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Robust Conjunctive Item–Place Coding by Hippocampal
Neurons Parallels Learning What Happens Where
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Previous research indicates a critical role of the hippocampus in memory for events in the context in which they occur. However, studies
to date have not provided compelling evidence that hippocampal neurons encode event– context conjunctions directly associated with
this kind of learning. Here we report that, as animals learn different meanings for items in distinct contexts, individual hippocampal
neurons develop responses to specific stimuli in the places where they have differential significance. Furthermore, this conjunctive
coding evolves in the form of enhanced item-specific responses within a subset of the preexisting spatial representation. These findings
support the view that conjunctive representations in the hippocampus underlie the acquisition of context-specific memories.

Introduction
Recent theories about the functional organization of the medial
temporal lobe memory system have focused on distinct cortical
streams of “what” and “where” information converging within
the hippocampus, which combines this information to generate
representations of salient items (“what”) in the places (“where”)
they occurred (Davachi, 2006; Manns and Eichenbaum, 2006;
Diana et al., 2007; Eichenbaum et al., 2007).

Several studies have reported that hippocampal neurons
fire in association with combinations of specific memory cues
and the locations in which they are presented (for review, see
Eichenbaum, 2004). However, the appearance of neurons that
encode item–place conjunctions has not been directly related
to the learning of item and place associations. In addition, the
prevalence of item–place conjunctive activity is typically quite
low compared with spatially specific firing, leading many to
the alternative view that the hippocampal item coding is coin-
cidental to a primary representation of maps and routes
(O’Keefe, 2007).

Functional imaging studies have also identified selective hip-
pocampal activation related to memory for item–place associ-
ations (Henke et al., 1997; Davachi et al., 2003; Hannula and
Ranganath, 2008). However, these studies are unable to charac-
terize the specific information that drives this activation, raising
the question as to whether the increased activity reflects the for-
mation of specific item–place associations or just generally
stronger memory (Squire et al., 2007). Characterization of
single neuron activity in the hippocampus during a task in which

item–place associations are learned could determine whether fir-
ing rates increase separately to items and to locations, reflecting
generally increased memory, or whether firing rates increase
specifically to item–place conjunctions, reflecting memory for
these associations.

Here we recorded from hippocampal principal neurons in rats
learning which of two items is rewarded depending on the envi-
ronmental context in which they were presented (Rajji et al.,
2006). We observed that a large percentage of hippocampal neu-
rons developed representations of task-relevant item–place asso-
ciations, and their evolution was closely correlated with learning
those associations. Furthermore, the item–place representations
developed from preexisting spatial representations into en-
hanced activations when particular items were sampled in spe-
cific locations. Conversely, the representation of the items alone
was minimal throughout learning, and the representation of
places where any object was sampled, although strong, remained
unchanged throughout training. These findings join the phe-
nomenology of place cells with learning what happens where and
support the hypothesis that the development of conjunctive rep-
resentations within the hippocampus underlies memories for
items in the places where they occur.

Materials and Methods
Five 400 – 450 g male Long–Evans rats were maintained at a minimum of
85% of normal body weight. Each rat was initially shaped to dig in 10-
cm-tall, 11-cm-wide terra cotta pots filled with common playground
sand (QUIKRETE Premium Play Sand) for one-quarter Froot Loop
(Kellog’s) pieces. Then animals were trained on a simple discrimination
between two pots filled with sand and scented with different oil fra-
grances [aloe (Jason Natural Products) vs clove (AuraCacia)] placed side
by side simultaneously in the home cage. All oil fragrances were diluted at
a 2% concentration within vegetable oil (Wesson). The left–right posi-
tions of the two stimuli were pseudorandomized, although they were
never located in the same positions on more than three consecutive trials.
The rat could dig in the aloe-scented pot for one-quarter of a Froot Loop,
but digging in the clove-scented pot resulted in a 5 s timeout. Rats
achieved a performance criterion of 8 correct of 10 consecutive trials
within a single session.
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The next day, rats were exposed for 15 min to the environment where
conditional discrimination testing would take place and were allowed to
forage for food scattered on the floor of the apparatus. The environment
consisted of two 37 � 37 cm boxes connected by a central alley that
allowed the rat to shuttle between them (Fig. 1a). The entrance to the
central alley could be closed with dividers to block the animal within
either box. Each box differed substantially in contextual cues that in-
cluded different flooring (wood vs black paper) and different wallpaper
(white paper vs black paper). Rats were trained to alternate between the
two contexts by traversing the central alleyway when the dividers were
lifted. On each trial of the conditional discrimination task, the rat was
allowed to enter a context, after which a divider would close and the
animal was permitted to explore the contextual cues for 15 s (Fig. 1a).
The animal was then blocked within one side of the context using another
divider, and two items were placed in different corners of that box. Both
items were terra cotta pots, each scented with a different odor (grapefruit
or geranium; both from AuraCacia) and filled with a different digging
media [white foam pieces (Foamies Rol Darice) or 5 mm metallic purple
beads]. The positions of the items were pseudorandomized such that
they appeared in each position equally but never in the same position on
more than three consecutive trials. In context A, item X (grapefruit–
white foam) contained a Froot Loop reward, whereas in context B, item
Y (geranium–purple beads) contained the reward. Digging in the correct
pot yielded the buried reward, but digging in the incorrect pot resulted in
the removal of both pots and a 5 s timeout.

