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Unicellular living organisms, such as bacteria and algae, propel
themselves through a medium via cyclic strokes involving the
motion of cilia and flagella. Dense populations of such “active par-
ticles” or “swimmers” exhibit a rich collective behavior at large
scales. Starting with a minimal physical model of a stroke-averaged
swimmer in a fluid, we derive a continuum description of a suspen-
sion of active organisms that incorporates fluid-mediated, long-
range hydrodynamic interactions among the swimmers. Our work
demonstrates that hydrodynamic interactions provide a simple,
generic origin for several nonequilibrium phenomena predicted or
observed in the literature. The continuum model derived here does
not depend on the microscopic physical model of the individual
swimmer. The details of the large-scale physics do, however, differ
for “shakers” (particles that are active but not self-propelled, such
as melanocytes) and “movers” (self-propelled particles), “pushers”
(most bacteria) and “pullers” (algae like Chlamydomonas). Our
work provides a classification of the large-scale behavior of all
these systems.

low-Reynolds-number swimming | hydrodynamic interactions | active
suspensions

T he world of a swimmer at low Reynolds numbers, beautifully
described by Purcell in his classic 1977 paper (1), is full of

surprises that defy intuition. Much attention has been devoted
over the years to understanding the propulsion mechanisms that
drive a single organism through a medium (2). More recently,
the focus has shifted to the even richer behavior of collections
of low-Reynolds-number swimmers, such as bacterial colonies
(3, 4), sperm cells (5), and cell extracts of cytoskeletal filaments
and motor proteins (6). These systems exhibit fascinating collec-
tive behavior, including the possibility of nonequilibrium phase
transitions between disordered and ordered (possibly moving)
states, novel long-range correlations, and pattern formation on
mesoscopic scales. Apparently diverse phenomena, such as the
large-scale swirling motion observed in bacterial suspensions and
the formation of intricate aster and spiral structures in extracts of
cytoskeletal filaments and motor proteins, are well described by
the same continuum phenomenological hydrodynamics of active
suspensions. Such collective phenomena arise from interactions
among the active particles. For a complete understanding of the
collective physics of these systems, it is important to elucidate the
relative roles of physical interactions, such as excluded volume and
medium-mediated couplings, genetically and biochemically regu-
lated signaling, and external symmetry-breaking effects, such as
chemotaxis. A first important step in this direction is understand-
ing how activity or self-propulsion modify physical interactions
among the units. In an earlier work (7), we showed that modi-
fications of the short-range excluded volume interactions due to
self-propulsion can explain nonequilibrium effects, such as anom-
alous number fluctuations observed in active particles on rigid
substrates (8). Here we show that for active particles in a fluid,
such as bacteria or collections of living cells, all the large-scale
nonequilibrium phenomena described in the literature arise from
the long-range nature of the hydrodynamic interactions among
the active particles.

Theoretical efforts to understand the physics of active systems
fall broadly into three categories. A group of researchers has

analyzed the flow induced by individual or pairs of swimmers
moving in a viscous fluid by studying simplified models of moving
particles (9–11). A second community has focused on the physics
on length scales large as compared with the size of the swimmers
by proposing phenomenological hydrodynamic equations built by
modifying the well-understood hydrodynamics of liquid crystal to
include nonequilibrium terms that account for the activity of the
system (12–15). Because of their elongated shape, active particles,
like nematogens, can exhibit orientational order at high concen-
tration (16) and have been likened to “living liquid crystals”. The
phenomenological theories have yielded several important results,
including the prediction of a “generic instability” of all bulk-
ordered states of active suspensions (12), the description of the
mesoscopic vortices and asters formed in the region where homo-
geneous ordered states are unstable (17), and the demonstration
of novel rheological behavior (18–20). Finally, a third approach
has been the derivation of the continuum hydrodynamic equations
from specific microscopic models of the dynamics. This approach
has included rule-based dynamical models (21, 22), inspired by the
seminal work of Vicsek (23), and physical models of self-propelled
rods and filaments on a substrate (7, 17, 24). Here we use a sim-
ple model of interacting swimmers in a fluid to derive continuum
equations describing the large-scale behavior of active suspen-
sions. Our model reproduces the instabilities of both isotropic and
ordered homogeneous states previously discussed in the literature
and uncovers new ones. It also shows that the long-range nature of
hydrodynamic interactions is responsible for all such instabilities.

