Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of *Methanosarcina barkeri*

Gargi Kulkarni¹, Donna M. Kridelbaugh^{1,2}, Adam M. Guss³, and William W. Metcalf⁴

Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemical and Life Science Laboratory, Urbana, IL 61801-3763

Edited by Edward F. DeLong, Massachusetts Institute of Technology, Cambridge, MA, and approved July 27, 2009 (received for review May 28, 2009)

Methanogens use an unusual energy-conserving electron transport chain that involves reduction of a limited number of electron acceptors to methane gas. Previous biochemical studies suggested that the proton-pumping F420H2 dehydrogenase (Fpo) plays a crucial role in this process during growth on methanol. However, Methanosarcina barkeri Δfpo mutants constructed in this study display no measurable phenotype on this substrate, indicating that Fpo plays a minor role, if any. In contrast, Δfrh mutants lacking the cytoplasmic F₄₂₀-reducing hydrogenase (Frh) are severely affected in their ability to grow and make methane from methanol, and double $\Delta fpo/\Delta frh$ mutants are completely unable to use this substrate. These data suggest that the preferred electron transport chain involves production of hydrogen gas in the cytoplasm, which then diffuses out of the cell, where it is reoxidized with transfer of electrons into the energy-conserving electron transport chain. This hydrogen-cycling metabolism leads directly to production of a proton motive force that can be used by the cell for ATP synthesis. Nevertheless, M. barkeri does have the flexibility to use the Fpo-dependent electron transport chain when needed, as shown by the poor growth of the Δfrh mutant. Our data suggest that the rapid enzymatic turnover of hydrogenases may allow a competitive advantage via faster growth rates in this freshwater organism. The mutant analysis also confirms the proposed role of Frh in growth on hydrogen/carbon dioxide and suggests that either Frh or Fpo is needed for aceticlastic growth of M. barkeri.

hydrogen electron transport | F_{420} | H_2 cycling | methanogenesis

M ethanogenesis is the terminal step in biomass degradation in many anaerobic environments and plays a central role in the global carbon cycle. Although most of the methane (CH₄) produced is oxidized to carbon dioxide (CO₂) by methaneconsuming organisms, substantial quantities (*ca.* 10^{14} g/year) escape into the atmosphere where it acts as a potent greenhouse gas (1). Most methanogens produce CH₄ by reducing CO₂ with hydrogen gas (H₂) (2). However, some *Methanosarcina* species such as *M. barkeri* and *M. mazei* also are capable of using a variety of other substrates, including acetate, which accounts for *ca.* 2/3 of global CH₄ production (3), and C1 compounds such as methanol, methylsulfides, and methylamines (4).

Methanogenic organisms produce CH_4 as a byproduct of anaerobic respiration involving a unique energy-conserving electron transport chain found only in Archaea. At least 2 distinct types of methanogenic respiration exist: 1 found in methanogens, including *Methanosarcina* species that synthesize cytochromes, and the other in those that lack cytochromes (1). The penultimate step of both respiratory pathways involves the reduction of methyl-coenzyme M (CoM-SH, mercaptoethanesulfonic acid) to CH_4 using coenzyme B (CoB-SH, *N*-7mercaptoheptanoyl-*O*-phospho-L-threonine) and CoM-SH as electron donors. The other product of this reaction is the heterodisulfide of CoM-SH and CoB-SH (CoM-S-S-CoB), which serves as the terminal electron acceptor in the energyconserving electron transport chain. In methanogenic Archaea that lack cytochromes, the means by which energy is conserved is poorly understood but probably involves a cytoplasmic electron bifurcation pathway similar to that recently characterized in *Clostridium* (1, 5). In contrast, the energy-conserving electron transport chain of cytochrome-containing methanogens, exemplified by *Methanosarcina* species, has been studied in detail, including the reconstitution of 2 distinct proton-translocating electron transport systems in vitro (6–9).

In Methanosarcina species, a membrane-bound electron transport chain that terminates with the reduction of the CoM-S-S-CoB heterodisulfide generates ion-motive force that can be used by ATP synthase to form ATP (Fig. 1). Either H₂ or reduced coenzyme F₄₂₀ (F₄₂₀H₂) can donate electrons for reduction of CoM-S-S-CoB (2, 4). In the H₂:heterodisulfide oxidoreductase system, a methanophenazine-dependent hydrogenase (Vht or Vhx) (10) oxidizes H_2 in the periplasm with transfer of 2 electrons to the membrane-soluble electron carrier methanophenazine. The reduced methanophenazine (MPH₂) subsequently is oxidized by the enzyme heterodisulfide reductase (Hdr) with concomitant reduction of CoM-S-S-CoB. In the F₄₂₀H₂:heterodisulfide oxidoreductase system, the F₄₂₀H₂ dehydrogenase (Fpo) catalyzes electron transfer from F₄₂₀H₂ to methanophenazine, concomitantly pumping 2 protons out of the cell. As in the H₂:heterodisulfide oxidoreductase system, MPH₂ passes electrons to CoM-S-S-CoB, leading to translocation of 2 additional protons. In vitro measurements suggest that the magnitude of proton motive force generated is the same for both oxidoreductase systems, probably $4H^{+}/2e^{-}$ (9, 11).

