
www.wjgnet.com

 EDITORIAL

Molecular mechanisms of insulin resistance in chronic 
hepatitis C

Mark W Douglas, Jacob George

Mark W Douglas, Jacob George, Storr Liver Unit, Westmead 
Millennium Institute, University of Sydney at Westmead 
Hospital, PO Box 412, Westmead, NSW 2145, Australia
Author contributions: Douglas MW and George J wrote this 
paper.
Supported by Australian National Health and Medical Research 
Council and the Robert W Storr Bequest to the University of 
Sydney
Correspondence to: Dr. Mark W Douglas, MD, PhD, Storr 
Liver Unit, Westmead Millennium Institute, University of 
Sydney at Westmead Hospital, PO Box 412, Westmead, NSW 
2145, Australia. mark.douglas@usyd.edu.au
Telephone: +61-2-98457705  Fax: +61-2-96357582
Received: July 2, 2009           Revised: August 13, 2009
Accepted: August 20, 2009
Published online: September 21, 2009

Abstract
It is now widely recognized that chronic hepatitis C 
(CHC) is associated with insulin resistance (IR) and 
type 2 diabetes, so can be considered a metabolic 
disease. IR is most strongly associated with hepatitis C 
virus (HCV) genotype 1, in contrast to hepatic steatosis, 
which is associated with genotype 3 infection. Apart 
from the well-described complications of diabetes, IR in 
CHC predicts faster progression to fibrosis and cirrhosis 
that may culminate in liver failure and hepatocellular 
carcinoma. More recently, it has been recognized that 
IR in CHC predicts a poor response to antiviral therapy. 
The molecular mechanisms for the association between 
IR and HCV infection are not well defined. This review 
will elaborate on the clinical associations between CHC 
and IR and summarize current knowledge regarding 
the molecular mechanisms that potentially mediate 
HCV-associated IR.
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INTRODUCTION
Infection with the hepatitis C virus (HCV) is a leading 
cause of  chronic liver disease, with over 3% of  the 
world’s population (180 million people) infected and 130 
million at risk of  cirrhosis[1]. The majority of  infected 
individuals (60%-80%) develop chronic hepatitis C 
(CHC), which is associated with progressive liver fibrosis 
and a 3%-9% risk of  cirrhosis after 20 years as shown 
in community-based studies[2]. CHC is also associated 
with significant morbidity and mortality, accounting for 
50%-76% of  all liver cancer cases worldwide, and two 
thirds of  liver transplants in the developed world[1].

It is now widely recognized that CHC is associated 
with insulin resistance (IR) and type 2 diabetes (T2DM), 
so can be considered a metabolic disease. Apart from 
the well-described complications of  diabetes, IR in 
CHC predicts faster progression to fibrosis and cirrhosis 
that may culminate in liver failure and hepatocellular 
carcinoma (HCC). More recently, it has been recognized 
that IR in CHC predicts a poor response to antiviral 
therapy. The molecular mechanisms for the association 
between IR and HCV infection are not well defined. 
This review will elaborate on the clinical associations 
between CHC and IR and summarize current knowledge 
regarding the molecular mechanisms that potentially 
mediate HCV-associated IR. 

INsUlIN sIgNalINg aND IR
Insulin is an anabolic hormone secreted by pancreatic 
β-cells that is required for the maintenance of  glucose 
homeostasis. It inhibits hepatic glucose production 
and increases peripheral glucose uptake and glycogen 
synthesis. The principal signaling pathway (Figure 1) 
involves sequential activation of  the insulin receptor, 
insulin receptor substrates (IRS), phosphatidylinositol-
3-kinase (PI3K), Akt and protein kinase C isoforms ζ 
and λ[3,4]. Akt is phosphorylated initially at serine 473 
by phosphoinositide-dependent kinase (PDK)2 and 
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subsequently at threonine 308 by PDK1. Activated 
Akt promotes storage of  excess glucose as glycogen by 
phosphorylating glycogen synthase kinase and suppresses 
gluconeogenesis by inhibiting phosphoenol-pyruvate 
carboxykinase and glucose-6 phosphatase. In striated 
muscle and adipose tissue, activated Akt promotes 
translocation of  the glucose transporter GLUT4 to the 
plasma membrane, promoting glucose uptake[3]. 

