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Abstract
AIM: To investigate the molecular mechanism and 
functional consequences of heme oxygenase-1 (HO-1) 
activation by lansoprazole in endothelial cells and 
macrophages. 

METHODS: Expression of HO-1 mRNA was analyzed 
by Northern blotting. Western blotting was used 
to determine the HO-1 and ferritin protein levels. 
NADPH-dependent reactive oxygen species (ROS) 
formation was measured with lucigenin-enhanced 
chemiluminescence. HO-1 promoter activity in mouse 
fibroblasts, stably transfected with a 15-kb HO-1  gene 
that drives expression of the reporter gene luciferase, 
was assessed using in vivo  bioluminescence imaging.

RESULTS: Lansoprazole increased HO-1 mRNA 
levels in endothelial cells and HO-1 protein levels 

in macrophages. In addition, lansoprazole-induced 
ferritin protein levels in both cell systems. Moreover, 
induction of the antioxidant proteins HO-1 and ferritin 
by lansoprazole was followed by a decrease in NADPH-
mediated ROS formation. The radical scavenging 
properties of lansoprazole were diminished in the 
presence of the HO inhibitor, chromium mesoporphyrin 
IX. Induction of HO-1  gene expression by lansoprazole 
was not related to oxidative stress or to the activation 
of the mitogen-activated protein kinase pathway. 
However, the phosphatidylinositol 3-kinase inhibitor 
LY294002 showed a concentration-dependent inhibition 
of HO-1 mRNA and promoter activity. 

CONCLUSION: Activation of HO-1 and ferritin may 
account for the gastric protection of lansoprazole and 
is dependent on a pathway blocked by LY294002.
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INTRODUCTION
Peptic ulcer disease remains common worldwide. It is 
caused most frequently by stress, alcohol, Helicobacter 
pylori (H pylori) infection, or the use of  non-steroidal 
anti-inflammatory drugs (NSAIDs). It is believed that 
the integrity of  the gastric mucosa depends on a delicate 
balance between aggressive and defensive mechanisms. 
Although the cellular and molecular bases of  gastric 
mucosal defense are well understood, the mechanisms by 
which mucosal damage is mediated by aggressive factors 
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remain largely unclear. The increased production of  
reactive oxygen species (ROS), termed oxidative stress, 
is considered to be a major causative factor for mucosal 
lesions induced by stress[1], NSAIDs[2], and H pylori[3].

Proton pump inhibitors (PPIs) are the drugs of  
choice for the therapeutic control of  gastroesophageal 
reflux disease, peptic ulcer disease, and eradication of  
H pylori, and as mucosal protective agents when using 
NSAIDs. They have been shown to be more effective 
than other anti-secretory drugs (i.e. H2 receptor antago-
nists) in the management of  acid-related diseases[4]. The 
anti-secretory action is mediated by their irreversible in-
hibition of  H+/K+-ATPase, the terminal proton pump 
of  parietal cells[5]. However, emerging evidence suggests 
that the benefit of  PPIs is not only mediated by their 
potent blockade of  the gastric H+/K+-ATPase, but 
also by their ability to provide anti-inflammatory, anti-
apoptotic, and antioxidative effects[6,7]. By scavenging 
ROS and thus protecting the mucosa, these pleiotropic 
effects of  PPIs may be responsible for maintaining 
the anatomical and functional integrity of  the gastric 
mucosa. In addition to a variety of  endogenous factors 
such as prostaglandins, nitric oxide, and sulfhydryl com-
pounds, which have been proposed to account for the 
gastroprotective effects of  PPIs[7,8], we previously have 
shown that PPIs also induce the antioxidant protein 
heme oxygenase-1 (HO-1) in gastric epithelial and en-
dothelial cells[9].

