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Abstract
In this paper, we present a volume-based mucosa-based polyp candidate determination scheme for
automatic polyp detection in computed colonography. Different from most of the existing computer-
aided detection (CAD) methods where mucosa layer is a one-layer surface, a thick mucosa of 3-5
voxels wide fully reflecting partial volume effect is intentionally extracted, which excludes the direct
applications of the traditional geometrical features. In order to address this dilemma, fast marching-
based adaptive gradient/curvature and weighted integral curvature along normal directions (WICND)
are developed for volume-based mucosa. In doing so, polyp candidates are optimally determined by
computing and clustering these fast marching-based adaptive geometrical features. By testing on 52
patients datasets in which 26 patients were found with polyps of size 4-22 mm, both the locations
and number of polyp candidates detected by WICND and previously developed linear integral
curvature (LIC) were compared. The results were promising that WICND outperformed LIC mainly
in two aspects: (1) the number of detected false positives was reduced from 706 to 132 on average,
which significantly released our burden of machine learning in the feature space, and (2) both the
sensitivity and accuracy of polyp detection have been slightly improved, especially for those polyps
smaller than 5mm.
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I. Introduction
Colorectal cancer remains the second leading cause of cancer mortality in the United States
[1], and American Cancer Society (ACS) estimates that there will be about 108,070 new cases
of colon cancer in 2008. It has been generally recognized that early removal of the identified
colon polyps is the most efficient and successful means to prevent the colorectal cancer [2]. In
recent years, the use of three-dimensional (3D) imaging to produce virtual anatomic models
of the colon, an emerging technique termed virtual colonoscopy (VC), provides a minimally
invasive diagnostic tool for detection of colorectal polyps [3-12]. However, the major obstacles
of VC, such as time-consuming case interpretation time, less diagnosis performance in terms
of poor visibility, conspicuity and accuracy of polyp detection, still remain [13-16].
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Computer-aided detection (CAD) of colonic polyps becomes attractive because of its potentials
to overcome the above difficulties, which is offering the “second opinion” about clinically-
important polyps to the radiologists. Still, applying CAD for colonic polyp detection is rather
challenging due to various objective and subjective reasons: (1) varying shapes, sizes and even
textures of clinically-important polyps constitute the major objective factor impacting
diagnosis performance of CAD. Besides, numerous colon folds and bulk of feces with colonic
lavage could mimic polypoid shapes and therefore hamper the detection rate, and (2) subjective
reasons that hinder the improvements of CAD come from its input, the segmented and cleansed
colon lumen obtained by either hard segmentation [17], discrete-label or continuous-space soft
segmentation [18-20]. Depending upon how the partial volume effect (PVE) is interpreted, we
believe that the polyps' actual sizes and geometrical shapes could possibly suffer from either
incomplete or over-complete segmentation, which undoubtedly result in oversized or shrinking
polyp surface. Therefore, developing partial volume-based segmentation algorithms that
minimize the subjective interaction deserves researchers' higher attention.

In computed tomography (CT) imaging, colon mucosa which is the innermost surface closest
to the lumen might be displayed as a stripe of 3-5 voxels wide due to significant PVE. For
CAD system based on sophisticated geometrical feature analysis, the way of extracting mucosa
layer directly determines the initial detection of polyp candidates. In the past several years,
various mucosa extraction approaches as well as the associated feature analysis have been
developed. Nappi et al. extracted the colon as a thick region that encompasses the entire colon.
However, it appeared to serve the purpose of segmentation only, without presenting any
volume-related geometrical features in their continuing work [21]. Summers et al. utilized
many of the geometrical features on the colon wall inner surface, such as the mean, Gaussian,
and principal curvatures [22-23]. Yoshida et al. and Nappi et al. further characterized the
curvature measures by shape index and smoothness to distinguish the polyp candidates from
the normal colon wall tissue [24-28]. Paik et al. and Kiss et al. presented another solution for
the polyp detection where normal and sphere fitting as the references to extract some
geometrical features on the mucosa layer [29-33]. C. van Wijk et al. developed a novel method
which computed the curvatures using space-variant derivative operations in a strip along the
edge of the colon [34]. Nevertheless, most of the aforementioned peer papers take either edge
detection or hard thresholding as part of the segmentation to convert a thick mucosa region
into a sheer surface boundary before making any geometrical analysis. Therefore such extracted
geometrical measurements like gradient and curvature are believed to ignore the correlation
within mucosa region in the direction of thickness, and a more sophisticated version is expected
for volume-based mucosa. Another issue worth to be mentioned is the adaptability of
geometrical features to the trivial variations on the colon wall. Considering the traditional
gradient/curvature, the way that they are computed by fixing the number of neighbors when
taking convolution operator, is prone to be affected by the neighboring geometrically-different
entities. Such computational inaccuracy potentially increases the chances of false positives and
negatives.