On day 1 of the conditional discrimination, we trained the rat for as
many trials as possible (usually 50 – 60 trials) in blocks of five trials within

the same context, to allow for corrections of that particular discrimina-
tion. On day 2, trials alternated between the contexts, always permitting
a 15 s exploratory period before item presentation. To ensure that the
animal did not simply learn to alternate choices of items X and Y, two
successive trials were presented within the same context every 10 trials on
average. To ensure that the animal could not simply smell the buried
reward, every 10 trials involved a probe in which neither pot contained a
reward, and a reward was given only after digging in the correct pot.
Initial training on this first conditional discrimination problem required
3–5 d of 80 trials per day until performance reached at least 70% in
concurrent 10 trial blocks within each context.

After reaching the performance criterion, rats were implanted with a
recording head stage above the left dorsal hippocampus centered at 3.6
mm posterior and 2.9 mm lateral to bregma. The head stage contained
12–18 independently movable tetrodes aimed at CA1 and CA3. Each
tetrode was composed of four 12.5 �m nichrome wires with the tips
plated with gold to bring the impedance to 200 k� at 1 kHz. Animals
recovered for 7–10 d, after which the tetrodes were moved down slowly
over the course of 1–2 weeks, until the tips reached the pyramidal cell
layer of CA1 or CA3 and the animal’s performance had again met crite-
rion level on the initial conditional discrimination problem. The loca-
tions of these tetrodes was estimated in vivo using driver turn counts as
well as electrophysiological events, including the appearance of complex
spikes, theta-modulated spiking, and the presence of theta and high-
frequency ripples in the local field potentials (LFPs). At the end of data
collection, electrode location was confirmed by passing a 25 �A current
for 20 s through each tetrode immediately before perfusion to create a
lesion visible after histological processing with Nissl stain (Fig. 1b).

Once the tetrodes were in the desired locations, recordings were taken
as the rats continued to perform the initial conditional discrimination
problem. We defined overtraining sessions as sessions in which the ani-
mal’s performance had exceeded 80% for 3 consecutive previous testing
days. After these overtraining sessions, the animal was introduced to a
novel environment with the same general configuration but with new
flooring (rubber or sandpaper) and new wallpaper (vertical or horizontal
stripes) defining each context. After 15 min of exposure to this environ-
ment, we began testing the animal on a second conditional discrimina-
tion problem using pots with new scented oils and digging media
(patchouli–straws vs mint– buttons; both from Aromaland). Rats
learned this second conditional discrimination problem within a single
recording session (see Results). On subsequent days, recordings were
taken during overtraining on the second problem after the animal had
again reached the criterion of 80% correct performance for 3 consecutive
testing days.

During all recording sessions, spike activity was amplified (10,000�),
filtered (600 – 6000 Hz), and saved for offline analysis using the software
Spike (written by Loren Frank, University of California, San Francisco,
San Francisco, CA). Cells from each tetrode were analyzed from only one
learning session and one overtraining session to avoid the inclusion of
the same neuron more than once in the each type of session. Clusters of
single-unit activity were isolated offline and determined to be stable py-
ramidal units using various three-dimension projections (spike peak,
valley, principal components, and timestamps) provided by Offline
Sorter (Plexon). In addition, behavior was recorded with digital video (30
frames/s) that was synchronized with the acquisition of neural data, and
the animal’s location was tracked with one or two light-emitting diodes
located on the recording head stages. The onset of stimulus sampling was
defined by scanning the video and manually marking the frame on which
the rat’s nose crossed the rim of the pot. Timestamps for the onset of
stimulus sampling and for spikes were imported into Matlab for subse-
quent data analyses.

We quantified that rat’s behavior leading up to and during stimulus
sampling with several measures. The angle of approach to the pots was
measured for the 1 s preceding stimulus sampling by calculating the angle
between the animal’s location at the start and end of this time period. To
examine each rat’s behavior during item sampling, we calculated head
direction every 0.1 s during the 1 s of stimulus investigation. The angles
for both measures were then converted to linear measurements by calcu-
lating the difference between the measured angle and the horizontal

Figure 1. a, Conditional discrimination task. The two contexts (represented by different
shadings) differed in their flooring (wood vs black paper for the initial conditional discrimina-
tion and rubber vs sandpaper for the second discrimination problem) and in the walls (white vs
black paper for the initial conditional discrimination and vertical vs horizontal stripes for the
second). The stimulus objects (X or Y) differed in odor and in the medium that filled the pots
(shown as blue and yellow). b, Lesion marks made at tips of tetrodes, one located in CA1 and
two others in the CA3 region of hippocampus.
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plane, which allowed us to use standard N-way ANOVAs. In addition,
measurements of the animal’s location during stimulus sampling were
calculated as the average distance between the animal’s location and the
center of the pot at each location.

Spatial firing rate maps were estimated using the total number of
spikes that occurred when the rat was at a given location (2 � 2 cm bins)
divided by the total time spent in that bin. The smoothed value for each
bin was then calculated as the mean for each bin and all bins within 5 cm,
each weighted by the distance from the central bin as determined by a
two-dimensional Gaussian kernel.

Ripples during stimulus sampling were identified using methods sim-
ilar to Foster and Wilson (2006). Specifically, the LFPs from tetrodes
recorded in CA1 or CA3 were between 100 and 400 Hz. The mean and

SDs for this trace were calculated with a threshold set at 3 SDs above the
mean. Threshold crossings �150 ms of each other were identified as a
single ripple event.