Insulin promotes lipid synthesis via sterol regulatory 
element-binding protein 1c and fatty acid synthase, 
although importantly the pathways are probably different 
from those mediating insulin-stimulated glucose 
homeostasis[5]. With regard to protein, insulin promotes 
cell survival and protein synthesis, mediated by the 
mammalian target of  rapamycin (mTOR) pathway[3]. 

Insulin resistance plays a fundamental role in the 
pathogenesis of  T2DM. It results from defects at 
any level of  the ligand-receptor-response pathway, 
including well-characterized defects at the level of  
the insulin receptor or IRS molecules, although these 
account for only a small minority of  cases of  IR in 
clinical practice[3,4]. These defects can result from either 
reduced levels of  signaling proteins, or modulation of  
their activity by phosphorylation. For example, IRS-1 
is activated by phosphorylation of  tyrosine residues, 
but inhibited by phosphorylation of  key serine residues 
including Ser307, Ser318, Ser636 and Ser639[6]. Negative 
feedback loops down-regulate the pathway in response 
to chronic glucose supply, including inhibition of  PI3K 
by phosphatase and tensin homolog.

Two IRS proteins are important in human liver: 
IRS-1 and IRS-2[7]. They appear to have complementary 
but overlapping roles in that IRS-1 knockout mice 
exhibit g rowth retardation and IR, while IRS-2 
knockouts develop T2DM due to β-cell failure and 
hepatic IR. While both knockouts are insulin-resistant, 
IRS-1 knockout mice have reduced peripheral glucose 
uptake, while IRS-2 knockouts have a more complex 
phenotype, with both peripheral and central IR [8]. 
This has led to the traditional view that IRS-2 is more 
important for insulin signaling and glucose homeostasis 

in the liver[9]. However, recent evidence suggests that 
IRS-1 may be more important for glucose homeostasis, 
while IRS-2 is more important for lipid metabolism[10]. 
Therefore, changes affecting either IRS could contribute 
to HCV-induced hepatic IR. 

The roles of  mTOR in insulin signaling are multiple 
and complex. Early studies showed that insulin signaling 
via Akt caused phosphorylation and activation of  
mTOR[11]. However it is now known that mTOR is 
present in at least two different mTOR complexes and 
plays multiple roles in insulin signaling, as reviewed 
recently[12,13]. The mTOR-raptor complex 1 (mTORC1) 
appears to mediate the downstream effects of  insulin on 
cell growth and proliferation[12] and also provides negative 
feedback of  insulin signaling by phosphorylating IRS-1 
at inhibitory serine residues 636 and 639[14]. In contrast, 
mTOR associates with rictor to form a second complex 
mTORC2[12], the elusive “PDK2” that phosphorylates 
Akt at serine 473 in response to insulin[15]. mTORC2 
is much less sensitive to rapamycin inhibition than 
mTORC1[12]. 

ClINICal assOCIaTIONs Of HCV aND IR 
CHC and T2DM
It is now over 10 years since an association between 
HCV and diabetes was first described by Allison et al[16] 
who noted that people with cirrhosis and HCV had 
T2DM more commonly than those with cirrhosis from 
other causes. A subsequent study of  cirrhotic patients 
confirmed that T2DM was present in 21% of  patients 
with cirrhosis due to CHC but was present in only 
12% of  patients with cirrhosis and chronic hepatitis B 
(CHB)[17]. In the latter report, T2DM was particularly 
associated with HCV genotype 2a[17]. 