The inducible stress protein HO-1 is the rate-limiting 
enzyme involved in heme breakdown to generate equi-
molar amounts of  biliverdin, free iron, and CO[10]. Bili-
verdin is subsequently converted by biliverdin reductase 
to bilirubin, which is a potent free radical scavenger and 
acts as a strong endogenous antioxidant[11]. CO has been 
recognized as a protective agent in hemorrhagic shock 
and as a modulator of  vascular tone. Moreover, it shows 
anti-apoptotic and anti-inflammatory activity[12]. The HO-1- 
dependent release of  free iron leads to the expression of  
a second antioxidant protein, ferritin[13]. Ferritin rapidly 
sequesters free cytosolic iron, thus limiting the forma-
tion of  oxygen-centered radicals via the Fenton reaction. 
Thereby, ferritin has emerged as a critical and fast-acting 
endogenous cytoprotectant that plays an important role 
in cellular antioxidant defense mechanisms[13]. 

The activation of  the HO-1 gene is regulated pri-
marily at the level of  transcription involving various 
signaling pathways. In particular, phosphorylation-
dependent signaling cascades that bind to the transcrip-
tion factors regulating the HO-1 gene seem to play a key 
role in HO-1 gene stimulation. In an inducer- and cell-
specific fashion, signaling pathways that are implicated 
in regulating HO-1 gene expression are those important 
for proliferation and cell survival. Many studies have 
focused on the activation of  the mitogen-activated pro-
tein kinases (MAPKs). Recently, other investigators have 
demonstrated a link between the phosphatidylinositol 
3-kinase (PI3K) cell survival pathway and regulation of  
the HO-1 gene. Some reports suggest a role of  cAMP-
dependent protein kinase A, protein kinase C, cGMP-

dependent PKG, or tyrosine kinases in HO-1 transcrip-
tional regulation[14]. 

The aim of  this study was to elucidate the mecha-
nism of  gastric protection by PPIs beyond their effec-
tive acid reduction properties, using lansoprazole as a 
model compound. We focused on the activation of  the 
antioxidant proteins, HO-1 and ferritin, by lansopra-
zole in cell systems that lack the actual PPI target, the 
H+/K+-ATPase pump. We then further assessed the 
underlying mechanism of  the upregulation of  HO-1 by 
lansoprazole. 

MATERIALS AND METHODS
Materials
Fetal bovine serum (FBS), cell culture media, and peni-
cillin and streptomycin were obtained from GIBCO 
(Eggenstein, Germany). Chemiluminescence Western 
Blotting Kit and D-luciferin were purchased from GE 
Healthcare (Freiburg, Germany) and BioSynth (Naper-
ville, IL, USA), respectively. Wortmannin and primary 
HO-1 antibody were obtained from Axxora (Grünberg, 
Germany). PeqGOLD TriFast was purchased from 
Peqlab (Erlangen, Germany). Chromium mesoporphy-
rin IX (CrMP) was purchased from Frontier Scientific 
(Carnforth, UK). For HO-1 probes, the template was an 
EcoRI restriction fragment of  the human HO-1 cDNA 
(clone 2/10), which was kindly provided by Dr. Rex Tyrrell 
(University of  Bath, UK)[15]. The polyclonal antibody 
against human ferritin and all other chemicals were ob-
tained from Sigma (Taufkirchen, Germany). The stock 
solutions of  lansoprazole (300 mmol/L), ranitidine  
(300 mmol/L), MAPK inhibitors [SB203580 (22 mmol/L), 
SB202190 (20 mmol/L), SP 600125 (45 mmol/L), PD 
098059 (22.5 mmol/L)], and PI3K inhibitors [LY294002 
(20 mmol/L), wortmannin (100 µmol/L)] were all pre-
pared in dimethyl sulfoxide and stored at -20℃ in the 
dark. The stock solution of  CrMP (10 mmol/L) was 
prepared by dissolving 6.5 mg in 50 µL 2 mol/L NaOH, 
adjusted to 1.0 mL with sterile water, and stored at -20℃ 
in the dark until use or for up to 12 mo. 