The $F_{420}H_2$:heterodisulfide oxidoreductase system shares features with the aerobic electron transport chain found in many bacteria. Fpo was purified from *M. mazei* Gö1 as a 5-subunit complex (FpoBCDIF) capable of oxidizing $F_{420}H_2$ with a variety of artificial electron acceptors (12). Most of these proteins were shown later to be encoded by a 13-gene operon, *fpoABCDHI-JJKLMNO* (*fpo*), with *fpoF* being located elsewhere on the genome (supporting information (SI) Fig. S1) (11). Fpo shares significant homology with NADH dehydrogenase I (Nuo) of *Escherichia coli*, and the nomenclature reflects that similarity (Table S1). Accordingly, both Fpo and Nuo are composed of similar membrane-integral modules (the A, H, J, K, L, M, and N subunits) and membrane-associated modules (the B, C, D, and I subunits). However, the enzymes differ in their substrates

Author contributions: G.K., D.M.K., A.M.G., and W.W.M. designed research; G.K., D.M.K., and A.M.G. performed research; G.K., D.M.K., A.M.G., and W.W.M. analyzed data; and G.K., D.M.K., and W.W.M. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

¹G.K. and D.M.K. contributed equally to this work.

²Present address: Department of Biology, Western Kentucky University, Bowling Green, KY 42101.

³Present address: Thayer School of Engineering, Hanover, NH 03755.

⁴To whom correspondence should be addressed. E-mail: metcalf@life.uiuc.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/ 0905914106/DCSupplemental.

Fig. 1. The electron transport chain of *M. barkeri* has been proposed to comprise 2 energy-conserving systems, the $F_{420}H_2$:heterodisulfide oxidoreductase and the H₂:heterodisulfide oxidoreductase. In the former system, $F_{420}H_2$ is oxidized by FpoF releasing 2 electrons that are transferred through FpoBCDI and then FpoAHJKLMN to membrane-soluble methanophenazine. This reaction is coupled to the pumping of 2 protons outside the cell. Reduction of methanophenazine consumes 2 protons from the cytoplasm, which subsequently are released outside the cell upon oxidation of MPH₂. The electrons then are transferred through HdrED to reduce CoM-S-S-CoB with 2 protons from the cytoplasm. Alternatively, in the H₂:heterodisulfide oxidoreductase, H₂ is oxidized by Vht/Vhx to produce 2 protons outside the cell and 2 electrons that are transferred to MPH₂, which then is used to reduce CoM-S-S-CoB. The dashed arrow represents a third possible energy-conserving mechanism that is proposed in this study. In this pathway, $F_{420}H_2$ is oxidized by the cytoplasmic hydrogenase Frh to generate H₂. The H₂ then diffuses outside the cell to the active site of membrane-bound hydrogenase Vht/Vhx, where it is reoxidized, resulting in the translocation of 2 protons (for the coll by complexed through methanophenazine to CoM-S-S-CoB, as in the other 2 systems. In all 3 systems, the enter electron transport process leads to the net translocation of 4 protons (highlighted in red) outside the cell per 2 electrons transferred from $F_{420}H_2$ or H₂ to the CoM-S-S-CoB, mixed disulfide of CoM-SH, cytb₂, cytochrome b_2 ; $F_{420}/F_{420}H_2$, oxidized and reduced Factor 420; FAD, flavin adenine dinucleotide; [FeS], iron-sulfur cluster; Fpo, $F_{420}H_2$:phenazine oxidoreductase; Frh, F_{420} -reducing hydrogenase; Hdr, heterodisulfide reductase; MP/MPH₂, oxidized and reduced methanophenazine; [NiFe], bimetallic catalytic center; Vht/Vhx, methanophenazine-dependent hydrogenase.

and hence in their input modules, so that NuoEFG oxidizes NADH, whereas FpoF oxidizes $F_{420}H_2$, which is a hydride carrier analogous to NADH (2).

The source of electrons for the 2 disparate Methanosarcina electron transport chains varies with the growth substrate (Fig. S2). During growth on H_2/CO_2 (the hydrogenotrophic pathway), or on H_2 in combination with a C1 electron acceptor (the methyl-respiration pathway), electrons are derived from H₂ oxidation and are used via the H2:heterodisulfide oxidoreductase system (2). Genetic and biochemical experiments in M. barkeri suggest that use of acetate (the aceticlastic pathway) also involves the obligate intermediacy of H₂ and the H₂:heterodisulfide oxidoreductase system (13, 14). In contrast, metabolism of compounds such as methanol or methylamines (the methylotrophic pathway) produces 2 equivalents of F₄₂₀H₂ per C1 molecule oxidized. Thus, it has been suggested that $F_{420}H_2$:heterodisulfide oxidoreductase system plays a central, perhaps essential, role in the energy-conserving electron transport chain of the methylotrophic pathway in all *Methanosarcina* species (reviewed in refs. 2, 4, 15–18).

Surprisingly, the in vivo genetic data presented here tell a different story. Contrary to expectations, Fpo is not required for growth under any condition tested, including during growth on methanol. Instead, reducing equivalents from methanol oxidation seem to be preferentially passed to molecular H_2 by the cytoplasmic F_{420} -reducing hydrogenase (Frh). Subsequently, H_2 may enter the electron transport chain via the H_2 :heterodisulfide oxidoreductase system (Fig. 1). These data are reminiscent of the hydrogen-cycling model for electron transport first proposed by Odom and Peck for sulfate-reducing bacteria (19) and suggest

that a reanalysis of energy-conservation mechanisms in freshwater *Methanosarcina* species is warranted.

Results

The F₄₂₀H₂:Heterodisulfide Oxidoreductase Is Conserved in All Sequenced Methanosarcina Genomes. The genomes of *M. barkeri* Fusaro (20) and *M. acetivorans* C2A (21) encode *fpoABCDHI-JJKLMNO* and *fpoF* operons that are nearly identical to those found in *M. mazei* (Fig. S1 and Table S1) (22). All known structural and catalytic amino acid residues are conserved in the predicted protein sequences of the Fpo subunits from all 3 *Methanosarcina* species (Fig. S3) (2, 4, 11). Further, each sequenced genome carries homologues of the *hdrDE* operon, which encodes the methanophenazine-linked Hdr (Fig. S1) (20–23). Thus, although biochemical activity has been examined only in *M. mazei*, functional F₄₂₀H₂:heterodisulfide oxidoreductase systems probably are present in each of the *Methanosarcina* species examined to date.