Significantly, subsequent case control studies have 
confirmed that T2DM is associated with CHC even 
in the absence of  cirrhosis[18-20]. Most recently, a large 
cross-sectional study of  over 9000 individuals in the 
USA found that in persons over 40 years of  age, those 
with HCV infection were over three times more likely to 
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have T2DM than those without[21]. Of  relevance, there 
was no association between CHC and type 1 diabetes, 
and no association of  hepatitis B virus infection with 
T2DM, suggesting a virus-specific association of  HCV 
with T2DM. Interestingly, the association of  T2DM was 
with HCV genotype 1b. In a subsequent large cohort 
study, it was noted that HCV-associated T2DM mainly 
occurred in patients with other risk factors for diabetes, 
such as older age and a high body mass index[22]. Thus, 
among patients classified as “high risk” for T2DM, CHC 
increased diabetes risk more than 11-fold after 9 years[22], 
although further studies are required to firmly establish 
causality.

CHC and IR
Insulin resistance is present in > 90% of  individuals 
before the onset of  frank T2DM. While the euglycemic 
hyperinsulinemic clamp[23] is the “gold standard” for 
measuring glucose utilization and insulin sensitivity or 
resistance, a common clinical approximation is obtained 
using the homeostasis model of  IR (HOMA-IR), 
calculated by the following equation: HOMA-IR = fasting 
glucose (mmol/L) × fasting insulin (μU/mL)/22.5[24,25]. 
Typically, a HOMA-IR value > 2 is used to signify 
significant IR[26]. 

In 2003, Hui et al[27] first reported that IR is increased 
in patients infected with HCV, particularly genotype 1 and 
that this may form the basis for the earlier observations 
regarding the association with T2DM. Subsequent 
studies have confirmed this association, including for 
genotype 4[28] and possibly also genotype 2a[29]. Since 
liver fibrosis irrespective of  etiology can of  itself  cause 
hyperinsulinemia, it is important to exclude patients with 
advanced fibrosis in any assessment of  the relationship 
between HCV and IR. This was undertaken in the study 
by Hui et al[27], who demonstrated that even patients 
with minimal fibrosis (F0 or F1) had a mean HOMA-
IR of  2.4 compared to 1.9 for matched uninfected 
controls (P = 0.002). 

Studies have shown that in people with HCV and 
IR who respond to treatment there is a reduction in 
HOMA-IR[26]. This improvement in insulin sensitivity 
is maintained for people with a sustained virological 
response (SVR)[26,30], and results in a reduced risk of  
subsequent diabetes[30,31]. However other groups have 
shown that the apparent reduction in diabetes risk may 
actually reflect the lower baseline risk of  diabetes in 
patients who respond to interferon treatment, rather 
than an effect of  treatment per se[32]. It is also worth 
noting that not all patients with CHC develop IR, 
suggesting a complex interaction between virus and host 
factors that is only partially understood.

In contrast to the specific association of  IR with 
CHC, IR is not associated with CHB. A recent study 
found that in patients with CHB the HOMA-IR 
reflected their overall metabolic profile, but was not 
increased in people with CHB compared with matched 
healthy controls[33]. Another recent prospective study 
comparing patients with CHB and CHC confirmed 

that IR is a specific feature of  hepatitis C genotype 1 
and 4 infection, but not CHB; it was present in 35% of  
patients with CHC compared with only 5% with CHB[28].

Complications of HCV-induced IR
As well as predisposing to T2DM, the presence of  IR 
in CHC predicts non-response to antiviral therapy[26], 
both for genotype 1 [26,34-36] and genotypes 2 and 3 
infection[37]. Central obesity, which can be associated 
with IR, has also been shown to predict non-response[38]. 
Furthermore, HCV-infected patients who respond to 
antiviral therapy show improved insulin sensitivity[39]. 
Similarly, improvements in CHC-induced steatosis have 
been observed following SVR[40]. Interestingly, IR has 
been associated in several studies with elevated HCV 
viral loads[28,41,42]. One possible mechanism involves p21-
activated kinase 1, which suppresses HCV replication 
and is stimulated by PI3K/Akt signaling, via mTOR[43]. 
HCV-associated IR could decrease PI3K/Akt signaling 
and thus favor viral replication, although the mechanism 
by which HCV induces IR is unclear.