Item and position selectivity for each cell was measured for 30 trial
blocks using a selectivity index (SI) calculated as

SI � (n � �
i�1

n

(�i/�pref))/(n � 1),

where n is the total number of possible stimulus sampling events (two in
the case of items and four in the case of positions), �i is the firing rate of
the neuron within a block to the ith possible event, and �pref is the firing
rate of the neuron to its preferred item, or place, defined event within the

Figure 2. Example cells recorded from a single animal. Rasters and perievent histograms are plotted for stimulus sampling events for each item (X or Y) at each position (1 or 2) within each context
(A or B). Each line of the raster represents a single stimulus sample ordered from 0 to the maximum number of samples for each particular item–position combination for all trials, correct and
incorrect. Time point 0 denotes the time when the animal’s nose crosses the edge of the stimulus pot, and each bar of the histogram represents the average activity in hertz for a 250 ms time window.
Cells 1 and 2 are examples of item–position cells recorded during an overtraining session, whereas cells 3 and 4 are examples of item–position cells during a learning session. Cells 5 and 6 are
examples of position cells during the same learning session.
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same block of trials (Moody et al., 1998; Wirth et al., 2003). The preferred
item or place of a cell was defined as the item or place that elicited the
highest firing within the trial block. An item SI � 1 if a cell fired only in
response to one of the two items and did so only at the preferred stimulus
location of that cell. A position SI � 1 if a cell fired only when the rat
sampled stimuli at one of the four positions. Conversely, item or position
SI � 0 if the cell fired equally for both stimuli at the preferred location or
at all positions. To test whether the SI values were larger than that ex-
pected by chance, we compared each observed item and position SI val-
ues against a distribution of 10,000 SI scores in which the item or position
identities of the same dataset were randomly shuffled; then a z-test was
used to determine the significance of each observed SI value.

Firing rates during stimulus sampling were normalized into z-scores to
compare average normalized firing rate of specific neural populations
between conditions. For each cell, a z-score was calculated as the differ-
ence between a particular condition and the average firing rate across all
stimulus samples, divided by the SD.

Results
Extracellular spike activity of CA1 and CA3 pyramidal neurons
was recorded from five rats as they performed a conditional dis-

crimination task that required them to se-
lect one of two items (X or Y) within each
of two distinctive spatial contexts (A or B)
in which both stimuli were presented. Al-
though odor was a primary defining fea-
ture, the stimuli differed in multiple
modalities (see Materials and Methods),
and thus we will refer to them more
broadly as “items.” Specifically, item X
was rewarded when it appeared within ei-
ther of two positions within spatial con-
text A, and item Y was rewarded when it
appeared within either of two positions
within spatial context B (Fig. 1). Rats
reached the performance criterion of 70%
correct in each spatial context within a 20
trial block on average by trial 58 (range,
42–71 trials). For most subsequent analy-
ses, the learning session was divided into
30 trial blocks: the first 30 trials, 30 trials
centered on the middle of the criterion
trial block, and the last 30 trials. Average
performance accuracy improved from
45.5 � 3.6% on the first 30 trials, to 79.4 �
3.4% on the middle 30 trials, to 84.8 �
3.4% on the final 30 trials.

Hippocampal neural activity was also
recorded in sessions in which the animals
were already highly overtrained on the
second conditional discrimination. These
overtraining sessions were defined as ses-
sions in which the rat’s performance had
been �80% for at least three consecutive
preceding sessions on the same problem.
A total of five overtraining sessions were
analyzed across three animals, three of
which involved a preliminary conditional
discrimination problem given before the
learning session and two of which oc-
curred after multiple days of training on
the learning problem (see Materials and
Methods). No differences in performance
were noted between these overtraining
sessions, so the data from all of them were

combined. Overtraining sessions were also divided into 30 trial
blocks, but here the middle 30 trials were centered at the middle
of the session (because there was no “learning” phase on which to
center the middle block). Average performance accuracy was
86.1 � 3.8% on the first 30 trials, 97.2 � 1.4% on the middle 30
trials, and 97.8 � 1.1% on the final 30 trials of overtraining ses-
sions. A repeated measures ANOVA showed that performance
increased significantly in both learning and overtraining sessions
(F(2,8) � 103.93, p � 0.001 for learning sessions; F(2,8) � 12.11,
p � 0.004 for overtraining sessions) and more so for the learning
sessions (two-way ANOVA interaction of performance with trial
block, F(2,16) � 23.25, p � 0.001).

A total of 198 pyramidal neurons were isolated among five
learning sessions in five rats, composed of 141 CA3 cells and 57
CA1 cells. An additional 189 pyramidal neurons were recorded in
five overtraining sessions from three rats, composed of 161 CA3
cells and 28 CA1 cells. We failed to find any difference between
firing patterns in CA1 and CA3 neurons, so the data were com-
bined for current analyses.