Cell culture 
Human endothelial-like ECV304 cells were obtained 
from the European Collection of  Cell Cultures (Salisbury, 
UK). ECV304 cells have been used as a convenient 
model for the study of  vascular endothelial cells[16,17], 
because they show endothelium-like properties such as 
producing endothelium specific Weibel-Palade bodies, 
endothelium-related antigens and angiotensin-converting 
enzyme, in addition to having human-umbilical-vein-
endothelial-cell-like morphology[18,19]. Cells were grown 
in M199 medium that contained 10% FBS, streptomycin 
(100 µg/mL), and penicillin (100 U/mL). Murine bone-
marrow-derived macrophages (J774), obtained from 
the American Type Culture Collection (Manassas, VA, 
USA), were maintained in Dulbecco’s Minimal Essential 
Medium (DMEM) that contained 10% FBS, streptomycin 
(100 µg/mL), and penicillin (100 U/mL). Embryonic 
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mouse fibroblast cells (NIH3T3-HO-1-luc), stably trans-
fected with a transgene that contained the full-length 
(15 kb) mouse HO-1 promoter that drives expression 
of  the reporter gene luciferase, were grown in DMEM 
that contained 10% FBS, streptomycin (100 µg/mL), 
and penicillin (100 U/mL). All cells were maintained in a 
humidified incubator at 37℃ and 5% CO2.

HO-1 mRNA analysis
Sub-confluent endothelial cells in 150-mm culture 
dishes were incubated for 8 h in the presence of  con-
trol medium, lansoprazole, or ranitidine. Superoxide 
dismutase (SOD), as well as PI3K and MAPK inhibi-
tors, was added 20 min before lansoprazole treatment. 
Total RNA was extracted using Trizol reagent according 
to manufacturer’s instructions (Peqlab). For Northern 
blotting, samples that contained equal amounts of  RNA  
(20-30 µg) were separated on a 1% denaturing formalde-
hyde gel and then transferred onto a positively charged 
nylon membrane by vacuum (500 mbar). The trans-
ferred RNA was fixed by baking at 80℃ for 30 min. Af-
ter incubation, membranes were hybridized with a ran-
domly primed 32P-labeled human HO-1 cDNA probe[15] 
overnight at 65℃. Equal loading of  RNA was assessed 
by staining 18S and 28S rRNAs with ethidium bromide 
and by a second hybridization using a 32P-labeled β-actin 
cDNA probe.

Formation of ROS
NADPH-dependent ROS formation was measured by 
monitoring lucigenin-derived chemiluminescence at 
37℃ using a Berthold LB96V luminometer according 
to previously published protocols[20]. Cells were first 
cultured in six-well plates. After pretreatment with lan-
soprazole or ranitidine for 12 h, cells were washed and 
suspended in PBS and then lucigenin (5 µmol/L) and 
NADPH (10 µmol/L) were added. CrMP (3 µmol/L) 
was added 20 min before lansoprazole treatment. 
Chemiluminescence was measured in relative light units 
(RLU) every 5 min over a period of  20 min. Data were 
expressed as the mean of  peak values in the 20-min 
measurement normalized to the maximal light emission 
(RLUmax%) of  time-matched NADPH-treated control 
cells.

HO-1 and ferritin protein analysis
ECV304 cells and macrophages were cultured in 
100-mm dishes as described above. After 4-24 h of  
incubation with control medium or lansoprazole, cells 
were washed and extracted as described previously[21]. 
One hundred micrograms of  HO-1 protein or 20 μg 
ferritin protein were separated by SDS-PAGE. Proteins 
were then transferred to a nitrocellulose membrane and 
incubated with a polyclonal antibody to HO-1 or fer-
ritin. Antigen/antibody complexes were visualized using 
a horseradish peroxidase chemiluminescence system ac-
cording to the manufacturer’s instructions. The densito-
metric quantitation was performed using Quantity One 
Basic software (Bio-Rad, USA).