The interactions between HCV, IR, steatosis and 
hepatic fibrosis are complex and genotype specific. In 
CHC due to genotype 1, IR is associated with hepatic 
steatosis. In this setting, IR is either virus-mediated or 
due to host metabolic factors such as visceral obesity[44]. 
A similar association has been shown for genotype 4[45]. 
In contrast, steatosis in HCV genotype 3 infection is 
predominantly a direct effect of  the virus, occurring 
in the absence of  other metabolic risk factors[46,47]. It 
should be noted however, that in people with genotype 
3 CHC and obesity, a proportion of  the hepatic steatosis 
will be secondary to their metabolic dysregulation. 
In patients infected with HCV, steatosis and IR are 
predictive factors for the later progression to hepatic 
fibrosis and cirrhosis[28,48-51]; the latter predisposes to 
HCC. Likewise, diabetes mellitus itself  has recently been 
shown to increase the risk of  HCC[52]. While CHC-
induced steatosis has been reported as a risk factor for 
hepatic fibrosis[53], subsequent studies suggest that IR is 
most important in this relationship, both for genotypes 1 
and 3[46,48]. 

MeCHaNIsMs Of HCV-INDUCeD IR
Inflammation and IR
Chronic inf lammation plays a significant role in 
IR associated with metabolic liver disease, due to 
increased levels of  interleukin (IL)-1, tumor necrosis 
factor (TNF)-α, IL-6 and leptin, and reduced levels of  
adiponectin[54]. Diet-induced IR in the context of  obesity 
partly involves the inflammatory mediator IκB kinase β 
(IKKβ)[55]. Inflammatory cytokines such as IL-1, TNF-α 
and free fatty acids stimulate IKKβ. This induces 
proteasomal degradation of  IκB, allowing nuclear 
translocation of  the downstream effector molecule 
NFκB to stimulate secretion of  IL-6[56]. IKKβ also 
induces IR by inhibitory phosphorylation of  the insulin 
signaling molecule IRS-1 at serine 312[57]. High doses 
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of  aspirin and other salicylates inhibit IKKβ and can 
reduce IR in both rats and humans[58-60]. IR can similarly 
occur in other inflammatory conditions associated 
with elevated TNF-α, including inflammatory bowel 
disease[61], rheumatoid arthritis[62] and psoriasis[63]. 

Based on these well-described associations, it was 
initially proposed that IR in CHC may arise as a non-
specific consequence of  hepatic inflammation, possibly 
mediated by IKKβ. In support of  this hypothesis, 
expression of  HCV core protein in transgenic mice 
(genotype 1b) induces hepatic IR[64]. When fed a high-
fat diet, these mice develop frank diabetes and hepatic 
steatosis that is associated with elevated circulating 
levels of  TNF-α. The IR is reversed by administering 
antibodies against TNF-α, but the mechanism of  this 
effect has not been well defined. 

Early human studies were conflicting but more 
recent studies have shown that HCV-induced IR is NOT 
due to alterations in serum inflammatory cytokines or 
adipokines[65]. Rather, IR in CHC seems to be due to 
direct virus-specific effects on insulin signaling. Thus, 
initial studies noted increased serum levels of  TNF-α 
in subjects with CHC [66-68] or showed a correlation 
with IR[69] but did not adequately correct for potential 
confounders. A later well-controlled study compared 
154 HCV-infected non-diabetic males with 75 matched 
uninfected controls[65]. In that study, as expected, serum 
levels of  TNF-α and IL-6 were higher in HCV-infected 
patients than controls but levels did not correlate with 
IR[65]. Serum levels of  the adipocytokines leptin and 
adiponectin were likewise independently associated with 
IR (adiponectin inversely), but not with HCV infection 
itself. The authors therefore concluded that these 
adipocytokines could not account for the increased IR 
seen in HCV-infected subjects[65]. 