 $F_{420}H_2$ Dehydrogenase Is Not Required for Methanogenesis or Growth in *M. barkeri*. As described in earlier sections, in vitro biochemical experiments led to the suggestion that the $F_{420}H_2$:heterodisulfide oxidoreductase system should be essential for growth on C1 compounds via the methylotrophic pathway. To test this hypothesis in vivo, we constructed *M. barkeri* mutants lacking $F_{420}H_2$ dehydrogenase by deleting the *fpoA-O* operon or the *fpoF* gene (Table S2).

The $\Delta fpoA$ -O and $\Delta fpoF$ mutants were tested for their ability to grow on various methanogenic substrates (Table 1). As expected, both mutants grow on H₂/CO₂, on methanol plus H₂/CO₂, and on acetate with growth rates and yields similar to

Table 1. Generation time (h) and relative growth yield (%)* of *M. barkeri* Fusaro strains⁺ in various media

	Substrates					
Strain	CH₃OH	CH ₃ OH/H ₂ /CO ₂	H ₂ /CO ₂	CH₃COOH		
Δhpt^{\ddagger}	7.3 ± 0.3 (100%)	5.7 ± 0.1 (100%)	13.7 ± 2.5 (100%)	37 ± 3.4 (100%)		
∆fpo	7.3 ± 0.2 (101%)	6.1 ± 0.5 (100%)	11.9 \pm 0.9 (100%)	36 ± 2.6 (100%)		
∆fpoF	7.3 ± 0.2 (96%)	5.8 ± 0.5 (96%)	12.4 \pm 1.2 (90%)	39 ± 1.9 (84%)		
Δfre	7.7 ± 0.3 (116%)	5.5 ± 0.4 (125%)	8.8 ± 0.8 (95%)	41 ± 3.1 (84%)		
Δfrh	13.7 ± 0.6 (52%)	6.5 ± 0.3 (80%)	NG (NA)	55 ± 7.0 (84%)		
$\Delta fpo \Delta frh$	NG (NA)	5.0 ± 0.3 (80%)	NG (NA)	NG (NA)		
$\Delta fpoF \Delta frh$	NG (NA)	6.4 ± 0.4 (73%)	NG (NA)	76 \pm 0.8 (66%)		

*Growth rate and yield were measured as described in *Materials and Methods*; growth yield is relative to the parental strain on the same substrate. Values represent the average and standard deviation of at least triplicate measurements.

[†]Strains used were WWM85 (Δhpt), WWM71 (Δfpo), WWM123 ($\Delta fpoF$), WWM122 (Δfrh), WWM108 ($\Delta fpo \Delta frh$), and WWM145 ($\Delta fpoF \Delta frh$).

*M. barkeri Fusaro parent strain in which all deletions were constructed.

NG, no growth for at least 6 months of incubation; NA, not applicable.

the isogenic parental strain. However, we were surprised to discover that growth of the mutants on methanol also was unaffected. Further, CH₄ and CO₂ were produced by the $\Delta fpoA$ -O and $\Delta fpoF$ mutants in the expected 3:1 stoichiometry in amounts and at rates similar to the parent on all substrates (Tables 2 and 3). Thus, loss of F₄₂₀H₂ dehydrogenase, and therefore of the F₄₂₀H₂:heterodisulfide oxidoreductase system, does not measurably affect methanogenesis or growth in *M. barkeri*.

Frh Is Essential for Growth of *M. barkeri* on H₂/CO₂ and Plays an Important Role in the Methylotrophic Pathway. The dispensability of Fpo raises the question of which enzyme(s) transfers electrons from $F_{420}H_2$ to methanophenazine in the methylotrophic pathway. Because *M. barkeri* possesses a highly active F_{420} -reducing hydrogenase (24), we considered the possibility of electrons being channeled from $F_{420}H_2$ into the H₂:heterodisulfide oxidoreductase system via production of H₂ by Frh (Fig. 1).

The F_{420} -reducing hydrogenase couples oxidation of H_2 to F_{420} reduction in vitro and is fully reversible (24–26). *M. barkeri* has 2 operons, *frhADGB* and *freAEGB*, with the potential to encode F_{420} -reducing hydrogenases (Fig. S1) (27). It is unclear whether *freAEGB* encodes an active hydrogenase, because it lacks the required maturation protease encoded by *frhD* in the homologous operon. Nevertheless, the putative *fre*-encoded hydrogenase shares all important catalytic and structural amino acid residues with the *frh*-encoded enzyme. Thus, *freAEGB* could encode a functional F_{420} -reducing hydrogenase if the FrhD protease can function *in trans* (10). The F_{420} -reducing hydrogenase in the frh fractional fr

nase is proposed to provide $F_{420}H_2$, which is needed for CO_2 reduction in the hydrogenotrophic pathway (Fig. S2) (24); however, *frhADGB* and *freAEGB* are expressed during growth on both H₂/CO₂ and methanol (10, 27). Thus, it seems possible that these genes play a role in both the hydrogenotrophic and methylotrophic pathways.

To test this possibility, the *freAEGB* or *frhADGB* operons were deleted from the chromosome of *M. barkeri* (Table S2), and the resulting mutants were characterized. The Δfre mutant is indistinguishable from its parent with respect to growth rate and yield on all substrates tested (Table 1). Further, deletion of *fre* from *M. barkeri* does not affect the amount and rate of CH₄ produced in resting cell suspensions from the various substrates, nor does the mutation change the expected 3:1 ratio of CH₄ to CO₂ on methanol (Tables 2 and 3). These data indicate that Fre is not required for growth of *M. barkeri* on any of the substrates tested.