Major contributions of this paper are outlined as follows: (1) the actual thickness of the colon
wall due to PVE was uniquely characterized by a volume-based mucosa of 3-5 voxels wide by
employing maximum a posterior-expectation maximization (MAP-EM) segmentation
algorithm [35-36,38-39], where PVE corresponding to distinct tissue types were interpreted as
percentage distribution maps, (2) geometrical features like gradient/curvature were adapted
from traditional fixing-neighbor to the fast marching-based adaptive version, capable of
identifying geometrically-different entities, and (3) a new technique termed “Weighted Integral
Curvature along Normal Directions (WICND)” was proposed for the sake of volume-based
mucosa, by which the inner and outer partners within mucosa region could communicate with
each other and a more refined curvature value along normal directions was reasonably assigned.
In the final step of detecting initial polyp candidates, neighboring voxels with similar
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geometrical features were grouped together to form the suspected patches on the colon wall,
where those patches hit and missed the true polyps were called “true positive” and “false
positive” respectively. A good initial detection scheme is believed to minimize false positives
without any loss of true positives. When comparing to our previously-developed linear integral
curvature (LIC) [40], both the sensitivity and accuracy of polyp detection were slightly
improved, especially for those polyps smaller than 5mm. Most importantly, the number of
reported false positives was dramatically reduced.

The remainder of this paper is organized as follows. Section II briefly summarizes the overall
structure of the initial polyp detection scheme, Section III aims to give a clear picture about
MAP-EM segmentation algorithm for fully interpreting PVE, and Section IV presents new
geometrical features of fast marching-based adaptive gradient/curvature and WICND,
followed by Section V where real patients' CT data were tested to validate the effectiveness of
WICND over LIC. Finally, Section VI outlines our future work and concludes some remarks.

II. Overview of Polyp Candidate Determination Scheme
The flowchart of our initial polyp detection scheme is depicted in Figure 1 as follows. First of
all, axial abdominal CT images were processed, and the colon lumen was segmented by a
partial-volume MAP-EM segmentation pipeline, the core of which was an iterative
expectation-maximization (EM) algorithm [35-36]. Accompanied by a well-cleansed colon
lumen in CT values, four percentage distribution maps in the range of [0, 1] corresponding to
air, fat, muscle and bone classes were generated as well, the less the value, the more severe
PVE. Secondly, a volume-based mucosa of 3-5 voxels wide was extracted by identifying those
voxels whose air class mixture percentage was between 0 and 1. Thirdly, interface propagation
based on fast marching method [37] was applied to the thick mucosa, such that the fast
marching-based adaptive gradient/curvature was computed by measuring the correlation
between adjacent geometrical structures. After taking integral of the adaptive curvature along
normal directions, a WICND value was uniquely assigned to each voxel. Finally, polyp
candidates were formed by clustering all the neighboring voxels with the same geometrical
properties.

III. Partial Volume MAP-EM Segmentation of Colon Wall
The core of partial volume-based MAP-EM segmentation pipeline is an iterative expectation-
maximization (EM) algorithm as the maximum a posteriori (MAP) solution of estimating
tissue mixture percentages for individual voxel. Each tissue type is assumed to follow an
independent normal distribution across the field-of-view (FOV). In doing so, the summation
of all tissue mixtures leads to the mean density value at one voxel, and the summation of all
tissue mixtures' unobservable random processes leads to the observed image density at one
voxel, which follows a normal distribution as well. By modeling the underline mixture
percentages as a Markov random field, the conditional expectation of the posteriori distribution
of the tissue mixtures reaches to its maximum value when proceeding from current estimation
to the next update after a finite number of iterations. This MAP-EM framework provides a
theoretical solution to PVE, which has been a major cause of quantitative imprecision in
medical image processing. Comprehensive numerical analysis has demonstrated its
effectiveness [38-39].