Direct effects of HCV in modulating insulin signaling 
HCV core protein 
Although it was initially suggested that IR associated 
with CHC may be due to chronic inflammation, it is 
now known that HCV can induce IR directly, through 
specific viral effects[70]. Much of  the published literature 
in this area has focused on the HCV core protein, 
which has been proposed to cause IR in hepatocytes by 
reducing the level or activity of  molecules involved in 
insulin signaling, particularly IRS-1 and IRS-2. However, 
there is considerable disagreement concerning which 
of  these molecules is more important, and whether 
altered signaling results from changes in IRS expression, 
degradation, or altered activity[64,71-75]. 

For example, one study found reduced activation 
(reduced tyrosine phosphorylation) of  IRS-1 in liver 
biopsies from HCV-infected patients and reduced 
association of  IRS-1 with its downstream effector PI3K 
but increased expression of  IRS-1 protein[71]. In contrast, 
another report demonstrated reduced expression of  
both IRS-1 and IRS-2 in patient samples and in livers 
from transgenic mice expressing HCV core protein[73]. 
It was proposed that core protein stimulated increased 

levels of  the molecule suppressor of  cytokine signaling 
(SOCS) 3, leading to ubiquitination and proteasomal 
degradation of  IRS-1 and IRS-2[73] (Figure 1). This is 
consistent with data showing IR in mice following over-
expression of  SOCS1 or SOCS3[76]. In support of  their 
hypothesis, the same group found that in patients who 
responded to antiviral therapy hepatic levels of  both 
IRS-1 and IRS-2 were increased, along with improved 
clinical insulin sensitivity[39]. One clinical study showed 
higher levels of  SOCS3 in peripheral lymphocytes 
from people infected with HCV genotype 1 rather than 
genotype 2 and found that the level of  SOCS3 was the 
best predictor of  response to interferon therapy[77]. In 
a similar study from the same group, polymorphisms in 
the SOCS3 gene were shown to correlate with clinical 
response to interferon[78]. SOCS3 mRNA levels were 
higher in obese subjects with CHC than lean subjects 
and may contribute to their reduced response to IFN-α 
treatment[79].

The effects of  HCV genotype on insulin signaling are 
less well understood but are important given the clinical 
association of  genotypes 1 and 4 with IR[27,28]. One study 
compared the effects of  over-expressing genotype 1b 
and 3a core proteins in the Huh7 hepatoma cell line[75]. 
No difference in SOCS3 expression was detected, but 
cells expressing genotype 3a core contained higher 
levels of  SOCS7 than cells expressing genotype 1b core, 
as well as reduced levels of  IRS-1[75]. In contrast, cells 
expressing genotype 1b core had a smaller reduction in 
the amount of  IRS-1, but increased phosphorylation 
of  IRS-1 at inhibitory serine residues (636/639), as well 
as increased mTOR activity[75]. The authors therefore 
speculated that IR in the context of  HCV genotype 
1 infection is due to core-induced induction of  the 
TORC1 mTOR/raptor complex, resulting in reduced 
IRS-1 signaling[75]. A different group has shown reduced 
insulin signaling in core-expressing cells, due to JNK-
mediated inhibitory phosphorylation of  IRS-1 at serine 
312[72]. Although intriguing, the relevance of  IRS-1 
serine phosphorylation to clinical HCV-induced IR has 
yet to be confirmed.

PA28γ is an inducer of  late proteasome activity that 
may play a role in HCV-induced IR as it is essential 
for the development of  IR in HCV core transgenic 
mice[74]. Core transgenic mice display reduced insulin 
sensitivity, reduced activation (tyrosine phosphorylation) 
of  IRS-1 and reduced expression (mRNA and protein) 
of  IRS-2; factors which are restored to normal following 
knockout of  the PA28γ gene[74]. TNF-α expression 
was increased in the livers of  core transgenic mice and 
in human hepatoma cell lines expressing core protein, 
but knocking out or silencing PA28γ returned TNF-α 
expression to normal[74]. PA28γ has also been shown 
to play a critical role in the development of  steatosis 
and HCC[80], and may provide a useful link between the 
different pathways affected by HCV. 