Bacteria propel themselves by a variety of periodic, nonrecip-
rocating strokes that involve the motion of flagella or cilia (2).
Here we are interested in the collective behavior of many swim-
mers on long time and length scales. With this goal in mind, the
details of the mechanism of self-propulsion is not important, and
we simply approximate the force distribution far from an indi-
vidual swimmer as that of a static force dipole (25). Our physical
model of a stroke-averaged swimmer is an asymmetric rigid dumb-
bell exerting a force dipole of strength |f | on the fluid, as shown in
Fig. 1. The asymmetry of our active dumbbell is essential to make
it a “swimmer” as opposed to a “shaker” (a particle—such as a
melanocyte, which distributes pigments in the skin (16)—that is
active because of intrinsic energy sources but is not self-propelled).
In the Stokes regime, a swimmer needs to have a stroke that is
not time-reversal invariant. In the stroke-averaged model consid-
ered here, this broken temporal symmetry translates into a broken
spatial symmetry, corresponding in our case to the asymmetry of
the dumbbell. An isolated dumbbell swimmer of length � propels
itself through a fluid of viscosity η at a velocity vSP = v0ν̂, with v0 =
−fΔa/(8πη�a), a = (aL +aS)/2 and Δa = aL −aS. Hence, v0 = 0
if aL = aS. More generally, all symmetric swimmers, defined as
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Fig. 1. Our stroke-averaged swimmer is an asymmetric rigid dumbbell com-
posed of a small and a large sphere of radii aS and aL, respectively, connected
by an infinitely thin rigid rod. The swimmer has length �, and its orienta-
tion is characterized by a unit vector ν̂ directed along its axis from the small
to the large sphere. Also shown are the equal and opposite forces f = f ν̂

that the swimmer exerts on the fluid. Propulsion is centered at the hydrody-
namic center (26), denoted by C, which here lies to the right of the swimmer’s
geometrical midpoint M, which is also the center of the force dipole.

those for which the center of the force dipole coincides with the
hydrodynamic center of the swimmer (26), are actually “shak-
ers” with v0 = 0. Finally, it is important to stress that although
our model for a single swimmer is a static force dipole, hydrody-
namic interactions do generate all multipoles in the collective flow
field.

Active particles can also be classified according to the forces
they exert on the surrounding fluid. Contractile swimmers or
“pullers” are propelled by flagella at the head of the organism.
They pull fluid in along their long axis and push fluid out along
an axis normal to their midpoint (Fig. 2A). With the definition of
forces shown in Fig. 1, pullers correspond to f < 0. The unicellular
flagellate algae Chlamydomonas are examples of pullers. In the
stroke-averaged representation, the swimmer is a puller when the
hydrodynamic center lies near the “head” of the swimmer, defined
with respect to its direction of self-propelled motion. Conversely,
tensile swimmers with f > 0 push fluid out along their long axis and
pull fluid in at their midpoint. They are propelled from the rear,
hence “pushers”. Most bacteria, such as Escherichia coli, belong
to this class. In this case, the hydrodynamic center of the swimmer
lies near the “tail” (Fig. 2B).

We derive equations for the microscopic dynamics of a col-
lection of such swimmers in a fluid by eliminating the fluid flow
velocity and recasting it explicitly in the form of long-ranged hydro-
dynamic interactions among the particles. We characterize the
resulting interactions and identify how they depend on the swim-
mer’s status as either a puller or a pusher. At short distances, the
swimmers also interact repulsively via excluded volume effects
that are known to yield orientational order at high density. These
effects are understood (27), and so for simplicity we do not include
them in the derivation of the continuum hydrodynamics. By using
the standard tools of nonequilibrium statistical mechanics, we
then obtain coarse-grained hydrodynamic equations that describe
the collective dynamics of the swimmers on long length and time
scales. Finally, we examine the nature of fluctuations in these sys-
tems and the underlying microscopic mechanisms that give rise to
them. Before describing the derivation, we summarize some key
new outcomes of our work.

1. We show that pairwise hydrodynamic interactions (within
the Stokes approximation) alone do not yield homoge-
neous orientational order in bulk. When steric effects
are incorporated in the model, the swimmers order in a
nematic state at high density. This is an equilibrium effect
(although modified by self-propulsion (7)). Neither steric
effects nor hydrodynamic interactions yield, however, a
bulk polar state.