In contrast, the Δfrh mutation has severe phenotypic consequences on several of the growth media examined (Tables 1–3). Although the Δfrh mutant is indistinguishable from its parent when grown on methanol plus H₂/CO₂ and acetate, it is unable to grow on H₂/CO₂. Moreover, the Δfrh mutant has a 2-fold slower growth rate and a 50% reduction in growth yield when methanol alone is used as a substrate. The Δfrh mutant exhibits a very long lag phase of 911 ± 21 h, as compared with 31 ± 0.4 h for wild-type *M. barkeri* on methanol. The growth defects of the Δfrh mutant are reflected further in CH₄ production. Resting cell suspensions of the Δfrh mutant produce negligible amounts of CH₄ from H₂/CO₂ and although they disproportionate methanol in the expected 3:1 ratio, they consistently produce only half as

Table 2. Methane (μ moL) and carbon dioxide (μ m	moL) production* from resting cell	suspensions of <i>M. barkeri</i> Fusaro strains [†]
--	------------------------------------	--

Strain	Subtrates							
	N ₂		CH₃OH		CH ₃ OH/H ₂		H ₂ /CO ₂	
	CH ₄	CO ₂	CH ₄	CO ₂	CH ₄	CO ₂	CH ₄	CO ₂
∆hpt§	<1	2 ± 0.1	343 ± 4	108 ± 2	465 ± 17	<1	298 ± 21	NA
Δfpo	<1	1 ± 0.1	365 ± 3	115 ± 1	494 ± 11	<1	356 ± 6	NA
∆fpoF	<1	1 ± 0.1	332 ± 7	106 ± 2	439 ± 27	<1	359 ± 9	NA
Δfre	<1	1 ± 0.1	399 ± 14	133 ± 4	508 ± 66	<1	381 ± 21	NA
Δfrh	<1	2 ± 0.9	149 ± 3	42 ± 1	481 ± 14	<1	7 ± 2	NA
$\Delta fpo \Delta frh$	<1	2 ± 0.7	47 ± 2	9 ± 1	480 ± 59	<1	10 ± 1	NA
$\Delta fpoF \Delta frh$	<1	4 ± 0.1	54 ± 3	16 ± 1	465 ± 9	<1	11 ± 5	NA

Substratos

*Values are the average and standard deviation of at least 3 trials.

[†]Strains used were WWM85 (Δ hpt), WWM71 (Δ fpo), WWM123 (Δ fpoF), WWM122 (Δ frh), WWM108 (Δ fpo Δ frh), and WWM145 (Δ fpoF Δ frh).

⁺ Assays were conducted as described in Supplementary Information.

§M. barkeri Fusaro parent strain in which all deletions were constructed.

NA, not applicable (CO₂ produced could not be measured because it was added to headspace).

		Substrate [‡]	
Strain	N ₂	CH₃OH	CH ₃ OH/H ₂
∆hpt§	<1	70 ± 6	121 ± 35
Δfpo	<1	93 ± 13	127 ± 29
∆fpoF	<1	82 ± 2	143 ± 7
Δfre	<1	95 ± 13	134 ± 32
Δfrh	<1	14 ± 0.5	97 ± 3
$\Delta fpo \Delta frh$	<1	4 ± .5	151 ± 3
$\Delta fpoF \Delta frh$	<1	4 ± 0.1	135 ± 15

*Values are the average and standard deviation of at least three trials. *Strains used were WWM85 (Δ hpt), WWM71 (Δ fpo), WWM123 (Δ fpoF), WWM122 (Δ frh), WWM108 (Δ fpo Δ frh), and WWM145 (Δ fpoF Δ frh). *Assays were conducted as described in *SI Text*.

[§]*M. barkeri* Fusaro parent strain in which all deletions were constructed.

much CH₄ and CO₂ as the parent. Finally, the Δfrh mutation lowers the rate of CH₄ production from methanol in resting cells by *ca*. 4-fold relative to the parent.

Taken together, these data indicate that Frh is essential for growth by the hydrogenotrophic pathway and plays an important but dispensable role in the methylotrophic pathway, the latter potentially being the delivery of electrons from $F_{420}H_2$ into the H₂:heterodisulfide oxidoreductase system. Importantly, Fre is not able to substitute for the role of Frh under the conditions tested, suggesting that it does not encode a functional F_{420} -reducing hydrogenase in the absence of *frhADGB*.

M. barkeri Possesses Two Functional Pathways for Electron Transfer from $F_{420}H_2$ to Methanophenazine. The fact that the Δfrh mutant retains the ability to grow and produce CH₄ from methanol, although at reduced rates, suggests that the cell has an alternative, less efficient route to deliver electrons from $F_{420}H_2$ to the CoM-S-S-CoB heterodisulfide. The most obvious candidate for this electron transfer pathway is the $F_{420}H_2$:heterodisulfide oxidoreductase system. To test this hypothesis, we constructed and characterized double mutants lacking *frhADGB* and either *fpoA-O* or *fpoF* (Tables S2 and Tables 1, 2, and 3).