As a typical example, the raw CTC colon images, the cleansed colon lumen and the estimated
mixture percentage map associated with air class only were shown by Figure 2 as the first,
second and third rows respectively, where the brightest white area corresponds to 100% pure
colon lumen, while the grey area describes how the colon percentage varies from 100% down
to 0%. In terms of characterizing mucosa region, we consider directly extracting all the grey
areas, without taking gradient operation or edge detection to avoid any risk of losing PVE.
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IV. Determination of Polyp Candidates
In this section, we begin with introducing the fast marching-based adaptive gradient/curvature,
from its motivation, rationale to the methodology, and finally extend to the derivation of the
most important geometrical feature of WICND.

A. Fast marching-based adaptive gradient/curvature
A.1. Motivation: interference caused by neighboring geometrical structures—
The term “adaptive” refers to the capability of gradient/curvature to be immune to the
neighboring geometrically-different structures. In other words, the “adaptive” gradient /
curvature is able to differentiate the group of voxels belonging to the same structure from those
voxels belonging to different geometries. Suppose we have two spheres located in the same
area as shown by Figure 3(a), where a blurred area representing PVE was intentionally created
for the left one while the right one was kept sharp and clean. Traditional gradient computed in
the manner of fixing neighbors when taking kernel-based convolution is believed to yield
irregular magnitudes as well as directions, due to the fact that the neighboring pixels belonging
to the other sphere were mistakenly counted in, as illustrated by Figure 3(b). In practice, colon
wall has much more complicated geometry shapes that geometrically-different structures
significantly overlap within small area, and when applied to CAD, more false negatives and
positives are possibly reported because of the induced computational inaccuracy.

A.2. Rationale: interface propagation via fast marching algorithm and its
application to the thick mucosa for building up an arriving-time map—Fast
marching algorithm developed by Sethian in 1998 [37] is basically a solution to the problem
of interface propagation, which includes burning flames, waves in water and physical
boundaries. When given an arbitrary region, such as the one in Figure 4(a), the interface is
defined as the curve, or surface, separating the area inside of the region from the area outside
of the region, where three different velocity components are formulated to describe the strict
expend or contract motion of the surface, (1) local to part of the surface, (2) global properties
of the surface, and (3) independent of the surface. In practice, it is more convenient to ignore
the separate directions of these velocity components and simply use a scalar-valued function
F to describe the velocity normal to the interface.

When applied to the case of thick mucosa as described by the air class mixture percentage map,
the problem of interface propagation could be easily built up as depicted in Figure 4(b) by
defining interface as well as velocity F. As shown by Figure 4(b), the interface which is exactly
the boundary between 100% colon and PVE area, is expending outward given the speed F
which is defined as a constant everywhere in our study, such that an arriving time map marching
from the boundary is eventually built up. The advantage of applying fast marching algorithm
is the capability of identifying geometrically-different structures since the interface is marching
along the shortest path, in other words, only the closest voxels to the interface are calculated
when approximating the next time step values. As a result, neighboring voxels belonging to
different geometrical entities are effectively excluded which exactly meets our goal.

Finally, we would like to emphasize that “interface propagation via fast marching” is not
intended to delineate the boundary between colonic wall and lumen, but between geometrically
different structures all belonging to colon wall, such as polyps, folds, remaining fecal and
possible artifacts. When measuring local geometrical features such as gradient and curvature
of a suspicious patch of a polyp candidate, the involved convolution operator often mistakenly
takes other entities as part of itself, most likely the nearby folds and other small bumps located
in the second-order neighboring area, which would definitely lead to the inaccurate magnitude
as well as direction. This exactly stimulated the application of “interface propagation via fast

Wang et al. Page 4

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2009 September 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



marching” in differentiating among different geometrical entities on the colon wall to ensure
noticeable improvement regarding computational accuracy.