2. We demonstrate that a uniform isotropic suspension of
pullers is unstable above a critical active force |f |. This
instability arises from the suppression of mass diffusion

because of the attractive hydrodynamic forces along the
axis of contractile swimmers. It is similar to the “bundling”
instability obtained in refs. 17 and 24 for filament-motor
mixtures. In that case, however, the bundling is induced
by active cross-linkers; hence, by a very specific contact
interaction among filaments. In the present work, the sup-
pression of diffusion arises entirely from hydrodynamic
forces among the swimmers and is therefore a general new
effect.

3. It is known that uniform ordered active suspensions (swim-
mers, shakers, pullers, or pushers) are “generically” unsta-
ble because of the growth of orientational fluctuations
(12). Our work identifies the origin of this instability in the
long-ranged (∼ 1/r2) nature of the hydrodynamic inter-
actions. This connection also suggests mechanisms for
suppressing the instability, as described in Hydrodynamic
Equations.

4. Our work shows that the instabilities of active suspen-
sions arise from hydrodynamic interactions and provides
the classification of such instabilities for different types of
swimmers summarized in the phase diagram of Fig. 3.

Fig. 2. Flow patterns induced by the active forces that a single puller (A) or
pusher (B) exerts on the surrounding fluid. The colors denote the amplitude
of the flow that decreases at large distances, albeit only as a power law (red,
largest, to blue, weakest). The arrows indicate the direction of the flow. Also
shown for each swimmer are the location of the hydrodynamic center (white
circle) and the direction of the self-propulsion velocity (white arrow). In both
cases, the flow vanishes as expected at the center of the dipole.
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Fig. 3. A “phase diagram” for active suspensions. The vertical axis is the
active force f , with f > 0 for pushers and f < 0 for pullers. The horizon-
tal axis is the mean concentration, c0. The red lines mark the onset of the
instability of the homogeneous states, which is scale-free for pushers and dif-
fusive for pullers. The ordered state is unstable for all f . A transition from
the isotropic to the nematic state is expected to occur in the shaded region,
which is not accessible to the present theory. Swimmers (but not shakers) also
exhibit propagating (sound-like) density waves above a threshold value of |f |
indicated by the horizontal dashed blue line.

5. By providing a microscopic calculation of the parameters
in the hydrodynamic equations, we show that the parame-
ter controlling the instabilities is a Péclet number defined
in terms of the typical convective velocity of the suspension
(rather than the individual swimmer’s velocity).

Finally, our work also reproduces the orientational instability
of a uniform isotropic suspension of pushers reported in refs. 29
and 30. Here this instability occurs because above a critical f , any
inhomogeneity in the orientational order is enhanced by active
hydrodynamic torques, which tend to align the swimmers when
f > 0.

To address the important question of whether these instabilities
may be observable experimentally, we need to estimate the para-
meters that control the strength of the interaction among active
units. The analysis below shows that the instabilities are controlled
by a dimensionless concentration of active particles, c∗

0 = Vactc0,
where Vact = �a(�Pe) is the active volume of each swimmer. Here
Pe = v�

D is the Péclet number of the suspension, defined as the ratio
of the convective flow velocity v ∼ |f |/ζ induced by the activity to
the typical diffusion velocity, D/�. If Pe > 1, diffusion is ineffective
at “mixing” the suspension and activity dominates, resulting in the
unstable growth of fluctuations when c∗

0 > 1. The Péclet number
defined here is not controlled by the self-propulsion speed of an
individual organism (which vanishes for shakers) but rather by the
larger speed ∼ |f |/ζ that characterizes large-scale activity-induced
convection. Experiments such as the one reported in ref. (3) have
shown that v can exceed 100 μm/s in dense bacterial suspensions,
rendering collective nonequilibrium phenomena observable even
for weak activity of the individual particles.