Figure 3. Spatial distributions of firing rates for the same cells for which raster plots are shown in Figure 2. Each panel includes
spike activity recorded from the onset of the first stimulus sampling event until 1 s after the onset of the last stimulus sampling
event in the trial, during which the rat can sample each stimulus multiple times before digging for the reward. Stimulus identities
are indicated just outside their locations within the environment. Color-coded firing rates are indicated in the legend to the right
of the plots for each cell. Gray indicates visited areas associated with no neural activity.
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Figure 2 shows raster plots and
perievent histograms showing the firing
patterns of six example cells. For each cell,
separate raster and histogram panels in-
clude data for one of the eight combina-
tions of one of the two items sampled in
one of two positions within one of the two
contexts. Each panel plots spike activity
centered around the moment when the
rat’s nose crossed the rim of a stimulus pot
(indicated by time 0 on the x-axis), each
raster line represents a single stimulus
sampling event, and there could be multi-
ple sampling events of either or both items
on a trial. Examination of these analyses
identified two major types of cells. One
type, which we refer to as item–position
cells, increased firing when rats sampled
one of the two items at one or both posi-
tions in one of the contexts. For example,
in an overtraining session, cell 1 fired
maximally when the rat sampled item Y at
position 1 within context B, whereas cell 2
fired maximally when the rat sampled
item X at position 1 within context A. We
also observed that many item–position
cells developed their selectivity for one of
the items over the course of learning. In-
spection of the sequence of rasters (scan
from top to bottom) for cell 3 at position 1
within context A suggests equivalent acti-
vation for the first several trials as the rat
samples items X and Y, but the cell evolves
in subsequent trials to fire selectively dur-
ing the sampling of item X. Cell 4 shows a
similar pattern at position 2 within con-
text A, in which in early trials the cell fires
to both items X and Y and then comes to
prefer item X. The other class of cell,
which we call position cells, fired equiva-
lently when rats sampled either item at
one or both positions within one of the
contexts. For example, in an overtraining
session, cell 5 fired equivalently when a
rat sampled either item at position 2
within context B; cell 6 fired equiva-
lently when the rats sampled either item
at position 2 within context A.

To visualize the activity patterns of
these cells from the perspective of the well
documented spatial firing properties of hippocampal principal
cells (O’Keefe, 2007), Figure 3 provides standard spatial firing
distributions that include the period from the outset of stimulus
sampling until 1 s after the response choice is made for each of the
cells described in Figure 2. For each item–position cell (cells 1– 4),
the highest firing rate was consistently centered over the location
of the stimulus pot associated with maximal activation in the
raster displays and perievent histograms. These spatial plots in-
dicate that firing rates were lower when the less preferred stimu-
lus was at the same location. These cells were largely inactive
when the rat was in the nonpreferred environment. For position
cells (cells 5 and 6), high firing rates were observed at one pot
location regardless of which stimulus was present. These findings

are entirely consistent with the data shown in the raster plots and
confirm the distinctions between item–position and position
cells as described above.

Our visual inspections of the raster displays indicated that
maximum activation for both cell types always occurred during
the 1 s period after the rat’s nose crossed the rim of a stimulus pot.
In addition, during this period, the animal’s behavior was consis-
tent, such that they were relatively immobile before digging for
rewards or before moving away from the pot. Therefore, we se-
lected this 1 s period as the time window for comparisons of
neural responses across conditions. Typically, rats sampled each
stimulus one to two times per trial, and we considered all neurons
that generated at least 10 spikes total during all stimulus sampling

Figure 4. Example cells recorded during a learning session. Panels in each row show the average � SE firing rate of a cell during
stimulus sampling for early, criterion, and late trial blocks. Each panel shows the average firing rate during sampling of items X and
Y at each of two positions within a context (represented with different shades of gray). Cells 7–10 were classified as item–position
cells in the last 30 trial block but not in the first 30 trials. Cell 11 was classified as a position cell in all trial blocks.
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events. Based on this criterion, 56 neurons were active during
stimulus sampling in learning sessions, whereas 52 were active
during stimulus sampling in overtraining sessions. Two-way
ANOVAs were used to compare the firing rates of neurons that
were active during stimulus sampling with the identity of the item
(X or Y) and its position (two positions within each context) as
main factors with a significance criteria of p � 0.05. Activity was
compared across the blocks of 30 trials as defined above, for both
learning and overtraining sessions. These quantitative analy-
ses revealed only one cell that fired differentially to the two
stimuli absent an interaction with position in any of the 30 trial
blocks. Thus, just one cell appeared to encode only the item itself,
and so this class of cell will not be considered further.

Item–position cells develop during training, whereas the
number and selectivity of position cells is consistent
throughout training
Our quantitative analyses showed that the amount of item–position
coding increased dramatically during learning. The first four
rows in Figure 4 show cells that eventually fired differentially
associated with stimulus and position. Cell 7 fired during stimu-
lus sampling within context B regardless of the stimulus in the
first 30 trials. However, as performance improved in the middle
and last 30 trials, the same cell developed a higher firing rate
during the sampling of item Y in context B. Cell 8 also fired
during stimulus sampling in context B regardless of the stimulus
in the first 30 trials. However, in the middle and last 30 trials, the
cell became selective to item X at both positions within context B.
Cell 9 began firing at higher rates in context A regardless of the
stimulus but came to prefer item Y in position 1 of that same

context in the middle and last 30 trials.
Conversely, cell 10 gradually developed a
preference of item X, across learning at
both positions within context A. How-
ever, position cells (e.g., cell 11) fired
strongly and similarly whenever the ani-
mal sampled either stimulus in a position
(in this case position 2 of context B), and
their specificity did not change during
learning. Combining these analyses from
all active cells, the percentage of item–
position cells (i.e., cells with a significant
interaction in the ANOVA) observed
across trial blocks increased dramatically
during learning sessions, from an average
of 6.4% in the first 30 trial block to 31.3%
at the end of the learning session (F(2,8) �
9.39, p � 0.008) (Fig. 5a). In contrast, the
percentage of position-only cells (i.e., cells
with a significant effect of position but not
an interaction in the ANOVA) did not
change significantly during the course of
learning (F(2,8) � 0.218, p � 0.809).