Like the single Δfrh mutant, the $\Delta fpoA$ - $O/\Delta frh$ and $\Delta fpoF/\Delta frh$ double mutants are unable to grow on H₂/CO₂ and produce negligible amounts of CH4 in resting cell suspensions from this substrate. Both mutants are able to grow and produce CH4 at levels and rates comparable to the parent on methanol plus H₂/CO₂. However, in contrast to the Δfrh , $\Delta fpoA$ -O, and $\Delta fpoF$ single mutants, the double mutants are incapable of growth on methanol. Thus, Frh and Fpo fulfill a similar role during growth on this substrate that is lost in the absence of both enzymes. Quantitative RT-PCR experiments show that although fpoA-O transcripts levels are slightly higher in the Δfrh mutant (3.9 \pm 1.5-fold), they are easily detectable in the parental strain. Therefore, Fpo is expressed and has the potential to contribute to the methylotrophic electron transport chain in wild-type M. *barkeri*. Interestingly, the $\Delta fpoA$ - $O/\Delta frh$ and $\Delta fpoF/\Delta frh$ mutants still produce small amounts of CH₄ and CO₂ from methanol despite their inability to grow on this substrate. Hence, an additional minor electron transport pathway(s) exists in M. barkeri that is incapable of supporting growth.

Surprisingly, the double mutants display different phenotypes when grown on acetate. The $\Delta fpoF/\Delta frh$ mutant grows slowly on acetate, whereas the $\Delta fpoA-O/\Delta frh$ mutant is unable to use acetate. It is unclear how the absence of both Fpo and Frh affects growth on acetate, because neither the $\Delta fpoA-O$ nor the Δfrh single mutant exhibits a growth defect on this substrate. These data seem to suggest that the input module of Fpo (FpoF) can be dispensable under conditions in which the proton-pumping methanophenazine oxidoreductase (FpoABCDHIJKLMNO) is not.

Discussion

Methanosarcina species have proven to be exceptional model organisms for genetic analysis of methanogenesis (14, 28-30), an approach that modified our concept of energy conservation in M. barkeri. The data presented here indicate that M. barkeri has 2 distinct energy-conserving electron transport pathways during growth via the methylotrophic methanogenic pathway (Fig. 1). Contrary to expectations, M. barkeri apparently prefers to transfer electrons obtained from C1 compound oxidation to the H₂:heterodisulfide oxidoreductase system via H₂ rather than to transfer them directly into the F420H2:heterodisulfide oxidoreductase system. Our results suggest that the cytoplasmic F420-reducing hydrogenase mediates electron transfer to H2 via oxidation of $\vec{F}_{420}\vec{H_2}$, which, along with reduced ferredoxin (Fd_{red}), is the direct product of C1 compound oxidation (24, 26). When the cells lose the ability to produce H_2 via this route, growth on methanol is severely affected, with reduction in the rates of growth and CH₄ production, in total growth yield, and in the amount of CH₄ produced. We suggest that the H₂ diffuses out of the cell and enters the H₂:heterodisulfide oxidoreductase system via methanophenazine-dependent hydrogenase (Vht or Vhx) (10), whose active site is known to be in the periplasm (4). Because production of H₂ by Frh consumes protons within the cytoplasm, whereas oxidation of H2 by Vht/Vhx releases protons outside the cell, this electron transport chain is capable of establishing a proton gradient across the membrane that can be used to generate ATP by the ATP synthase (31), thus conserving energy via a H₂-cycling mechanism (19). M. barkeri genome harbors 2 operons, vhtGACD and vhxGAC, that potentially can encode methanophenazine-dependent hydrogenases. Analogous to the *fre* operon, the *vhx* operon lacks gene D that encodes the hydrogenase maturation protease and therefore may not encode a functional hydrogenase. However, Vhx shares all important catalytic and structural amino acid residues with Vht and could encode an active methanophenazine-dependent hydrogenase if the VhtD protease can function in trans (10).

H₂ cycling, as a mechanism of energy conservation, was first proposed in sulfate-reducing bacteria (19). Later, it also was proposed in other anaerobic organisms such as Acetobacterium woodii (32) and Geobacter sulfurreducens (33). Based on the production of H₂ during growth of Methanosarcina species on methylated substrates such as methanol, trimethylamine, and acetate, H₂ cycling also was suggested to occur in Methanosarcina (34). Experimental support for H_2 cycling has been provided in Desulfovibrio vulgaris, wherein simultaneous production and consumption of H₂ were detected during metabolism of pyruvate and sulfate (35). Also, suppression of a *D. vulgaris* H₂-evolving hydrogenase led to reduced growth rates on lactate and sulfate, suggesting the importance of H_2 production in growth (36). Nevertheless, the H₂-cycling theory is not accepted universally, and several lines of evidence have been used to argue that this mechanism is unlikely (reviewed in ref. 37). For example, high concentrations of H₂ do not inhibit lactate oxidation in sulfatereducing bacteria (38), nor does a mutation that blocks use of H₂ prevent growth on lactate (39). Further, the idea that the cell would transfer electrons preferentially to a molecule that can diffuse freely away from the cell seems highly problematic.

The data presented here suggest a way to reconcile these conflicting views. Although *M. barkeri* apparently prefers to transfer electrons via H₂, they remain capable of using the $F_{420}H_2$:heterodisulfide oxidoreductase system when the ability to produce cytoplasmic H₂ is lost. Thus, *M. barkeri* employs a branched electron transport chain with most electrons flowing from $F_{420}H_2$ into the H₂:heterodisulfide oxidoreductase system via H₂ but with some fraction flowing directly into the

 $F_{420}H_2$:heterodisulfide oxidoreductase system. A similar branched electron transport chain in sulfate reducers would explain the results cited as arguing against H_2 cycling without invalidating the model. It should be noted that a recently proposed metabolic model for *D. vulgaris* suggests just such a branched electron transport chain (37).