In vivo HO-1 promoter activity 
NIH3T3-HO-1-luc cells, stably transfected with a 15-kb 
HO-1 gene upstream of  the transcription initiation site 
that drives expression of  the reporter gene luciferase, were 
treated with control medium or lansoprazole. PI3K and 
MAPK inhibitors were added 20 min before lansoprazole. 
After 24 h incubation, luciferin (300 µg/mL) was added 
to the cells. Light emission, used as an index of  HO-1 
promoter activity in living cells, was collected using the 
In Vivo Imaging System (IVIS™, Caliper Life Sciences, 
Alameda, CA, USA), quantitated using LivingImage 
software (Caliper Life Sciences), and expressed as photons 
emitted/5 min, as previously described[22].

Statistical analysis
Results are expressed as mean ± SD. Data were analyzed 
using ANOVA and by Bonferroni’s correction for multiple 
comparisons. All statistical calculations were performed 
using GraphPad Prism 3.02. Differences were considered 
significant at P < 0.05. Analyses were based on three to 
six independent experiments using different cell passages 
on different days. 

Results
Effect of lansoprazole and ranitidine on HO-1 mRNA levels
In endothelial cells, the effects of  ranitidine (an H2 
receptor antagonist) and lansoprazole on HO-1 mRNA 
levels were compared following 8 h incubation with 
each compound. Compared to untreated control cells, 
ranitidine treatment did not affect HO-1 mRNA levels 
at any concentration (Figure 1). In contrast, lansoprazole 
treatment elevated HO-1 mRNA levels in a concentration-
dependent manner with nearly a sixfold induction at 
100 µmol/L. This increase in HO-1 mRNA levels was 
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Figure 1  Effect of ranitidine and lansoprazole on HO-1 mRNA induction 
in endothelial cells after 8 h of incubation. Fold induction from control levels 
is shown as mean ± SD of three separate experiments. aP < 0.05 vs control. 
Treatment with CdCl2 was used as a positive control. Representative Northern 
blotting analysis is shown in the upper panel.
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comparable to the induction observed following treatment 
with the positive control CdCl2 (10 µmol/L). 

Effect of lansoprazole on HO-1 protein expression in 
macrophages
When we investigated the effect of  lansoprazole 
(5-100 µmol/L) on HO-1 protein expression in J774 
macrophages, a cell system contributing positively to the 
mucosal defense, a significant 1.75-2.2-fold induction 
in HO-1 protein levels was found following 12 h of  
incubation with lansoprazole at concentrations of  30, 50 
and 100 µmol/L (Figure 2).

Effect of ranitidine and lansoprazole on NADPH-
mediated ROS formation 
Activated phagocytes represent a major source of  
ROS production and are therefore used to investigate 
oxidative stress in cell systems. To analyze the free-radical 
scavenging effects of  the anti-secretory drugs ranitidine 
and lansoprazole, macrophages were preincubated with 
these compounds for 12 h. Ranitidine (30 µmol/L) did not 
affect NADPH-mediated ROS formation (Figure 3). In 
contrast, lansoprazole (30 µmol/L) significantly decreased 
NADPH-mediated ROS production (20%). To examine 
whether HO-1 accounted for the cell protection mediated 
by lansoprazole, the selective HO inhibitor CrMP was 
used. CrMP (3 µmol/L) eliminated the antioxidant 
action of  lansoprazole against NADPH-mediated free-
radical formation. No change in NADPH-mediated ROS 
formation was observed in cells treated with CrMP alone. 

Effect of lansoprazole on ferritin protein expression in 
endothelial cells and macrophages
Increased ferritin protein levels were found in tandem 
with increased HO-1 protein in macrophages in a 
concentration-dependent manner after 12 h of  incubation 
with lansoprazole (Figure 4A). Ferritin protein expression 

in endothelial cells also increased in a time-dependent 
manner following exposure to lansoprazole (Figure 4B). 
The induction of  ferritin protein expression occurred 
at a lansoprazole concentration of  100 µmol/L, which 
significantly induced HO-1 mRNA and protein levels. 