Model Swimmer and Hydrodynamic Interactions
Our model of a stroke-averaged swimmer is shown in Fig. 1. It is
an asymmetric rigid dumbbell with spherical head and tail of radii
aL and aS. The length � of the swimmer is the distance between
the centers of the two spheres. The orientation of the swimmer is
described by a unit vector ν̂ directed along its axis from the small
to the large sphere. The swimmer exerts equal and opposite forces
f = ±f ν̂ on the fluid. The center of this symmetric force dipole is
the swimmer’s midpoint, M , located at �/2. The fluid exerts equal
and opposite forces on the swimmer and the net force is zero at
all times. The swimmer is assumed to be at neutral buoyancy. The
Reynolds number Re = ρv�/η for one of these swimmers, where

ρ and η are the density and viscosity of the fluid, and v the typical
velocity of the swimmer, can be estimated by using numbers typi-
cal for bacteria (v ∼ 10−30μm/sec, � ∼ μ m, η ∼ 10−2 −1Pasec)
as Re ∼ 10−4 − 10−5. In this regime one can assume that, in the
absence of fluid fluctuations, the swimmer is convected along with
the fluid at the local fluid velocity, u(r). The dynamics of the αth
rigid swimmer is then described by

∂trLα = u(rLα),
∂trSα = u(rSα), [1]

where rLα and rSα denote the position of the large and small sphere
with respect to a fixed origin, with rLα − rSα = �ν̂α to enforce
the rigidity constraint. The flow velocity u(r) of the fluid at r is
determined by the solution of the Stokes equation,

η∇2u(r) = ∇p − Factive + Fnoise, [2]

where

Factive =
∑

α

f ν̂α[δ(r − rLα) − δ(r − rSα)] [3]

is the active force density by the swimmer on the fluid, and

Fnoise =
∑

α

[
ξL

α (t)δ(r − rLα) + ξS
α(t)δ(r − rSα)

]
[4]

describes the effect of fluid fluctuations. The random forces
ξL,S

α (t) are Markovian white noise terms on each of the two
spheres. They have zero mean and variance 〈ξL,S

αi (t)ξL,S
βj (t′)〉 =

2ζL,SkBTaδijδαβδ(t − t′), with ζL,S = 6πηaL,S the friction of a sphere
of radius aL,S in a fluid of viscosity η and Ta an active temperature.
In general, there will be noise generated by the swimmer itself.
Here we assume that this can also be described as white Langevin
noise and only modifies the amplitude of the fluctuations. Finally,
we assume that the fluid is incompressible; hence ∇ · u = 0.

The Stokes equation given by Eq. 2 can be solved with the result

ui(r) = f
∑

α

[
Oh

ij(r − rLα) − Ot
ij(r − rSα)

]
ν̂αj, [5]

where Oij(r) is the Oseen tensor, Oij(r) = (δij + r̂i r̂j)/(8πηr), for
|r| > aL,S, with r̂ = r/|r| a unit vector. The Oseen tensor relating
the flow around a sphere of radius aL,S to a point force applied from
the center of the sphere diverges at the origin for a point force.
This divergence is eliminated in the standard way by assuming
Oij(|r| ≤ aL,S) = δij/ζL,S.

The dynamics of an extended rigid body in Stokes flow is conve-
niently described in terms of the translation of the hydrodynamic
center of the body and rotations about this point. The hydrody-
namic center is the point about which the net hydrodynamic torque
on the body vanishes (26). The hydrodynamic center plays the
same role in Stokes flow that the center of mass plays in inertial
dynamics. For a rigid dumbbell in an externally imposed flow the
hydrodynamic center is given by

rC = ζLrL + ζSrS

ζL + ζS
= aLrL + aSrS

aL + aS
. [6]

This definition will also be used here to identify the hydrodynamic
centers of our swimmers.

By using the formal solution, Eq. 5, of the Stokes equation we
can eliminate the flow field from Eq. 1 and obtain closed equations

Baskaran and Marchetti PNAS September 15, 2009 vol. 106 no. 37 15569



of motion describing the translational and rotational dynamics of
the swimmers in the fluid, in the form

∂trC
α = v0ν̂α + 1

ζ

∑
β	=α

Fαβ + �α(t), [7]

ωα = 1
ζR

∑
β	=α

ταβ + �R
α (t), [8]

where the angular velocity describing rotations about the hydro-
dynamic center is defined by ∂t ν̂α = ν̂α × ωα and ζ = (ζL + ζS)/2,
ζR = �2ζ. The forces Fαβ and torques ταβ arise from hydrodynamic
couplings among the swimmers. The random forces �α and �R

α

lead to diffusion of the swimmers at large length scales. They may
be expressed in terms of the random forces ξL,S(t) on each sphere.
Neglecting for simplicity hydrodynamic effects in the noise, which
have been studied (31), their correlations are given by

