1,622 proteins, attempts to
model binary interactions from co-complex data (Fig. 3A).

As found previously for other macromolecular networks, the connectivity or “degree”
distribution of all three datasets is best approximated by a power-law (34) (fig. S6; SOM VIII).
Highly connected proteins, or “hubs”, are reportedly more likely encoded by essential genes
than less connected proteins (35). Surprisingly, Y2H-union lacked any correlation between
degree and essentiality (Fig. 3B). This discrepancy might stem from biases in the datasets
available at the time of the original observation: interactions reported in Uetz et al. (Uetz-array
and Uetz-screen) and literature-curated interactions. Although Uetz-array is of high quality
(fig. S7), its experimental design could negatively influence network analyses. Most hub
proteins in Uetz-array were found as baits (fig. S8) and the percentage of essential proteins in
the 193 bait proteins is two times higher (34.7%) than that of all protein-encoding ORFs in the
yeast genome (18.4%), explaining the high correlation between degree and essentiality (Fig.
3C). Likewise, literature-curated interactions seem prone to sociological and other inspection
biases (SOM VII). Thus, we refrain heretofore from using LC-multiple in our further
topological and biological analyses. No significant correlation between degree of
connectedness and essentiality was observed in any of the three proteome-wide high-
throughput binary datasets available today (i.e., Ito-core, Uetz-screen, and CCSB-YI1; Fig.
3C), as well as new versions of our C. elegans and human interactome maps (fig. S9; SOM
IX).

Hub proteins instead relate to pleiotropy, the number of phenotypes observed as a consequence
of gene knock-out (SOM I). There was a significant correlation in Y2H-union between
connectivity and the number of phenotypes observed in global phenotypic profiling analyses
of yeast genes (36) (Fig. 3D). Thus the number of binary physical interactions mediated by a
protein seems to better correlate with the number of cellular processes in which it participates
than its essentiality. The correlation between degree and number of phenotypes is not observed
in Combined-AP/MS, likely because co-complex associations reflect the size of protein
complexes more than the number of processes they might be involved in.

We confirmed the concept of modularity in the yeast interactome network, whereby date hubs
that dynamically interact with their partners appear particularly central to global connectivity
while static party hubs appear to function locally in specific biological modules (37). The
proportion of date and party hubs is strikingly different between Y2H-union and Combined-
AP/MS (Fig. 3E). There are significantly more date hubs in the binary network, whereas party
hubs are prevalent in the co-complex network. In the binary network, date hubs are crucial to
the topological integrity of the network, while party hubs have minimal effects. However, in
the co-complex network, date and party hubs affect the topological integrity of the network
equally, likely because most hubs in Combined-AP/MS reside in large stable complexes, while
hubs in Y2H-union preferentially connect diverse cellular processes.
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Surprisingly, essential proteins strongly tended to interact with each other (Fig. 4A; SOM IX).
Concentrating on the subnetwork formed by interactions mediated by and among essential
proteins (fig. S10), we found a giant component whose size is much larger than expected by
chance (Fig. 4B). To better understand the clustering of essential proteins, we examined the
interacting essential protein pairs that are also reported to be in the same complex, finding 106
interacting essential protein pairs, a greater number than expected by chance (Fig. 4C; SOM
IX).

We investigated the overall relationships between Y2H-union and Gene Ontology (GO)
attributes (38), phenotypic and expression profiling similarities (39), and transcriptional
regulatory networks (40). Both Y2H-union and Combined-AP/MS show significant
enrichment (all P<10-10) for functionally similar pairs in all three GO branches (Fig. 5A)
(41). There is also significant enrichment of positive correlations of phenotypic profiles (36)
between interacting pairs in both datasets (Fig. 5B; fig. S11). Such interactions supported by
strong phenotypic information constitute likely possibilities of functional relationships. Lastly,
both datasets are significantly enriched with pairs co-expressed across many conditions (fig.
S12), although Combined-AP/MS shows higher enrichment (Fig. 5C), agreeing well with the
different nature of the two assays: AP/MS aims at detecting stable complexes whereas Y2H
tends to detect more transient and condition specific protein interactions. This observation is
further supported by enrichment of kinase-substrate pairs in Y2H-union (SOM X; fig. S13).