Why, then, is the H₂-cycling pathway the preferred electron transport chain in M. barkeri? Because the initial electron donor (F₄₂₀H₂) and final electron acceptor (methanophenazine) are the same, the amount of energy available from the 2 electron transport schemes must be identical. Experimental measurements suggest that electron transfer from F₄₂₀H₂ to CoM-S-S-CoB via Fpo and Hdr is accompanied by translocation of 4 protons across the membrane (11). Similarly, the flow of electrons from F₄₂₀H₂ to methanophenazine via Frh and Vht/Vhx leads to the translocation of 2 protons across the membrane by virtue of the H₂-cycling mechanism, whereas electron transfer from MPH₂ to CoM-S-S-CoB translocates another 2 protons (9). Thus, the magnitude of proton motive force generated should be identical via either route (Fig. 1). In contrast, the rate of CH₄ production from methanol in resting cell suspensions of Δfrh mutant is *ca*. 4 times slower than that of $\Delta fpoA$ -O and $\Delta fpoF$ mutants, indicating that H_2 cycling is a much faster mechanism of energy conservation and, as observed in our mutant strains, allows correspondingly faster growth rates. The biochemical properties of the enzymes involved are remarkably consistent with our in vivo data. Thus, FpoBCDIF [molecular weight $(MW) = 135.1 \text{ kDa} (11) \text{ purified from } M. \text{ mazei catalyzes } F_{420}H_2$ oxidation with a turnover number (K_{cat}) of 38 s⁻¹ and catalytic efficiency [K_{cat}/Michaelis constant (K_m)] of $5.4 \times 10^{6} \text{ M}^{-1}\text{s}^{-1}$ (12); FrhAGB (MW = 194.4 kDa) (27) purified from *M. barkeri* catalyzes H₂ oxidation using F₄₂₀ as the electron acceptor with a K_{cat} of 134 s^{-1} and K_{cat}/K_m of 4.4 \times 107 $M^{-1}s^{-1}$ (24). Because methanol-metabolizing M. barkeri cells have been shown to maintain ratios of $F_{420}H_2$ and F_{420} in thermodynamic equilibrium with the H_2 partial pressure (25), it is reasonable to assume that Frh catalyzes the reverse reaction ($F_{420}H_2$ oxidation) with similar efficiency as the forward reaction (H2 oxidation). Therefore, the K_{cat} of Frh is *ca.* 4 times higher than that of Fpo for $F_{420}H_2$ oxidation, suggesting that Frh is faster than Fpo in catalyzing this reaction.

A variety of data indicate that H₂ cycling is important to many, but not all, Methanosarcina species. Growth of M. barkeri on acetate involves the obligate production of H_2 (14). Thus, in combination with the data presented here, it seems likely that this species prefers to use H₂ cycling for all soluble substrates. The situation probably is similar in *M. mazei* because it has functional Frh, Vht, and Fpo enzymes as well (11). However, methylotrophic species such as M. acetivorans (10, 21, 28), Methanolobus tindarius (40, 41), and Methanococcoides burtonii (42) do not encode functional hydrogenases (22). Hence, these organisms probably rely exclusively on the F420H2:heterodisulfide oxidoreductase system for energy conservation. Moreover, we made an intensive effort to delete the fpo genes from M. acetivorans without success, suggesting that $F_{420}H_2$ dehydrogenase is essential in this organism. It has been suggested previously that these organisms forego H₂dependent electron transport pathways because of their high-salt marine habitat, wherein they exist as disaggregated single cells and would be prone to lose the freely diffusible H₂ gas to competing organisms. In contrast, freshwater organisms such as *M. barkeri* that exist as large multicellular aggregates have a higher chance of retaining H₂ gas within the aggregates, enabling them to use it as an electron carrier (28).

Finally, the phenotypes of the mutants constructed here also provide insight into the metabolism of H_2/CO_2 and acetate by *M. barkeri*. Because of its ability to catalyze F_{420} reduction with H_2 , F_{420} -reducing hydrogenase was proposed to provide $F_{420}H_2$ for reduction of methenyl-tetrahydrosarcinapterin (H₄SPT) and methylene-H₄SPT in the hydrogenotrophic pathway (Fig. S2) (24, 43). The inability of the *frh* mutants to grow on H₂/CO₂ provides direct experimental support for this proposal. Interestingly, the putative *fre*-encoded hydrogenase cannot substitute for the *frh*-encoded hydrogenase. This inability may be caused by low expression of *fre*, absence of posttranslational processing, mutations in structural or catalytic residues, or some combination of these factors (10). Nevertheless, the dispensability of *fre* in *M. barkeri* is not surprising because *M. mazei* lacks the *fre* operon and is able to grow via all 4 methanogenic pathways (4, 10). Thus, the role of Fre in *M. barkeri* remains mysterious.

Methanogenesis from acetate does not require either Frh or Fpo; however, our results show that 1 of the 2 enzymes, but not both, is needed for growth on this substrate. We previously showed that mutations in the C1 oxidation pathway prevent growth on acetate, presumably by blocking the production of reducing equivalents needed for biosynthetic reactions (30). The lack of growth of the $\Delta frh/\Delta fpo$ double mutant on acetate medium suggests that these reducing equivalents must flow through either Frh or Fpo to allow growth. Interestingly, the $\Delta frh/\Delta fpoF$ double mutant is able to grow on acetate, clearly suggesting that the membrane-bound proton-pumping module has the ability to accept electrons from input modules other than FpoF. In this regard, FpoF is homologous to the β -subunit (B) of F₄₂₀-reducing hydrogenases and shares a common substrate, coenzyme F_{420} (11, 27). It is conceivable that in the absence of FpoF and FrhB, FreB serves as the input module, thus channeling electrons from F₄₂₀H₂ to Fpo and allowing growth of $\Delta frh/\Delta fpoF$ double mutant on acetate; however, this conjecture remains to be tested.