As an additional approach to quantify-
ing item and position coding, we calcu-
lated both an item and a position SI for
each of the early, criterion, and final 30
trial blocks in learning and overtraining
sessions for both of the cell types identi-
fied in the previously described ANOVAs
as item–position and position cells in the
final block (see Materials and Methods).
In the first 30 trial block, when the animals

were performing at chance level, item–position cells failed to show
significant item selectivity when compared with data in which the
item identities were shuffled (z � �0.093, p � 0.926) (Fig. 5c) (see
Materials and Methods). However, item–position cells developed
significant item selectivity in the middle 30 trials when the perfor-
mance criterion was attained (z � 3.882, p � 0.001), and they main-
tained this strong selectivity through the final 30 trial block at the end
of the session (z � 6.479, p � 0.00001). Conversely, position cells
failed to show significant item selectivity throughout the learning
session (first 30 trials, z � �0.078, p � 0.932; middle 30 trials, z �
0.639, p � 0.522; last 30 trials, z � 0.845, p � 0.397). Therefore, the
two categories of cells behave differently during the course of learn-
ing (two-way repeated measures ANOVA interaction, F(2,16) � 5.89,
p � 0.012). Post hoc tests revealed that, whereas position cells main-
tained the same level of stimulus selectivity across all three trial
blocks (F(2,8) � 0.380, p � 0.695), item-position cells adopted a
higher level of stimulus specificity in parallel with the increase in
performance (F(2,8) � 7.11, p � 0.017).

In contrast to item selectivity, both types of cells were equally
(one-way ANOVA, F(1,8) � 0.146, p � 0.712) and significantly (po-
sition, z � 6.489–9.892 for all trial blocks, all p values �0.0001;
item–position, z � 6.267–9.617 for all trial blocks, all p values �0.0001)
selective for position. In addition, the average position SIs did not
differ across trial blocks during learning (two-way repeated mea-
sures ANOVA, F(2,8) � 0.701, p � 0.511) (Fig. 5e). These findings
on item and position selectivity confirm the observations from
the ANOVAs, and together the two analyses show that the obser-
vations of the appearance of item–position cells associated with
learning, contrasted with the stability of Position coding, is ro-
bust across methods of analysis.

Figure 5. Changes in proportions of item–position and position cells in learning (a) versus overtraining (b) sessions. Changes
in selectivity for items during learning and overtraining sessions (c, d) and positions for the same sessions (e, f ). The selectivity
index was calculated using firing rates for each cell averaged across all stimulus samples. Bars represent the average � SE
proportions of cells in each 30 trial block, whereas the line shows average performance over the same trial blocks. The dotted white
lines indicate average values calculated from the shuffling analyses.
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The selectivity of item–position cells parallels learning and
their activation predicts accuracy
We further examined the degree of stimulus selectivity in item–
position cells as accuracy increased during learning. In Figure 6,

performance accuracy for each trial was calculated as the percent-
age correct over a sliding 30 trial window ending with that trial,
and the average item SI for all item–position cells simultaneously
recorded was also calculated over the same trial window. Each
animal showed a steady, gradual improvement in performance
accuracy, although the course of learning varied for each animal.
The item SI also gradually improved in each animal and corre-
lated strongly (Pearson’s r � 0.722– 0.920) with performance in
three of the animals and moderately well (Pearson’s r � 0.597 and
0.625) in the other two animals (Fig. 6). Because the scores for
each window are not independent, we calculated the significance
of the correlations against the distribution of r values calculated
from 10,000 shuffles of trial and item SI order. These observed
that r values were all significantly higher than the shuffled distri-
bution (z � 4.22– 6.30, all p values �0.0001). The degree of cor-
relation between item SI and performance was impressive given
the number of item–position cells recorded in each animal was
six or less.

We also asked whether the activation of item–position cells
predicted accuracy of behavioral responses. To measure activa-
tion of the population of item–position cells, we normalized re-
sponses as z-score firing rates during the sampling period for each
cell and compared average responses to the preferred stimulus at
the place associated with maximal responses in correct versus incor-
rect trials of learning sessions. Item–position cell responses were
higher on correct trials than on incorrect trials (Fig. 7) (t(332) � 5.26,
p � 0.0001). In contrast, the responses during incorrect trials to
the preferred item–position combination were no different than
for nonpreferred items in the same position (t(340) � 0.46, p �
0.644). Thus the activity of item–position cells strongly predicted
subsequent accuracy of the behavioral response.

Both item–position and position cells were stable during the
course of overtraining
In contrast with the observations on learning sessions, cells that
fired selectively associated with stimulus and position in over-
training sessions typically maintained the same pattern of selec-
tivity across the entire session. Figure 8 uses the same format as in
Figure 4 to show different example cells recorded in overtraining
sessions. Cells 12–15 each show patterns of responses that are
specific to stimulus identity and position across all trial blocks
during high, stable performance in overtraining. We also ob-
served position cells that fired consistently when the animal sam-
pled either stimulus at one position in one of the contexts (e.g.,
cell 16), and these cells also had stable spatial selectivity across the

Figure 6. Changes in item selectivity during learning for individual animals. Average item
selectivity index and performance accuracy are plotted over sliding 30 trial windows.