Regulation of the lansoprazole-induced HO-1 gene 
expression: effect of oxidative stress
Since HO-1 is highly induced by oxidative stress, we 
evaluated the role of  superoxide anion in the PPI-
mediated upregulation of  HO-1 mRNA. Endothelial cells 
were treated with lansoprazole (30-100 µmol/L) in the 
presence of  SOD for 8 h (Figure 5). Preincubation with 
SOD (15 U/mL) did not change the basal or lansoprazole-
mediated increases in HO-1 mRNA levels. These results 
indicate that superoxide anion is not involved in the 
regulation of  HO-1 expression by lansoprazole. 

Effect of MAPK inhibitors on the lansoprazole-induced 
HO-1 gene activation 
Induction of  HO-1 mRNA in endothelial cells after 
treatment with lansoprazole for 8 h was not influenced 
by pretreatment with the ERK inhibitor PD098059  
(10 µmol/L) or the JNK inhibitor SP600125 (10 µmol/L) 
(Figure 6A and B). At a concentration of  10 µmol/L, 
the p38 inhibitor SB203580 had no effect on HO-1 
mRNA induction by lansoprazole (50 µmol/L). Higher 
concentrations of  the inhibitor decreased HO-1 mRNA 
levels in comparison to that following treatment with 50 
µmol/L lansoprazole alone (Figure 6C). Thus, to further 
explore the role of  p38 MAPK on PPI-mediated HO-1 
gene activation, we treated endothelial cells with a sec-
ond p38 MAPK inhibitor (α and β subunit), SB202190 
(0.1-10 µmol/L). SB202190 did not affect the induction 
of  HO-1 mRNA by lansoprazole (Figure 6C). Moreo-
ver, when we investigated the effect of  both p38 MAPK 
inhibitors on HO-1 promoter activity using NIH3T3-
HO-1-luc cells, incubation with 30 µmol/L lansoprazole 
alone for 24 h significantly increased HO-1 promoter 

150

125

100

75

50

25

0
Ranitidine (30 µmol/L)

Lansoprazole (30 µmol/L)

CrMP (3 µmol/L)

Control       +            -             -             -

                  -            +            +            -

                  -             -            +            +

N
AD

PH
-m

ed
ia

te
d 

R
O

S 
fo

rm
at

io
n 

(%
 o

f 
co

nt
ro

l)

c

a

Figure 3  Lansoprazole, but not ranitidine, decreased NADPH-dependent 
ROS formation in macrophages. This effect was reversed in the presence 
of CrMP. Measurements of lucigenin-enhanced chemiluminescence were 
performed. aP < 0.05 vs control; cP < 0.05 vs lansoprazole alone. Data are 
shown as mean ± SD of three to six separate experiments.

3.0

2.0

1.0

0
Control        5            10           30           50          100     µmol/L

Lansoprazole

a

a
a

HO-1

Lansoprazole 

Control       5           10           30           50          100       µmol/L

H
O

-1
 p

ro
te

in
 (

fo
ld

 in
du

ct
io

n)

Figure 2  Effect of lansoprazole on HO-1 protein expression in macrophages 
(J774 cells) after 12 h of incubation. Fold induction from control levels is 
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activity by 1.7-fold compared with untreated control lev-
els (data not shown). Neither p38 inhibitor diminished 
HO-1 promoter activation by lansoprazole (Table 1). All 
MAPK inhibitors alone did not affect HO-1 mRNA lev-
els or HO-1 promoter activity. 

Involvement of the PI3K pathway in the regulation of 
HO-1 induction by lansoprazole
Preincubation of  endothelial cells with the PI3K inhibitor 
LY294002 (5-50 µmol/L) diminished the lansoprazole-
induced (50 µmol/L) increase in HO-1 mRNA expression 
in a concentration-dependent manner (Figure 7A and C). 
Similar effects were observed in NIH3T3-HO-1-luc cells 
(Figure 8A and C). The lansoprazole-mediated (30 µmol/L) 
promoter activation was abolished by up to 50% in the 
presence of  LY294002 (5-25 µmol/L) (Figure 8C). 
Preincubation with the fungal metabolite wortmannin 
(0.01 and 0.1 µmol/L) did not affect the lansoprazole-
mediated increase in HO-1 mRNA and HO-1 promoter 
activity levels (Figure 7B and C, Figure 8B and C). 