Materials and Methods

Sequence Analysis. All sequence data are from publicly available genomes (11, 16, 20, 21). The Integrated Microbial Genome (IMG) system was used to identify orthologs and assess the genomic context of genes (22).

Strains, Media, and Growth Conditions. The construction and genotype of all *Methanosarcina* strains is presented in Table S2. *Methanosarcina* strains were grown as single cells at 37 °C in high-salt broth medium (44) or on agar-solidified medium as described (45). Standard conditions were used for growth of *E. coli* strains DH5 α / λ -*pir* and DH10B (Stratagene) (46), which were used as hosts for plasmid constructions.

DNA Methods, Plasmid, and Strain Construction. Standard methods were used for plasmid DNA isolation and manipulation in *E. coli* (47). Liposome-mediated transformation was used for *Methanosarcina* as described (48). Genomic DNA isolation and DNA hybridization were as described (44, 45, 49). DNA sequences were determined from double-stranded templates by the W.M. Keck Center for Comparative and Functional Genomics, University of Illinois. Plasmid constructions are described in the *SI Text* (Tables S3 and S4).

Characterization of Mutants in Terms of Growth Characteristics and CH₄ and CO₂ Production in Cell Suspensions. Growth was quantified by measuring OD₆₀₀. Generation times were calculated during exponential growth phase, and growth yield was determined by measuring the maximal OD₆₀₀ of the culture. Growth curve and cell suspension experiments were performed as described in *SI Text*.

Quantitative RT-PCR. Gene-specific primers (Table S3) were designed using Primer Express Software v2.0 (Applied Biosystems). A 1-step qRT-PCR was performed using SuperScript III Platinum SYBR Green One-Step qRT-PCR Kit with ROX (Invitrogen) in the ABI PRISM 7900HT Sequence Detection System (Applied Biosystems). The relative standard curve method was used to quantify expression of *fpo* (ABI PRISM 7700 Sequence Detection System User Bulletin #2) using *rpoA1* as the reference gene (described in *Supporting Information*).

ACKNOWLEDGMENTS. We thank Nicole Buan and Rina Opulencia for critical review of the manuscript. This work was supported in part by Department of Energy Grant DE-FG02–02ER15296 and by National Science Foundation Grant MCB0517419. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the Department of Energy.

- Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: Ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591.
- 2. Deppenmeier U (2002) Redox-driven proton translocation in methanogenic Archaea. *Cell Mol Life Sci* 59:1513–1533.
- 3. Ferry JG (1992) Methane from acetate. J Bacteriol 174:5489–5495.
- Deppenmeier U (2004) The membrane-bound electron transport system of Methanosarcina species. J Bionenerg Biomembr 36:55–64.
- Li F, et al. (2008) Coupled Ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from *Clostridium* kluyveri. J Bacteriol 190:843–850.
- Baumer S, Lentes S, Gottschalk G, Deppenmeier U (2002) Identification and analysis of proton-translocating pyrophosphatases in the methanogenic archaeon Methansarcina mazei. Archaea 1:1–7.
- 7. Baumer S, et al. (1998) The $F_{420}H_2$:heterodisulfide oxidoreductase system from *Methanosarcina* species. 2-Hydroxyphenazine mediates electron transfer from $F_{420}H_2$ dehydrogenase to heterodisulfide reductase. *FEBS Lett* 428:295–298.
- Deppenmeier U, Blaut M, Mahlmann A, Gottschalk G (1990) Reduced coenzyme F₄₂₀: Heterodisulfide oxidoreductase, a proton- translocating redox system in methanogenic bacteria. Proc Natl Acad Sci USA 87:9449–9453.
- Ide T, Baumer S, Deppenmeier U (1999) Energy conservation by the H₂:heterodisulfide oxidoreductase from *Methanosarcina mazei* Gö1: Identification of two protontranslocating segments. J Bacteriol 181:4076–4080.
- Guss AM, Kulkarni G, Metcalf WW (2009) Differences in hydrogenase gene expression between Methanosarcina acetivorans and Methanosarcina barkeri. J Bacteriol 191:2826–2833.
- Baumer S, et al. (2000) The F₄₂₀H₂ dehydrogenase from *Methanosarcina mazei* is a redox-driven proton pump closely related to NADH dehydrogenases. *J Biol Chem* 275:17968–17973.
- Abken HJ, Deppenmeier U (1997) Purification and properties of an F₄₂₀H₂ dehydrogenase from Methanosarcina mazei Gö1. FEMS Microbiol Lett 154:231–237.
- Meuer J, Bartoschek S, Koch J, Kunkel A, Hedderich R (1999) Purification and catalytic properties of Ech hydrogenase from *Methanosarcina barkeri*. Eur J Biochem 265:325– 335.
- Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW (2002) Genetic analysis of the archaeon *Methanosarcina barkeri* Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. *Proc Natl Acad Sci USA* 99:5632–5637.
- Deppenmeier U, Muller V, Gottschalk G (1996) Pathways of energy conservation in methanogenic archaea. Arch Microbiol 165:149–163.
- Deppenmeier U (2002) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71:223–283.
- Deppenmeier U, Lienard T, Gottschalk G (1999) Novel reactions involved in energy conservation by methanogenic archaea. FEBS Lett 457:291–297.
- Deppenmeier U, Muller V (2008) Life close to the thermodynamic limit: How methanogenic archaea conserve energy. *Results Probl Cell Differ* 45:123–152.
- Odom JM, Peck HD Jr (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, *Desulfovibrio* sp. *FEMS Microbiol Lett* 12:47–50.
- Maeder DL, et al. (2006) The Methanosarcina barkeri genome: Comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188:7922–7931.
- Galagan JE, et al. (2002) The genome of *M. acetivorans* reveals extensive metabolic and physiological diversity. *Genome Res* 12:532–542.
- Markowitz VM, et al. (2008) The integrated microbial genomes (IMG) system in 2007: Data content and analysis tool extensions. *Nucleic Acids Res* 36:D528–533.
- Deppenmeier U, et al. (2002) The genome of Methanosarcina mazei: Evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461.
- Michel R, Massanz C, Kostka S, Richter M, Fiebig K (1995) Biochemical characterization of the 8-hydroxy-5-deazaflavin-reactive hydrogenase from *Methanosarcina barkeri* Fusaro. *Eur J Biochem* 233:727–735.
- de Poorter LM, Geerts WJ, Keltjens JT (2005) Hydrogen concentrations in methaneforming cells probed by the ratios of reduced and oxidized coenzyme F₄₂₀. *Microbiology* 151:1697–1705.
- 26. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. *FEMS Microbiol Rev* 25:455–501.