Figure 7. Average � SE z-score firing for all item–position cells during item samples for the
preferred item–position combination of each cell on correct and incorrect trials compared with
averaged z-score firing to nonpreferred item samples at that same position on correct trials.
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entire session. Not all cells were stable during overtraining. For
example, cell 17 showed only spatial selectivity for position 1 in
context A in the early and middle blocks and fired differentially
during sampling of item Y in that position in the final 30 trials.
Combining all of the quantitative analyses, the percentages of
both item–position and position cells were stable across trial bins

in overtraining sessions (two-way re-
peated measures ANOVA; item–position,
F(2,8) � 1.4, p � 0.3; position, F(2,8) �
0.570, p � 0.587) (Fig. 5b), such that both
remained high throughout overtraining.
Consequently, item–position and posi-
tion cells had divergent patterns of ap-
pearance associated with the course of
learning (two-way repeated measures
ANOVA interaction, F(2,16) � 4.20, p �
0.034) but not with overtraining (two-way
repeated measures ANOVA interaction,
F(2,16) � 1.85, p � 0.189). In addition,
when compared with shuffled item SI val-
ues, item–position cells showed signifi-
cant item selectivity in all three blocks of
trials (z � 3.405–5.798 for all trial blocks,
all p values �0.001), whereas position cells
failed to show item selectivity (z � �0.976–
1.593 for all trial blocks, all p values �0.1).
Therefore, item SIs for both cell classes
remained stable in overtraining sessions
(two-way repeated measures ANOVA;
item–position cells, F(2,8) � 0.817, p �
0.475; position cells, F(2,8) � 0.185, p �
0.835), and item–position cells had a sig-
nificantly higher item SIs than position
cells (one-way ANOVA, F(1,8) � 44.581,
p � 0.001) (Fig. 5d). Both types of cells
were equally (one-way ANOVA, F(1,8) �
0.146, p � 0.712) and significantly (posi-
tion, z � 6.489 –9.892 for all trial blocks,
all p values �0.0001; item–position, z �
6.267–9.617 for all trial blocks, all p val-
ues �0.0001) selective for position. The
average position SIs were also stable
during overtraining (two-way repeated
measures ANOVA, F(2,8) � 0.952, p �
0.407) (Fig. 5f ).

Development of item-position cell
selectivity is not explained by changes
in behavior during stimulus sampling,
ripple activity, or reward, but
information about reward status was
incorporated into the item–position
representations
Two analyses of stimulus sampling behav-
ior indicated that there were no systematic
changes in behavior over the course of
learning that accounted for the evolution
of item–position coding. In each analysis,
we reasoned that item–position encoding
could be secondary to a systematic behav-
ioral differences only if the behavioral dif-
ference developed over trial blocks and in
the particular locations where the item se-

lectivity was observed; such an effect would be detected in a three-
way (stimulus � location � trial block) interaction in an
ANOVA. First, to examine whether item–position coding could
be explained by changes in the duration of stimulus sampling, we
compared the distance of the animal’s head from the center of
each pot at all four stimulus sampling locations, across trial

Figure 8. Example cells recorded during an overtraining session. Format is the same as in Figure 4. Cells 12–15 were classified
as item–position cells in all trial blocks, whereas cell 16 was classified as a position cell over the same three intervals. Cell 17 shows
a significant interaction of stimulus identity with position in the last 30 trials of the session but fails to show this effect in the first
30 trials.
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blocks. If the rat ceased sampling earlier over the course of learn-
ing or for a particular stimulus, the average distance should be
larger for that stimulus. Average stimulus sampling distances did
not differ by stimulus identity or location across trial blocks in the
learning sessions for four of the five rats (three-way ANOVA
interaction, all p values �0.13). For one rat, a significant differ-
ence in stimulus sampling distance between the two stimuli
emerged in the final trial block at two of the positions where pots
were sampled. However, item–position cells were observed both
at the locations where the sampling distances differed and where
sampling differences did not differ; in all the other rats, many
item–position cells were observed at locations where sampling
distances were consistent across locations and trial blocks. There-
fore, differences in sampling distance do not explain the observed
learning-related appearance of item–position-selective neurons.

Second, we examined head direction during the animal’s ap-
proach to the stimulus pots, as well as head directions during the
stimulus sampling period (see Materials and Methods). None of
these analyses distinguished head direction during the approach
or stimulus sampling behavior between the items across trial
blocks during learning (three-way ANOVA interactions, all
p values �0.13). Therefore, head direction during approach or
sampling of the stimuli does not explain the observed learning-
related appearance of item–position-selective neurons.

In addition, because the incidence of ripples can increase
when animals are placed in novel environments (Foster and Wil-
son, 2006; Cheng and Frank, 2008), we also examined whether
the increase in item–position coding was related to differential
hippocampal ripple activity during the 1 s stimulus sampling
period (see Materials and Methods). However, in no case did our
analyses reveal a difference in ripple incidence between items or
positions across the trial blocks (three-way ANOVA interaction,
all p values �0.1). Therefore, the incidence of ripples does not
explain the observed learning-related appearance of item–
position-selective neurons.

The appearance and selectivity of item–position cells is also
not explained as increased firing at places associated with reward,
because equivalent numbers of cells showed conjunctive item–
position coding that preferred rewarded and nonrewarded
stimulus–position combinations. Thus, 25 cells fired selec-
tively during sampling of item X in context A or item Y in context
B, both of which signaled reward and 30 cells fired selectively
during sampling of item Y in context A or item X in context B,
both of which signaled nonreward. These proportions do not
significantly differ ( p � 0.09, binomial distribution test). In ad-
dition, when only rewarded stimulus sampling events are consid-
ered, item–position cells still respond more strongly to preferred
items in the optimal position that to nonpreferred items in the
optimal position (preferred item mean z-score, 5.51 � 0.51 vs
nonpreferred item, 1.67 � 0.49; t(182) � 3.86, p � 0.001). Never-
theless, item–position responses are greater in cells that prefer
rewarded items than cells that prefer nonrewarded items (re-
warded preferred item mean z-score, 5.51 � 0.51 vs nonrewarded
preferred item, 1.33 � 0.50; t(230) � 3.96, p � 0.0001), so a reward
signal is incorporated into the representation as increased activa-
tion, along with information about the stimuli themselves.