A.3. Methodology: definition of fast marching-based adaptive gradient/
curvature—In what follows, the derivation of fast marching-based adaptive gradient, denoted

by  is summarized by the following steps.

1. Extracting all the voxels whose air class mixture percentages are between 0% and
100%, for the purpose of maintaining the original PVE. Figure 5 fully described this
process with the extracted thick mucosa highlighted in green.

2. Taking the boundary (highlighted by red solid line in Figure 5 as the interface to be
propagated, arriving time for each voxel within the mucosa region is calculated one-
by-one. As such, an arriving time map marching from the boundary is eventually built
up, denoted by £. For its stopping rule, we simplified our implementation by running
10-round forward and 5-round backward fast marching process, both starting from
the boundary. Given the priori knowledge about mucosa layer that it is normally 3-5
voxels thick, such a stripe of 15 voxels wide is sufficient to cover the entire mucosa
region.

3. Given arriving time map £ generated by step (2), calculate sobel gradient for each
voxel xi belonging to £ by convolving £ with sobel kernel [41], denoted by

4.
Finally when calculating fast marching-based adaptive gradient  for voxel
xj, each voxel xk located in the second-order neighboring area defined by x-, y- and
z-dimensions is further inspected by measuring the inner product of

, both of which come from step (3). If  is smaller than
pre-defined threshold ε, then voxel xk is believed to belong to geometrically-different

entity, and therefore needs to be removed from the computation of . Once

collecting all the 3D neighboring voxels ,  is
computed in a manner of regular convolution [42], i.e., given a sub-image I = I(x, y,

z) around voxel xj formed by its neighbors , two separable
filters f0 (x), f1 (x) representing smoothing and first derivative operators used as
convolution filters are used to formally compute smoothed partial derivatives

(1)

Different from standard gradient operator that considers every neighboring voxel and fixes the
total number of involved neighbors when taking convolution, our new version inspects each

neighbor xk one by one to see whether it satisfies  or not. As a result, the

number of collected {xk} varies from  to  with those voxels violating the
criterion to be automatically removed. Following the same arguments, computing fast

marching-based adaptive curvature  is straightforward.
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As a summary to this section, we re-tested the sample image shown in Figure 3(a) by following

the above (1-4) steps for the purpose of calculating , with the new results shown in
Figure 6. Compared to Figure 3, it has been demonstrated that fast marching-based adaptive
gradient/curvature could efficiently identify geometrically-different structures with the
improved computational accuracy in terms of both magnitudes and directions.

B. Weighted integral curvature along normal directions (WICND)
B.1. Definition of the path along ± normal directions—So far, each voxel belonging
to the volume-based mucosa has been uniquely assigned two geometrical feature values, fast

marching-based adaptive gradient  and curvature . However, those voxels on
the inner and outer mucosa region along the same normal direction are still independent to each
other without further communication during fast marching propagation. Different from sheer
surface, the correlation between neighboring voxels in the case of thick mucosa not only exists
in the first- or second-order spatial domain, but also appears along the path that is determined
by normal directions, as depicted by Figure 7. Moreover, it is reasonable to claim that voxels
on the inner and outer mucosa region suffer from different noise levels as well as partial volume
distortions, otherwise, very close geometrical structures are supposed to be observed.
Therefore, via the communication/interaction in between, fast marching-based adaptive
curvatures is expected to be further smoothed and refined.

B.2. How to assign different weights to each voxel along the ± normal directions
path—Given voxel xi, there are two associated normal directions denoted by . To assign
a group of gaussian distributed weights {Wi (xj)} to each voxel xj on the path of , two

parameters, i.e., relative distance  and local smoothness ratio  are accordingly designed
to fully determine the standard deviation {σj} in the form of

(2)

and

(3)

where a, b are predefined constants.