Both PI3K inhibitors alone did not affect HO-1 
promoter activity or transcriptional levels under identical 
experimental conditions. 

DISCUSSION
Since ROS and inflammation are important causative 
factors for the development of  mucosal damage, the 
pleiotropic effects of  PPIs are of  particular clinical 
interest for the control of  gastroduodenal ulcers. Thus, 
investigation of  the molecular mechanism of  PPI-
mediated gastric protection is required. 

In th is s tudy, we used endothel ia l ce l l s and 
macrophages, which play important roles in mucosal 
defense, to evaluate the effects of  PPIs on the HO-1/
ferritin system. The blood flow through the endothelial 
cells that innervate the mucosa is crucial for supplying 
nutrients, limiting damage, and facilitating repair. 
Macrophages play key roles in the mucosal immune 
system, sensing and in response to foreign materials[23]. 
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Table 1  Effect of p38 inhibitors SB203580 and SB202190 
on lansoprazole-induced HO-1 promoter activity in NIH3T3-
HO-1-luc  cells (mean ± SD, %)

Treatment HO-1 promoter 
activity

Lansoprazole (30 µmol/L) 100.0 ± 8.4
Lansoprazole (30 µmol/L) + SB203580 (10 µmol/L) 109.2 ± 9.0
Lansoprazole (30 µmol/L) + SB203580 (20 µmol/L)   108.8 ± 12.6
Lansoprazole (30 µmol/L) + SB203580 (30 µmol/L)   101.8 ± 14.4
Lansoprazole (30 µmol/L) + SB202190 (0.1 µmol/L)   91.0 ± 3.7
Lansoprazole (30 µmol/L) + SB202190 (1.0 µmol/L)   112.4 ± 15.1

Change from HO-1 promoter activity measured in cells treated with 30 µmol/L 
lansoprazole. 
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Neither cell type expresses H+/K+-ATPase, therefore, 
the observed induction of  HO-1 and ferritin by PPIs 
is assumed to be independent of  their antisecretory 
properties. We have shown previously that PPIs induce 
HO-1 mRNA, protein and enzymatic activity in gastric 
epithelial cells and endothelial cells[9]. In this study, 
we provided further evidence that activation of  the 
HO-1 gene by PPIs might account for their beneficial 
effects in the treatment of  peptic ulcer disease. We 
demonstrated that the H2 receptor antagonist ranitidine, 
in contrast to lansoprazole, failed to increase HO-1 
mRNA levels. Moreover, lansoprazole also significantly 
upregulated HO-1 protein levels as a consequence 
of  elevated HO-1 mRNA levels in J774 cells (data 
not shown). Macrophage-derived ROS production 
promotes the killing of  microorganisms on one hand, 
but on the other hand, contributes to oxidative stress in 
inflammatory sites and alters basic cell functions such as 
adhesion and proliferation[24,25]. In acute inflammatory 
illnesses, HO-1 mRNA levels are significantly elevated, 
which suggests that monocytes exert potent anti-
inflammatory effects via HO-1 activation, and thereby 
regulate the production of  pro-inflammatory cytokines 
to protect organs and cells from irreversible damage[26]. 

Thus, upregulation of  HO-1 expression by lansoprazole 
in macrophages could be beneficial in the management 
of  mucosal inflammation.

In addition, we demonstrated that lansoprazole 
performed free-radical scavenging in macrophages. The 
protection against NADPH-mediated ROS production 
by lansoprazole occurred after 12 h of  incubation and 
after washout of  lansoprazole. Moreover, the inhibition 
of  the antioxidant effect of  lansoprazole in the presence 
of  the HO inhibitor CrMP[27] demonstrates that HO-1 
and its enzymatic products are indeed of  functional 
relevance for the antioxidant effects of  lansoprazole. 