〈�αi(t)�βj(t′)〉 = 2[D⊥δij + (D‖ − D⊥)ν̂αiν̂αj]δαβδ(t − t′)

〈�R
αi(t)�R

βj(t′)〉 = 2DRδijδ(t − t′). [9]

At low density, D‖, D⊥ ∼ kBT/ζ and DR ∼ kBT/(ζ�2). The asym-
metry of translational diffusion (D‖ > D⊥) is due to the hydrody-
namic interactions induced by fluid fluctuations at the head and
tail of the swimmer. The hydrodynamic interactions due to the ran-
dom force between different swimmers yield corrections of order
(kBTa/ζ)(�/r12)2 to the diffusion constants, with r12 = |rC

1 − rC
2 |.

At a large Péclet number, these are negligible compared with the
order (v2

0/ζ)(�/r12)2 corrections from active forces.
It is clear from Eqs. 7 and 8 that an isolated swimmer propels

itself in a straight line with self-propulsion velocity v0ν̂ and v0 =
−fΔa/(8πη�a)∗. The presence of other swimmers yields hydro-
dynamic forces Fαβ and torques ταβ by the βth swimmer on the αth
swimmer. To obtain tractable expressions for the hydrodynamic
forces and torques, we carry out a multipole expansion of the force
distribution on the right hand side of Eq. 5 around the hydrody-
namic center of each swimmer by letting rαL = rC

α + (ζS/2ζ)�ν̂α

and rαS = rC
α − (ζL/2ζ�)ν̂α and expanding about rC

α . This expan-
sion corresponds to an one in �/r12. Assuming r12 ∼ c−1/3

0 , this is
a small parameter at low mean concentration c0 of swimmers. In
spite of this approximation, the form of the hydrodynamic equa-
tions obtained here remains valid at high concentration, although
with different values of the various parameters. We have explicitly
evaluated hydrodynamic forces and torques up to octupole order
in the multipole expansion. The full expressions are complicated
and will not be given here. By retaining only the leading terms for
each contribution and dropping numerical coefficients of order
one†, we obtain

F12 � 2f a�
[
3(r̂12 · ν̂2)2 − 1

] r̂12

r2
12

, [10]

τ12 � f a
4

ν̂1 × [3r̂12 r̂12 − δ] · ν̂2

[
�3

r3
12

(ν̂1 · ν̂2) − Δa2

2a2

�5

r5
12

]
. [11]

The hydrodynamic force between two swimmers is directed along
the radius joining the hydrodynamic centers of the swimmers. The
hydrodynamic force is nonzero for both shakers (v0 = 0) and
movers (v0 	= 0) and decays as 1/r2

12. The torque consists of two
terms. The first term, proportional to f a/r3

12, is nonzero even for
shakers. This term is invariant for ν̂1 → −ν̂1 and ν̂2 → −ν̂2 and

∗ A more realistic stroke-averaged swimmer may correspond to a force dipole directed at
an angle to the long axis of the swimmer, yielding both a net force and a net torque
on the swimmer. Torques could also arise from random forces generated upon stroke
averaging a noisy swimmer. The study of these effects is left for future work.

† Here we display a simplified form of the hydrodynamic forces and torques. The full
expressions can be found in the supplementary material.

aligns swimmers regardless of their polarity. The second term,
proportional to f (Δa/a)2, vanishes for symmetric swimmers and
tends to align swimmers of the same polarity. The force exerted
by a puller (pusher) is attractive (repulsive) along the direction
of its swimming axis, and repulsive (attractive) in the orthogonal
direction. The torque exerted by a puller tends to align other swim-
mers that are located along its axis and to misalign swimmers in
the orthogonal directions. The converse applies to pushers. These
differences have important consequences in controlling the details
of the instabilities.