To explore the mechanisms behind co-expression of interacting protein pairs we combined
transcriptional regulatory networks with interactome network information (40). Interacting
proteins in both networks showed a tendency to be co-regulated by common transcription
factors (TFs; Fig. 5D). Similarly to what we observed in the co-expression correlation analysis
(Fig. 5C), the enrichment for interacting pairs in Combined-AP/MS was significantly higher
than that of Y2H-union. Strikingly, we observed a significant enrichment of protein-protein
interactions between TFs involved in a common “multi-input motif” (42,43) (MIM, where
multiple TFs co-regulate a given set of genes; Fig. 5D; SOM ×). The fraction of co-regulating
TF pairs is much higher in the binary interactome than in the co-complex network, suggesting
that various TFs function together to form transient complexes to differentially regulate
transcriptional targets (44).

These observations suggest that our binary interactome dataset is enriched in transient or
condition-specific interactions linking different subcellular processes and molecular machines.
To further explore this possibility we calculated “edge-betweenness” for each interaction in a
merged network of all available interactions (SOM XI), measuring the number of shortest paths
between all protein pairs that traverse a given edge. The higher edge-betweenness of
interactions from Y2H-union shows the tendency of Y2H to detect key interactions outside of
complexes, significantly more often than AP/MS (Fig. 5D). Several examples of such complex-
to-complex connectivity are evident in a complete map of MIPS complexes connected by Y2H
interactions (fig. S14).

Overall, we infer that Y2H interrogates a different subspace within the whole interactome than
AP/MS, and Y2H interactions represent key connections between different complexes and
pathways. Y2H and AP/MS provide orthogonal information about the interactome and are both
vital to obtain a complete picture of cellular protein-protein interaction networks.
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Fig. 1.
Evaluation of S. cerevisiae protein-protein interaction datasets. (A) Number of interactions
reported in various large-scale S. cerevisiae protein-protein interaction datasets. (B) Schema
of pipeline used to assemble binary positive and random reference sets. (C) Fraction of a
random sample of interactions from each dataset confirmed by Y2H and PCA. (D) Fraction of
positives in each dataset calculated using MIPS and Binary-GS. (Error bars indicate standard
error).
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Fig. 2.
Large-scale Y2H interactome screen. (A) Completeness of the Y2H screen. (B) Sampling-
sensitivity of CCSB Y2H screens measured by screening a subspace multiple times. (C)
Fraction of protein pairs in PRS, RRS, and CCSBYI1 that test positive by PCA, MAPPIT or
Y2H. (D) Overlaps between three high-quality large-scale S. cerevisiae Y2H datasets
(*P<10-7).
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Fig. 3.
Network analysis of Y2H-union, Combined-AP/MS and LC-multiple datasets. (A) Network
representations. Shown are relationships between increasing degree of a gene product and
(B) the fraction of essential genes with the corresponding degree, (C) the fraction of essential
genes with the corresponding degree for Y2H datasets, (D) the number of phenotypes
associated with deletion of the encoding gene. (E) Contribution of date hubs and party hubs
as measured by change in the characteristic path length after simulated removal of edges by
deleting the indicated types of nodes. Inset: fraction of date hubs and party hubs for each dataset.
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Fig. 4.
Clustering of essential proteins. (A) Average fraction of essential proteins among proteins
whose distance are equal to d from a protein selected from essential, non-essential and all
proteins. (B) Giant component size of network formed by essential proteins (arrow) compared
to 100,000 random networks of same topological properties. (C) The number of interacting
essential proteins that are also found in the same complex compared to 10,000 random
selections of proteins of the same number as essential proteins (SOM IX).
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Fig. 5.
Biological features of yeast interactome datasets. (A) Enrichment of interacting protein pairs
(relative to random) that share GO annotations in the biological process, cellular component
and molecular function branches of GO ontology. (B) Pearson correlation coefficient (PCC)
of phenotypic profiles between interacting pairs in different datasets. (C) Co-expression
correlation between interacting pairs. (D) Left panel: enrichment of interacting proteins as
targets of a common TF (co-regulated), and enrichment of interacting TFs in a common MIM
(co-regulating) (*P<10-3). Right panel: fraction of bottlenecks from each dataset in the
combined network (SOM XI). Top 10% of edges with the highest betweenness are defined as
“bottlenecks” (45).
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