1. Relative distance 

This parameter characterizes the relative distance of voxel xj to the central voxel xi,
where the distances are measured by their arriving times tj, ti via fast marching
propagation. The farther voxel xj to voxel xi, the smaller the relative distance, and

vice versa. Therefore  is represented by

(4)

2. Local smoothness ratio 
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Another parameter that affects σj is to measure the local smoothness of voxel xj

relative to the global smoothness change along . Given a small group of samples
with similar properties, removing any of them is not supposed to have dramatic
changes on the whole, which inspires the definition of local smoothness ratio  as
follows

(5)

where n denotes the total number of {xj} along , and θjk is the measure of

correlation between fast marching-based adaptive gradients  of
voxels xj and xk along  respectively, that is

(6)

It is noted that, the numerator of Eq.(5) describes the smoothness of remaining normal path
after removing voxel j from , while the denominator of Eq.(5) always represents the global
smoothness of . Therefore, it is reasonable to claim that  is intended to capture the local
smoothness of voxel xj relative to the global path of . The smoother voxel xj compared to
the global path , the closer  to value 1.

For real CT colon data where mucosa is normally 3-5 voxels thick, the local property especially
the smoothness variation, still could be reflected to some extent by Eq. (5). For the simplest
case that we only have three points, Eq. (5) could give us a hint on whether these three points
are aligned in a row or in the form of a triangular by inspecting 3 possible combinations. For
the case of five points, Eq. (5) is going to check all the 10 combinations before generating a
score implying the degree of smoothness.

Based on the arguments outlined by (2)-(6), the definition of weighted integral curvature along
normal directions (WICND) in continuous space is straightforward.

(7)
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where  is the fast marching-based adaptive curvature of current voxel x j.

In our previous work [40], Wang et al. proposed a linear integral curvature (LIC) aiming to
reflect a more general “tendency” by taking integral along principle curvature directions. As
a comparison, our newly proposed WICND has the following advantages.

• WICND bridges the gap between voxels on the inner and outer mucosa region along
the normal direction path, such that the in-between communication could further

smooth and refine . However, LIC still focused on the correlation in the first-
and second-order spatial domain, ignoring extra correlation in the thickness direction.

• Instead of using the fixing-parameter convolution kernel as LIC did, WICND takes
even more adaptive scheme to self-adjust its Gaussian kernel by introducing two

parameters,  and , which reflect the relative distance and local smoothness ratio
respectively.

As a concluding remark to this section, other geometrical features like curvedness and shape
index [24] could be further calculated based on WICND, which also inherit the adaptability as
well as immunity to the neighboring geometrically-different structures. Therefore, such group
of fast marching-based adaptive geometrical features including gradient, curvature, curvedness
and shape index, could characterize and sort out polyp candidates by the use of clustering
algorithm.

V. Experimental Results
In what follows, the efficiency of the proposed WICND was evaluated by 52 patient datasets
downloaded from the website of the VC Screening Resource Center
(https://imaging.nci.nih.gov/ncia/). For each patient, two CT images were acquired from the
supine and prone positions, represented by two volume images of more than 300 slices of
512×512 array size each. Among the 26 patients where polyps were found, via VC navigation,
the total number of polyps whose size were larger or equal to 10mm is 24, 41 between 5mm
and 10mm, and 24 even smaller than 5mm. The largest one was measured with a size of 22cm.

Each patient data was first segmented by partial volume-based MAP-EM algorithm, followed
by volume-based mucosa extraction as described in Section III. Secondly, fast marching-based

gradient  and curvature , as well as our proposed WICND, were computed
individually following the steps outlined in Section IV. Finally, simple clustering rule
minimizing the number of missing polyps or false negative was applied by considering shape
index and curvedness as the feature vector [24], which could be briefly summarized into the
following steps, (1) voxels that have shape index and curvedness between a predefined range,
are selected as seed regions, (2) starting with seed regions, a growable region by clustering
spatially connected voxels to the seed regions are designated as candidate patches with their
shape index and curvedness within the predefined minimum and maximum values. Since the
topic of this paper is the initial polyp detection as the first step of CAD, finding a single group
of parameters that is robust and optimum to all those 26 data sets is our ultimate goal. Table 1
summarized the threshold values for determining both seed and growable regions.