Hydrodynamic Equations
The collective dynamics of many swimmers on length scales large
as compared with their mean separation and time scales long as
compared with the duration of the stroke of an individual swim-
mer is well described in terms of conserved quantities and broken
symmetry variables. The only conserved quantity in our model is
the density of swimmers‡, c(r, t), defined as

c(r, t) = 〈 ∑
α

δ(r − rC
α (t))

〉
, [12]

where the brackets denote an average over the microscopic
degrees of freedom. There are two broken symmetry variables,
corresponding to the possibility of polar and nematic order of the
swimmers, defined as

P(r, t) = 1
c(r, t)

〈 ∑
α

ν̂αδ(r − rC
α (t))

〉
, [13]

Qij(r, t) = 1
c(r, t)

〈 ∑
α

(
ν̂αiν̂αj − 1

3
δij

)
δ(r − rC

α (t))
〉
. [14]

We have used standard methods of nonequilibrium statistical
mechanics to coarse grain the microscopic dynamics described
by Eqs. 7 and 8 and derive continuum equations for these fields.
The continuum equations are nonlinear and nonlocal. Their gen-
eral form is given in the supplementary material. In the rest of the
section, we will focus on some special cases.

Homogeneous States. One of the outcomes of our analysis is that
pairwise, additive, hydrodynamic interactions in the Stokes regime
considered here do not yield a homogeneous ordered state in bulk.
This result follows because the kernels governing the nonlocal
hydrodynamic interaction have an isotropic angular dependence
and vanish in mean field. If the only interactions are far-field
hydrodynamic ones, the only uniform steady state of a bulk sus-
pension of swimmers is an isotropic state, with c = c0, P = 0,
and Q = 0. Of course, at short distances steric repulsion becomes
important. Due to the rod-like shape of the swimmers, these will
yield a uniform nematic state (c = c0, P = 0 and Q 	= 0) above
a critical concentration. Excluded volume effects are not, how-
ever, sufficient to generate a homogeneous polar state (c = c0,
P 	= 0; hence Q 	= 0) (7). The identification of a physical mech-
anism, if any, capable of generating a macroscopic polar state
in a bulk system remains an issue to be examined, one which is
beyond the scope of this paper. Further investigation may require
contact interactions that capture higher-order chemical processes
(such as the action of motors modeled in ref. 19) or external
symmetry-breaking through a chemotactic gradient or boundaries.
In States with Orientational Order, we assume the existence of such
a putative state and study its stability.

Isotropic State. To study the stability of the isotropic state, we
consider the dynamics of fluctuations δyα = yα − y0

α of the

‡ The momentum of the suspension is also conserved. In our formulation the fluid has
been recast in the form of hydrodynamic forces and torques among the swimmers and
momentum conservation, although implemented, does not appear explicitly.
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hydrodynamic fields yα = {c, P, Q} about their homogeneous
values, y0

α = {c0, 0, 0}. We introduce a Fourier representation
δ̃yα(k) = ∫

r eik·rδyα(r) and retain terms up to quadratic order in
k in the equations by expanding the nonlocal hydrodynamic cou-
plings. The three coupled fields that control the stability of the
system are the density fluctuations δ̃c, the longitudinal polariza-
tion fluctuations δP‖ = k̂·δP̃, and the “bend” δQ‖⊥ = k̂ ·Q̃·(δ−k̂k̂)
and “splay” δQ‖‖ = k̂ · Q̃ · k̂ components of the fluctuations in the
alignment tensor. The coupled linearized equations for these four
scalar fields are

∂t δ̃c = α1c0δQ‖‖ − Dk2 δ̃c + ikv0c0δP‖, [15]

∂tδQ‖‖ = −4DRδQ‖‖ − Dspk2 δ̃c/c0, [16]

∂tδQ‖⊥ = −4DRδQ‖⊥ + α2δQ‖⊥, [17]

∂tδP‖ = −DRδP‖ + ikv0δ̃c/c0 − DPk2δP‖, [18]

where D, Dsp, and DP are diffusion constants that can be evalu-
ated in terms of microscopic parameters for the specific model
considered here. At low density, they are of order kBT/ζ, with
additive corrections ∼ Vactc0 from activity. The implications of
these equations depend on the contractile or tensile nature of the
swimmers.

For contractile (f < 0), swimmers α1 ∼ α2 ∼ f a�c0/ζ < 0.
Hence, splay fluctuations δQ‖⊥ are stable and overdamped and
can be neglected. On hydrodynamic time scales (large as com-
pared with D−1