All experiments in this study have been performed 
with lansoprazole, but studies using omeprazole have 
shown similar effects on HO-1 mRNA and HO-1 and 
ferritin protein expression, as well as on the reduction 
of  ROS (data not shown). Taken together, these 
data indicate that the induction of  HO-1 might be 
responsible, at least in part, for the antioxidative action 
of  PPIs and their advantage over H2-antagonists in the 
therapy of  ulcer disease and NSAID-related mucosal 
damage. 

Our data support other work that has shown that 
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Figure 6  Effect of different MAPK inhibitors on lansoprazole-induced HO-1 
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HO-1 might be a mediator of  gastroprotective pathways. 
Immunohistochemical studies have demonstrated that 
HO-1 is expressed constitutively in normal gastric and 
colonic mucosa and its upregulation occurs in these 
tissues during inflammation or the healing phase of  
gastric ulcers[28,29]. 

In the present study, significant HO-1 induction fol-
lowing treatment with lansoprazole in endothelial cells 
and macrophages, as well as antioxidant protection oc-
curred at a concentration of  30 μmol/L. Plasma con-
centrations after oral administration of  lansoprazole 
(30 mg/d) ranged from 2.2 to 5.6 μmol/L[30]. Depending 
on the dose (30-90 mg/d) and the route of  administra-
tion, higher plasma concentration levels (e.g. 15-21 μmol/L) 
may be attainable[31,32]. These concentrations approximate 
the concentrations found to be effective at increasing 
the level of  HO-1 expression in the present study. Fur-
thermore, Blandizzi and co-workers have suggested that 
the ED50 of  lansoprazole needed to provide gastropro-
tection is 2-4 times higher compared to that needed for 

inhibition of  acid secretion[7].
The anti-inflammatory and antiproliferative actions of  

the HO-1 product CO, as well as the potent antioxidant 
effect of  bilirubin, are thought to contribute to the overall 
protective effect of  HO-1[12]. CO has also been shown to 
provide vasodilatory activities through the activation of  
soluble guanylyl cyclase[33]. Omeprazole and lansoprazole 
induce relaxation of  isolated human arteries[34] at the 
same concentration range (30-300 μmol/L lansoprazole) 
that we have found to be effective in the induction of  
HO-1. Although Naseri and co-workers have suggested 
the regulation of  intracellular Ca2+ as an underlying 
mechanism, it might also be possible that the generation 
of  CO by HO-1 activity contributes to the vasodilatory 
effect of  PPIs. 

The third direct product of  heme metabolism, free 
Fe2+, leads to the induction of  a multimeric iron-chelating 
protein, ferritin[35]. In the present study, the ferritin protein 
induction by lansoprazole occurred in a concentration- 
and time-dependent manner in macrophages and 
endothelial cells. The activation of  ferritin protein 
synthesis was obtained after long incubations (12-24 h) 
and at concentrations that have also been shown to result 
in HO-1 mRNA and protein increase, which suggests 
ferritin induction as a functional consequence of  elevated 
HO-1 activity. 

Besides induction through its physiological substrate 
heme, HO-1 gene expression can also be stimulated by 
a variety of  stress inducers including, but not limited 
to, heavy metals, ultraviolet irradiation, endotoxin, and 
oxidants such as hydrogen peroxide[14]. In contrast, 
antioxidants such as α-tocopherol and allopurinol prevent 
the upregulation of  HO-1[36]. Thus, we investigated 
the role of  ROS in PPI-mediated HO-1 induction. 
Pretreatment with the antioxidant enzyme SOD did not 
affect lansoprazole-mediated HO-1 induction, precluding 
a mediator role of  superoxide.