How are item–position cells generated?
Most of the item–position cells (67%) identified at the end of
learning evolved out of cells that were identified as position cells
earlier in the session. Subsequently, all item–position conjunctive
cells retained their specificity for the same context across all three
trial blocks. In contrast, 43% of the position cells identified in the

last 30 trials failed to show any significant preference for position
earlier in the session and were recruited from previously inactive
cells. Thus, because the number of position cells was constant
throughout learning, as position cells adopted stimulus specific-
ity, more position cells were added to maintain a relatively con-
stant number of location-selective cells.

Finally, we asked whether the increase in item selectivity by the
hippocampal population reflected an overall increment or decre-
ment in the responses to one of the stimuli, or a combination of
both increased responses to the preferred stimulus and decreased
responses to the nonpreferred stimulus. To address this question
for the population of item–position cells, we compared z-score
firing rate responses to the preferred and nonpreferred stimulus
at the place associated with maximal responses between the first
and last 30 trial blocks during the learning session. This analysis
revealed that the overall z-score firing rate for item–position cells
was higher at the end of learning (one-way ANOVA, F(1,42) �
5.10, p � 0.029) (Fig. 9a). Furthermore, this increased respon-
siveness can be attributed to a strong and selective increase in the
magnitude of responses to the preferred stimulus (t(21) � �3.35,
p � 0.003) without a significant change in response to the non-
preferred stimulus (t(21) � 1.60, p � 0.124). In contrast, the nor-
malized responses of position cells to stimulus positions showed
a qualitatively different pattern (Fig. 9b). These cells fired
strongly when stimuli were sampled at the most preferred loca-
tion and very weakly at the least preferred location (one-way
ANOVA, F(1,27) � 114.18, p � 0.001). Furthermore, in contrast
to the responses item–position cells, there was no significant
change between the first and last 30 trial blocks in the response
magnitudes to the preferred position (t(14)� �0.358, p � 0.725)
or to the nonpreferred position (t(13) � �0.832, p � 0.420).

Discussion
The conditional item– context learning paradigm allowed us to
track the firing patterns of single neurons as animals gradually
learned which of two items signaled reward in each of two dis-
tinctive environments. At the outset of training, we observed
strong and prevalent spatial representations of the locations
where the items were sampled. In contrast, early in training, al-
most no neurons fired selectively during the sampling of one of
the items, and few cells fired differentially during the sampling of
a particular item in one place. However, as learning progressed,
the number of cells that demonstrated conjunctive item–place
coding grew, and the strength of differential firing also increased,
both closely corresponding to the course of learning. By the end
of learning, the proportion of cells with conjunctive item–posi-
tion coding was equivalent to that for location alone. The impor-
tance of conjunctive representation to performance is further
shown by the absence of increased firing to the preferred stimulus
on incorrect trials. Thus, a robust conjunctive activation parallels
learning and is critical for the appropriate identification of an
item in its context.

Furthermore, item–place conjunctive coding was derived
from an initial preference for specific locations at the outset of
training and was characterized by increased responses to one of
the two items sampled at those locations. By the end of training,
more than half (52%) of the position cells that fired during stim-
ulus sampling had converted to item–position conjunctive cells.
In contrast, the number of position cells was maintained by re-
cruitment from previously inactive cells, and the magnitude of
location selectivity was stable. In overtraining, item–place coding
remained prevalent and stable. Importantly, the growth of this
conjunctive coding cannot be explained by differences in behav-
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ior or hippocampal ripple activity. In addition, hippocampal
neural activity encoded rewarded and nonrewarded item–place
combinations equally and showed item–position preferences on
equivalently rewarded item samples, indicating that these firing
patterns cannot be solely characterized as spatial firing that is
enhanced by reward or reduced by nonreward expectancy. These
findings provide the first compelling evidence for robust hip-
pocampal representation of items and place conjunctions that are
formed during the course of learning about those items and the
spatial context in which the events occur.

Many previous studies of hippocampal neuronal activity in
behaving rats have identified neurons that fire associated with
particular cues and the places where they are experienced (Wible
et al., 1986; Muller and Kubie, 1987; Rolls et al., 1989; Wiener et
al., 1989; Young et al., 1997; Wiebe and Stäubli, 1999; Wood et al.,
1999; Moita et al., 2003; Lenck-Santini et al., 2005). However, in