HCV NS5A 
Another molecule that may play a role in HCV-induced 
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IR is protein phosphatase 2A (PP2A). PP2A can affect 
several cell pathways and is upregulated in HCV infection, 
possibly due to increased endoplasmic reticulum (ER) 
stress[81] or directly by the HCV non-structural protein 
NS5A[82] (Figure 1). PP2A has been shown to mediate 
HCV-associated IR by dephosphorylating and thus 
inactivating Akt [83]. In that study, PP2A levels were 
increased in HCV protein-expressing cell lines, the livers 
of  transgenic mice expressing HCV proteins and in liver 
biopsies from HCV-infected patients. Impaired insulin 
signaling was demonstrated in each model, with reduced 
insulin-stimulated phosphorylation of  Akt[83]. However, 
the authors were unable to show a correlation between 
reduced Akt signaling and IR in HCV-infected patients, 
as measured by HOMA-IR[83]. Interestingly, PP2A has 
been shown to inhibit interferon signaling and this has 
been proposed as another potential link between IR and 
reduced clinical response to interferon treatment in HCV-
infected patients[84]. 

Peroxisome proliferator activated receptor (PPAR)-α 
and PPAR-γ 
PPARs are nuclear receptors that modulate lipid and 
glucose metabolism, as reviewed recently[85]. PPARs form 
heterodimeric complexes with the retinoid X receptor 
(RXR) and bind to PPAR response elements (PPRE) 
on PPAR regulated genes, inhibiting their expression. 
Binding of  PPAR ligands, including unsaturated fatty 
acids, eicosanoids, oxidised low density lipoprotein (LDL) 
and very LDL, causes dissociation of  the PPAR-RXR 
complex, derepression and increased gene expression[85]. 
In this way PPARs react to lipid excess by stimulating 
differentiation of  adipocytes, oxidation of  fatty acids 
and glucose metabolism.

PPAR-α is the major PPAR isoform present in liver 
and is also found in brown fat and heart. It regulates 
cell energy by stimulating oxidation of  fatty acids in 
mitochondria and peroxisomes[85]. Along with PPAR-δ, it 
stimulates expression of  human adipose differentiation-
related protein, thus promoting storage of  cellular lipid 
in lipid droplets[86]. PPAR-γ is the dominant isoform in 
adipose tissue, colon, myeloid cells and placenta, where 
it stimulates adipocyte differentiation and lipid storage[85].

As well as their effects on lipid metabolism, PPARs 
may also play a role in HCV-induced IR[87]. Liver 
biopsies from patients with CHC show reduced levels 
of  PPAR-γ and PPAR-α mRNA[88,89]. In an in vitro model 
of  HCV-induced hepatic IR, cells expressing genotype 
3 core protein, but not genotype 1b, had reduced levels 
of  PPARγ mRNA[89]. In a follow-up study, treatment 
of  genotype 3a core-expressing cells with the PPAR-γ 
agonist rosiglitazone improved insulin signaling[75]. 
Interestingly, PPAR-α is required for HCV core-induced 
steatosis in transgenic mice[90], suggesting overlapping 
mechanisms for IR and steatosis in people with CHC.

Oxidative stress and IR
Oxidative stress may contribute to IR in HCV-infected 
people, as well as to steatosis. In vitro studies demonstrate 

increased mitochondrial reactive oxygen stress in hepatoma 
cells over-expressing core protein[91] and in HCV core 
transgenic mice[91,92]. Further, in HCV-infected patient 
serum, thioredoxin, a marker for oxidative stress, has 
been shown to correlate with clinical IR, independent of  
obesity[93]. However the interactions between oxidative 
stress, IR, metabolic syndrome and steatosis are complex, 
with each potentially influencing the other. A recent study 
showed that in patients infected with HCV genotype 
non-3, HOMA-IR (P < 0.01), fibrosis (P < 0.01) and 
oxidative stress (P < 0.05) were independently associated 
with steatosis, whereas steatosis was independently 
associated with oxidative stress (P < 0.03) and HOMA-
IR (P < 0.02)[94]. The authors concluded that in genotype 
non-3 infection “oxidative stress and IR contribute to 
steatosis, which in turn exacerbates both IR and oxidative 
stress and accelerates the progression of  fibrosis”[94]. 