R ), we can neglect the left-hand side of Eq. 16 and
eliminate δQ‖‖ from Eq. 15 in terms of density fluctuations to
obtain ∂t δ̃c = ikv0δP‖ − D(1 − Vactc0)k2 δ̃c, with Vact ∼ �a(�Pe)
the active volume of a swimmer. When there is at least one neigh-
bor within the active volume of a given swimmer or shaker, i.e.,
Vactc0 > 1, activity exceeds diffusion and density fluctuations grow
without bound. This excess defines a critical concentration cpull ∼
(�2aPe)−1 ∼ 1/|f | above which a homogeneous isotropic suspen-
sion of pullers (swimmers or shakers) is unstable. For swimmers,
the coupling of density to longitudinal polarization turns the unsta-
ble mode into one that propagates at the self-propulsion velocity,
as expected from the fact that in these systems the isotropic state
can support sound-like density waves (7). This instability has been
discussed before for mixtures of cytoskeletal filaments and motor
proteins (17, 24), where it was referred to as a “bundling” insta-
bility, because in one dimension it drives the formation of dense
bundles of filaments. The instability arises from the suppression
of the longitudinal diffusion constant of anisotropic particles due
to activity. For cytoskeletal filaments, the suppression arises from
short-range interaction because of active cross-linkers (17, 24).
For swimmers in a fluid, this suppression originates from long-
range hydrodynamic interactions, which are attractive at the head
and tail of contractile swimmers as illustrated in Fig. 2. This sup-
pression is absent in pushers, as in this case the hydrodynamic
interaction enhances longitudinal diffusion.

For pushers, such as E.coli, the dynamics are controlled by splay
fluctuations (Eq. 17). Because f > 0, α2 > 0, splay fluctuations are
unstable on all scales for α2/4DR > 1 and c0 > cpush ∼ (�2aPe)−1.
The instability that occurs in pushers is scale-free, i.e., orienta-
tional correlations build up on all scales. This instability has been
identified in ref. 28, and is responsible for the enhanced orien-
tational correlations observed in simulations (29). Our analysis
shows that this instability arises from the nematic components of
the hydrodynamic torques.

States with Orientational Order. In this section, we seek to charac-
terize the nature of fluctuations in an ordered suspension, leaving
aside the conditions under which such a homogeneous ordered
state may exist. For compactness, we will discuss in a unified
manner the stability of both polar and nematic states. In both

cases, orientational order is characterized by a finite value of the
magnitude of the orientational order parameter, with P = Pn̂ in
a polar state and Qij = S(n̂in̂j − 1

3 δij) in a nematic state and n̂ the
director, a unit vector denoting the direction of broken symme-
try. The homogeneous nematic state is symmetric for n → −n,
whereas the polar state is not. We neglect fluctuations in the mag-
nitude of the order parameters and only consider fluctuations in
the director by letting n̂ = n0+δn, with δn·n0 = 0. The nonlocality
of the hydrodynamic interactions enters in an essential way in the
continuum equations, which are more transparent when written
in Fourier space. By letting k = n0k‖ + k⊥, with k⊥ · n0 = 0, we
obtain§

∂t δ̃c + iv0k‖δ̃c + ic0v0(k⊥ · δ̃n) = −Dcnc0k‖(k⊥ · δ̃n),

− [D(1 − Vactc0)k2 + D‖k2
‖]δ̃c, [19]

∂t δ̃n − iv0ck‖δ̃n = −(Ds − Db)k⊥ · δ̃n − Dbk2 δ̃n

− α2

(
1 + 15

k2
‖

k2

)
k̂⊥(k̂⊥ · δ̃n) + α2

4

k2
‖

k2 δ̃n

− α2

2

(
1 − 12

k‖
k

+ 15
k2

‖
k2

)
k̂⊥δ̃c − Dnck⊥k‖δ̃c, [20]

where all the diffusion constants scale as kBT/ζ in the low-density
limit and acquire corrections of order Vactc0 when interactions
among swimmers are included. An analysis of Eqs. 19 and 20 yields
several results, enumerated below.

Generic instability. All terms on the second line of Eq. 20
are of order k0. They arise from long-range hydrodynamic flows
and always destabilize the homogeneous state. A homogeneous
ordered state of pullers (α2 < 0) is destabilized by the growth
of splay fluctuations in the director, whereas a homogeneous
ordered state of pushers (α2 > 0) is destabilized by bend fluc-
tuations, as predicted in ref. 12 on the basis of a phenome-
nological theory. The present formulation allows us to identify
the origin of this instability in the nematic part of the hydrody-
namic torque. The instability is “generic” and occurs on all scales,
precisely because of the long-range form of the hydrodynamic
interactions.