all of these experiments, conjunctive coding was incidental to the
task demands, which involved remembering only the stimuli and
their reward contingencies independent of location, and the de-
velopment of item in place coding was not associated with learn-
ing. Rolls et al. (1989) (also Cahusac et al., 1989) reported sparse
object–place coding by hippocampal neurons in monkeys per-
forming an object–place recognition task, but the predominant
response was a decline in firing rate when an object reappeared in
a particular place, and this type of coding was not related to
memory performance. Wirth et al. (2003) (see also Cahusac et al.,
1993) observed a substantial fraction of hippocampal neurons
that increased or decreased the magnitude of their stimulus-
evoked responses in parallel with learning specific eye movement
responses to the stimuli, and stimulus selectivity increased during
the course of learning. This study did not involve learning the
place in which stimuli occur as the critical association. Rut-
ishauser et al. (2008) recorded from hippocampal neurons in
humans as they remembered specific stimuli and the locations
where they had been seen. They reported that hippocampal neu-
rons had greater responses to previously experienced stimuli than
novel stimuli and yet greater responses when the subject could
remember where the stimulus had been seen. However, the re-
sponses were similar to all experienced stimuli, whether they were
remembered or not. Furthermore, the responses were greater
among all old stimuli and greater yet across all stimuli and loca-
tions; so it appears they did not represent specific information
about particular items and their locations. Here we trained rats
on an item–place association task that requires hippocampal
function (Rajji et al., 2006) and observed conjunctive item–place
coding that closely paralleled learning about those items and
places. Thus, the present findings are consistent with the previous
characterizations of hippocampal neuronal activity and demon-
strate for the first time the relevance of conjunctive item–place
coding in hippocampal-dependent learning about conjunctions
of items and places.

The present findings also provide a framework to integrate
theories that characterize hippocampal neuronal activity as a rep-
resentation of the spatial layout of an environment (O’Keefe,
2007) with those that relate it to episodic memory (Eichenbaum
et al., 1999). A previous study showed that hippocampal neurons
acquire tone-evoked responses within their place fields associated
with tone– cued fear conditioning (Moita et al., 2003), and an-
other study reported that almost all hippocampal cells that en-
coded odors did so in conjunction with their spatial location
(Wiebe and Stäubli, 1999). Although these studies did not exam-
ine learning of items in places (see these and other examples
above), the findings are consistent with the idea that relevant
stimuli are encoded within a preexisting spatial framework
(O’Keefe and Nadel, 1978). The increment in responses to the
salient stimuli in their spatial context observed in the current
study is also consistent with the view that hippocampal neurons
encode experience-specific information by changes in firing rate
within a generally maintained contextual representation (Leu-
tgeb et al., 2005). Here we confirmed that conjunctive coding is
derived from preexisting spatial coding in a manner that is di-
rectly relevant to and parallels learning about specific items in
particular places. Thus, the resolution of the place versus memory
controversy may be that the hippocampus encodes events that
occur in a particular spatial context, a key feature of episodic
memory. However, the specific role of space as the fundamental
contextual dimension may need to be expanded. Other recent
evidence suggests that “context” may not be strictly restricted to
spatial context but rather may also include the temporal context

Figure 9. Changes in firing rate to preferred and nonpreferred stimuli and positions.
a, Average z-score firing rate (see Materials and Methods) for item–position cells increases
selectively in response to preferred stimuli after learning but remains unchanged in response to
nonpreferred stimuli. b, Average z-score firing rate for position cells remains unchanged in
response to both preferred and nonpreferred positions.
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in which events occur, even in the same place (Manns et al., 2007;
Lipton and Eichenbaum, 2008; Pastalkova et al., 2008).

The present findings provide strong and direct support for the
hypothesis that the hippocampus integrates “what” and “where”
information in the service of episodic memory (Davachi, 2006;
Manns and Eichenbaum, 2006; Diana et al., 2007; Eichenbaum et
al., 2007). Recent theorizing on the functional organization of the
primate medial temporal lobe has suggested that information
about the specific items and events is initially processed in the
ventral visual pathway, as well as other specific sensory pathways,
and arrives in the medial temporal lobe within the perirhinal
cortex. At the same time, information about spatial locations and
other contextual features of events is processed by the dorsal
visual pathway, as well as other multimodal areas, and arrives in
the parahippocampal cortex (Eichenbaum et al., 2007). The seg-
regation of “what” and “where” streams are largely preserved
through the entorhinal cortex, such that the perirhinal cortex
projects predominantly to lateral entorhinal cortex and the para-
hippocampal cortex projects predominantly to the medial ento-
rhinal cortex, although there are some interactions between these
cortical areas.

According to this view, the “what” and “where” information
converge within the hippocampus. Functional imaging studies
on humans have shown that the hippocampus is activated asso-
ciated with memory for items and their spatial context (Henke et
al., 1997; Davachi et al., 2003; Hannula and Ranganath, 2008).
However, based on a meta-analysis of the data from several stud-
ies, Wais (2008) concluded that functional imaging cannot deter-
mine whether hippocampal processing is selective to conjoint
item– context representations or just increased for stronger and
more detailed memories (Squire et al., 2007). The current study
addresses this issue by identifying qualitative as well as quantita-
tive changes in the responses of hippocampal neurons associated
with learning about items in context. Overall responsiveness of
hippocampal neurons increased during learning, consistent with
reports of greater responses to previously experienced stimuli
(Rutishauser et al., 2006, 2008) and to better remembered stimuli
(Kirwan et al., 2008; Shrager et al., 2008). However, we also ob-
served that increased neuronal responsiveness associated with
learning could be attributed solely to development of robust rep-
resentation of specific items in the context in which they have
differential significance, whereas the number of, the selectivity of,
and the magnitude of the responses to the items or contexts alone
did not change. Previous recording studies have shown that
hippocampal neurons can encode individual items in which
the same items are identified across several contexts (Wood et
al., 1999; Kreiman et al., 2000; Hampson et al., 2004). The
present findings suggest that, in situations in which specific
item– context associations must be remembered, stronger hip-
pocampal activity reflects the specific encoding of conjunctive
“what–where” representations.
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