Treatment of IR in people infected with HCV 
It has been shown that response to interferon-based 
treatment can be improved by diet-induced weight 
loss, which improves insulin sensitivity[95]. Given the 
association between IR and poor treatment response 
in CHC, clinical trials of  insulin-sensitizing drugs 
have been proposed to improve treatment response[29]. 
Since the mechanisms of  HCV-induced IR are not well 
understood it is not clear whether it is better to use 
thiazolidenediones that target PPAR-γ, or metformin, 
which activates AMP-activated protein kinase[96] and may 
also stimulate the insulin receptor to signal via IRS-2[97]. 

A recent pilot study adding the PPAR-γ agonist 
pioglitazone (15 mg) to pegylated interferon alpha and 
ribavirin was undertaken in patients with HCV-induced 
IR who had previously failed standard treatment[98]. 
Although most of  the treated patients showed improve-
ment in their HOMA-IR on pioglitazone, none had a 
satisfactory virological response after 12 wk and the trial 
was terminated. A recent case report suggests that re-
ducing IR prior to antiviral therapy, by pre-treating with 
insulin sensitizing drugs, may improve outcomes[99]. The 
authors administered a high dose of  pioglitazone (45 mg) 
to a patient with genotype 3a CHC who had previously 
failed antiviral treatment. After 5 mo of  pioglitazone, the 
patient’s HOMA-IR reduced from 4.8 to 1.3 and subse-
quent treatment with pegylated interferon and ribavirin 
for 48 wk produced a SVR[99]. It is not clear whether this 
outcome was due to the higher dose of  pioglitazone, the 
sequential treatment approach or the patient’s genotype 
3 infection[100]. Several similar studies are underway to 
address these issues and their results are eagerly awaited.

CONClUsION
There is increasing evidence that CHC is a metabolic 
disease, strongly associated with IR and T2DM. Insulin 
resistance is most strongly associated with HCV geno-
type 1, in contrast to hepatic steatosis which is associ-
ated with genotype 3 infection. Although the precise 
mechanisms of  HCV-associated IR are unclear, several 
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possibilities have been suggested and the mechanisms 
may be multi-factorial, including both virus and host fac-
tors. Early studies in transgenic mice suggested IR may 
result from chronic inflammation and elevated TNF-α, 
but subsequent human studies have suggested a virus-
specific effect. HCV core protein has the most evidence 
to support its role in IR, with likely effects on insulin 
signaling at the level of  IRS. Core-induced increases in 
SOCS3 or SOCS7 expression may cause IRS destruction, 
probably requiring PA28γ, but other proposed alterna-
tives include feedback inhibition of  IRS-1 by activated 
mTOR or JNK. Insulin resistance may also result from 
core-induced alterations in PPAR-α and PPAR-γ, espe-
cially in genotype 3 infection. PP2A can cause IR and in 
CHC its activity may be increased, either in response to 
ER stress or to the HCV non-structural protein NS5A, 
which interacts with many cellular pathways.

Since IR in CHC is associated with a reduced response 
to antiviral treatment, clinical trials are underway to 
determine whether reducing IR improves treatment 
outcomes. Preliminary data from pilot studies of  PPAR-γ 
agonists have been disappointing, but case reports 
suggest that more aggressive treatment may be successful, 
particularly if  IR is reduced prior to commencing 
antiviral therapy. Trials of  other insulin-sensitizing drugs 
including metformin are also in progress and their results 
are eagerly awaited. Since the underlying mechanisms of  
HCV-induced IR are still not clear, ongoing research is 
essential to guide a more rational, targeted approach to 
therapy. 
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