- Vaupel M, Thauer RK (1998) Two F₄₂₀-reducing hydrogenases in Methanosarcina barkeri. Arch Microbiol 169:201–205.
- Guss AM, Mukhopadhyay B, Zhang JK, Metcalf WW (2005) Genetic analysis of *mch* mutants in two *Methanosarcina* species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H(2) metabolism between closely related species. *Mol Microbiol* 55:1671–1680.
- 29. Welander PV, Metcalf WW (2005) Loss of the *mtr* operon in *Methanosarcina* blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway. *Proc Natl Acad Sci USA* 102:10664–10669.
- Welander PV, Metcalf WW (2008) Mutagenesis of the C1 oxidation pathway in *Methanosarcina barkeri*: New insights into the Mtr/Mer bypass pathway. J Bacteriol 190:1928–1936.
- Muller V (2004) An exceptional variability in the motor of archael A1A0 ATPases: From multimeric to monomeric rotors comprising 6–13 ion binding sites. J Bionenerg Biomembr 36:115–125.
- Odom JM, Peck HD Jr. (1984) Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria *Desulfovibrio*. *Annu Rev Microbiol* 38:551– 592.
- Coppi MV (2005) The hydrogenases of Geobacter sulfurreducens: A comparative genomic perspective. *Microbiology* 151:1239–1254.
- Lovley DR, Ferry JG (1985) Production and consumption of H(2) during growth of Methanosarcina spp. on acetate. Appl Environ Microbiol 49:247–249.
- Peck HDJ, LeGall J, Lespinat PA, Berlier Y, Fauque G (1987) A direct demonstration of hydrogen cycling by *Desulfovibrio vulgaris* employing membrane-inlet mass spectrometry. *FEMS Microbiol Lett* 40:295–299.
- 36. van den Berg WA, van Dongen WM, Veeger C (1991) Reduction of the amount of periplasmic hydrogenase in *Desulfovibrio vulgaris* (Hildenborough) with antisense RNA: Direct evidence for an important role of this hydrogenase in lactate metabolism. *J Bacteriol* 173:3688–3694.
- Noguera DR, Brusseau GA, Rittmann BE, Stahl DA (1998) A unified model describing the role of hydrogen in the growth of *Desulfovibrio vulgaris* under different environmental conditions. *Biotechnol Bioeng* 59:732–746.
- Pankhania IP, Gow LA, Hamilton WA (1986) The effect of hydrogen on the growth of Desulfovibrio vulgaris (Hildenborough) on lactate. J Gen Microbiol 132:3349–3356.
- Odom JM, Wall JD (1987) Properties of a hydrogen-inhibited mutant of Desulfovibrio desulfuricans ATCC 27774. J Bacteriol 169:1335–1337.
- Haase P, Deppenmeier U, Blaut M, Gottschalk G (1992) Purification and characterization of F₄₂₀H₂-dehydrogenase from *Methanolobus tindarius. Eur J Biochem* 203:527– 531.
- Scheel E, Schafer G (1990) Chemiosmotic energy conversion and the membrane ATPase of Methanolobus tindarius. Eur J Biochem 187:727–735.
- Saunders NF, et al. (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588.
- 43. Thauer RK, Hedderich R, Fischer R (1993) *Methanogenesis* (Chapman and Hall, New York) pp 209–252.
- Metcalf WW, Zhang JK, Shi X, Wolfe RS (1996) Molecular, genetic, and biochemical characterization of the serC gene of Methanosarcina barkeri Fusaro. J Bacteriol 178:5797–5802.
- 45. Boccazzi P, Zhang JK, Metcalf WW (2000) Generation of dominant selectable markers for resistance to pseudomonic acid by cloning and mutagenesis of the *ileS* gene from the archaeon *Methanosarcina barkeri* Fusaro. J Bacteriol 182:2611–2618.
- Wanner BL (1986) Novel regulatory mutants of the phosphate regulon in *Escherichia* coli K12. J Mol Biol 191:39–58.
- 47. Ausubel FM, et al (1992) Current Protocols in Molecular Biology (John Wiley & Sons, New York).
- Metcalf WW, Zhang JK, Apolinario E, Sowers KR, Wolfe RS (1997) A genetic system for archaea of the genus *Methanosarcina*: Liposome-mediated transformation and construction of shuttle vectors. *Proc Natl Acad Sci USA* 94:2626–2631.
- Zhang JK, White AK, Kuettner HC, Boccazzi P, Metcalf WW (2002) Directed mutagenesis and plasmid-based complementation in the methanogenic archaeon Methanosarcina acetivorans C2A demonstrated by genetic analysis of proline biosynthesis. J Bacteriol 184:1449–1454.