Recently, it has been shown by Yeo and co-workers 
that PPIs influence MAPK-dependent pathways[37]. How-
ever, in the present study, the ERK inhibitor PD098059 
and the JNK inhibitor SP600125 had no inhibitory effect 
on lansoprazole-induced HO-1 mRNA. All inhibitors 
have been used in concentrations previously shown to 
be effective in the inhibition of  the final kinase of  the 
respective MAPK cascade[38,39]. The p38 kinase inhibi-
tor (α- and β-subunit) SB203580, at a concentration of  
30 μmol/L, impaired the lansoprazole-mediated HO-1 
mRNA induction. SB 203580 has been shown to inhibit 
its established targets, the α- and β-subunit of  p38 with 
IC50 values of  50 and 500 nmol/L, respectively. Yet, other 
kinases like lymphocyte-specific protein tyrosine kinase, 
glycogen synthase kinase-3β (GSK3β) and Akt1 (pro-
tein kinase Bα) were also inhibited by SB 203580, with 
IC50 values that were 100 ± 500-fold higher than that for 
p38[40]. As SB203580 interacts with other kinases at higher 
concentrations, we determined the effect of  a second p38 
inhibitor, SB202190, on HO-1 mRNA induction by lanso-
prazole. SB202190 was without effect on the lansoprazole-
mediated increase in HO-1 mRNA. In agreement with 
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this, both p38 inhibitors have been without effect on lan-
soprazole-induced HO-1 promoter activity in NIH3T3-
HO-1-luc-cells, which indicates that MAPK activation is 
not involved in PPI-mediated HO-1 induction. 

The PI3K inhibitor LY294002 diminished the 
increase of  HO-1 mRNA level and HO-1 promoter 
activity induced by lansoprazole in a concentration-
dependent manner. Surprisingly, a second PI3K 
inhibitor, wortmannin, did not affect HO-1 expression. 
Although both PI3K inhibitors have been shown to 
block the phosphorylation of  PI3K completely at the 
concentrations used in our study[41,42], the potency to 
interact with other kinases is different. An inhibitory 
effect by LY294002 but not by wortmannin on HO-1 
induction has already been described by other groups, 
which suggests that PI3K is not involved in HO-1 gene 
activation in these particular cases[43,44]. LY294002 is also 
known to block casein kinase 2 (CK2) and GSK3β by up 
to 50% at a concentration of  50 µmol/L[40]. Moreover, 
the phosphorylation of  PI3K downstream kinase p70s6k 
is inhibited almost completely at a concentration of  
10-25 µmol/L LY294002, whereas the inhibition of  
Akt phosphorylation requires LY294002 doses of  up 
to 150-200 µmol/L[45]. Therefore, a different influence 
of  special PI3K downstream kinases or an involvement 
of  CK2 or GSK3β on the PPI-mediated HO-1 gene 
activation is conceivable. Indeed there is evidence that 
CK2 might exert a significant influence on HO-1 gene 
activation by the phorbol 12-myristate 13-acetate[46]. 
Further studies are needed to clarify the influence of  
GSK3β, CK2 and PI3K downstream kinases on HO-1 
induction by PPIs.

In summary, we demonstrated that lansoprazole 
is a potent inducer of  the antioxidant proteins HO-1 
and ferritin. The induction of  HO-1 by lansoprazole is 
independent of  oxidative stress, and involves a signaling 
pathway that is blocked by LY294002. The activation 
of  the HO-1/ferritin pathway occurs in endothelial 
cells and macrophages; cells relevant to the mucosal 
microcirculation and the mucosal immune system. Neither 
cells express H+/K+-ATPase, therefore, the observed 
induction of  HO-1 and ferritin by lansoprazole can be 
assumed to occur independently of  the antisecretory 
effect. It is plausible that HO-1 and its enzymatic products 
are responsible for, or contribute to, the gastric protection 
seen with lansoprazole and other PPIs.
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the HO-1 gene through a phosphatidylinositol 3-kinase (PI3K)-dependent 
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protection and reducing the risk of gastrointestinal bleeding caused by chronic 
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degradation of heme and leads to the accumulation of free iron, CO, and 
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