Suppressing the generic instability. An important outcome of
our formulation is that it allows us to identify the physical mech-
anisms that can suppress the generic instability. The instability
will be eliminated by any physical mechanism capable of cut-
ting off or screening the 1/r2 decay of the flow field induced
by active swimmers. Possible mechanisms include an elastic or
viscoelastic component of the response of the medium and the
presence of boundaries. Also, on length scales long as compared
with the screening length induced by a dissipative medium, the
hydrodynamic equations obtained here reduce to those for self-
propelled particles on an inert substrate (32–34) that do not
exhibit the generic instability. Finally, it has been noted that
for swimmers that move via a stroke invariant under the com-
bined operations of time-reversal and parity, the dipole order
term in the induced flow, responsible for the 1/r2 decay, vanishes
(11). A collection of such swimmers will not exhibit the generic
instability.

Density instabilities. The same physics that lead to the unsta-
ble growth of density or orientational fluctuations in the isotropic
state is present in ordered states, but is preempted by the generic
instability.

§ These equations agree with those given in ref. 30 once the flow velocity is eliminated in
favor of the other hydrodynamic fields.

Baskaran and Marchetti PNAS September 15, 2009 vol. 106 no. 37 15571



Discussion
Our work provides a unified treatment of the physics of active sus-
pensions. We start with a microscopic model that encompasses as
special cases swimmers, shakers, pullers, and pushers and derive
the coarse-grained hydrodynamics of the system. Fluctuations play
a crucial role in active suspensions as they often make the putative
homogeneous states unstable. The role and nature of fluctuations
is summarized in the “phase diagram” of Fig. 3. At low densi-
ties, a homogeneous isotropic state of either pushers or pullers
(both swimmers and shakers) is unstable above a threshold value
of the active force f . The nature of the instability is different
for pushers (unstable growth of large-scale density fluctuations)
and pullers (unstable growth of orientational fluctuations on all
scales). The interplay between instabilities driven by orientational
fluctuations and density fluctuations should lead to qualitatively
different patterns in suspensions of pullers and pushers and pro-
vides a rich parameter space yet to be explored. Finally, the decay
of fluctuations in the concentration of swimmers (v0 	= 0) in
the isotropic state is controlled by propagating (as opposed to
diffusive) sound-like waves above a threshold value of |f |, as pre-
dicted in ref. 7 for active particles on a substrate. The threshold
value of |f | is independent of density and is solely determined
by the competition between self-propulsion and diffusion. The
high-density ordered states of bacterial suspensions are always
unstable.

Some of the phenomena described here have been predicted by
other authors with different starting points. One important result
of our work is that all instabilities of active systems can be under-
stood in a unified manner as arising from the long-ranged nature of
the hydrodynamic interactions. Such instabilities are suppressed
by any mechanism capable of truncating the long-range interac-
tions. This suppression occurs, for instance, when the swimmer
has a higher symmetry (e.g., a stroke that is invariant under the

combined operations of time reversal and parity, such as that of
the organism Spirullum Volutans), or when the medium is elastic
on short time scales. In such cases, however, short-range phys-
ical interactions may provide other mechanisms with which to
destabilize the homogeneous states and drive pattern formation
(7, 24).

Our work is universal in that we have mapped out the conse-
quences of the active hydrodynamic interactions on the properties
of suspensions of swimmers and shakers. Any additional intrinsic
interaction in these systems is short-ranged and can be included
additively to the theory developed here. The exotic fluctuations
characterized here will lead to pattern formation when bound-
aries are taken into account. For instance, the interplay between
self-propulsion and diffusion that leads to propagating modes in
swimmers can be shown to lead to polarization oscillations in
a confined system (35). Hence, a rich parameter space remains
to be explored to characterize and classify pattern formation in
active systems and the relevance of such patterns to questions
of biological importance. Our work constitutes an initial in this
direction.

Finally, our formulation is not straightforwardly generalized to
an active suspension in an externally imposed flow, u0. To treat this
case, the Stokes equation must be solved subject to the bound-
ary condition u = u0 far from the swimmers, which will give
a modification of the Oseen tensor and hence alter the hydro-
dynamic interactions. In the presence of an externally imposed
flow, it may be simpler to directly coarse-grain the Stokes equa-
tion (see SI Appendix) and obtain hydrodynamic equations of the
form given in ref. 12 that explicitly couple to the fluid flow.
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