WICND versus our previously developed LIC based on two scanning positions, supine and
prone, were summarized by Tables 2 in terms of by-polyp detection rate. Besides, some
practical issues like computational complexity, the parameters involved and also the sensitivity
are discussed as well. In addition, by altering shape index and curvedness thresholds, two
FROC curves shown in Figure 8 corresponding to WICND and LIC respectively were plotted
whose comparison result was in great favor of WICND.
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Some comments are accordingly drawn as follows:

• We did notice some differences between prone and supine data when testing WICND
according to Table 2. For those medium-sized polyps, the listed sensitivities of
WICND for prone cases were slightly, not significantly inferior to that for supine
cases, and the possible explanations could be summarized into four factors, (1) we
believe that gravity plays a partial role in affecting prone cases where polyps might
have been distorted a little bit in terms of shape, (2) by altering parameter set, we
occasionally encountered the cases that prone outperformed supine, (3) the VC data
sample pool was not large enough to reach a general conclusion, and (4) the training
samples for finding optimal parameter set were exactly the same as testing samples
for getting preliminary results as listed in Table 2-3. Therefore, we are going to test
more patient data in our future work for making more general evaluations regarding
WICND. Generally speaking, WICND has improved the by-polyp detection rate
when compared to LIC, especially for small and medium sized polyps. For the sake
of by-patient detection rate, numerical analysis showed that both WICND and
previous LIC achieved 100% accuracy.

• In terms of averaged number of false positives, we have four choices depending upon
different combinations, (1) traditional fix-neighbor gradient/curvature only, (2) fast
marching-based adaptive gradient/curvature only, (3) our previous LIC, and (4) newly
proposed WICND which includes case (2) already. For those 26 patient datasets with
polyps, the resulting numbers of false positives are listed in Table 3, which showed
that WICND did a great job in reducing false positives with minimum number of false
positives of 132. Even compared to case (2) where fast marching-based adaptive
gradient/curvature was employed, the improvement was as high as 20%. Therefore,
the effectiveness of WICND makes our future work of feature extraction/selection as
well as machine learning, become much easier.

• For the sake of computational complexity, WICND is much faster than LIC due to
the fact that the integral path of WICND along normal direction is generally much
shorter than that of LIC along curvature directions. More specifically, the typical
thickness of mucosa region is between 3-5 voxels, while for LIC, it is manually and
empirically set. More specifically, different line lengths are designed for different
sizes of polyps, which is practically set to 20mm. Such long integral length along
curvature directions of our previous LIC considerably increased the computational
complexity.

• Those polyps that are prone to be missed by either WICND or previous LIC can be
briefly summarized into the following categories, (1) sizes are too small. Throughout
our experiments, polyps no larger than 5mm account for most of the missing cases,
(2) irregular or incomplete shapes, for example, only portion of the shape are exposed
or polyp itself has already been distorted by neighboring structures as illustrated by
Figure 9 as follows.

• Finally, in order to demonstrate that the performance of 132 false positives per polyp
by WICND in determining initial polyp candidates could be further improved and
reach at a clinical acceptance of 3-10 false positives, we would like to emphasize the
strength of a much more sophisticated machine learning scheme other than standard
classification as proposed by our group in Wang's work [35], where an ellipsoid model
was constructed for each initial polyp candidate and three features, geometrical, CT
intensity distribution or texture, and morphological features were extracted from the
constructed ROI, followed by a two-level classifier to reduce false positives in the
initial patches, instead of a standard classifier. It has been validated that, for such a
delicate classifier combined with LIC, the mean number of false positives per polyp
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was nearly 2.8 while maintaining 100% polyp detection sensitivity, even though its
averaged number of initially determined polyp candidates was as high as 706 via our
testing. In addition, both LIC and the delicate classification scheme developed by
Wang et al. were essentially working on sheer surface-oriented features, which is the
reason why we could not achieve the best performance by directly transferring to the
case of volume-based mucosa as we discussed in this paper. Therefore, designing a
new classification scheme for dealing with volume-based features is our major
concern and currently under investigation. In summary, it is encouraging to see that
the initial detection performance has been significantly improved by reducing the
mean number of FPs from 706 to 132 by case when comparing WICND to LIC.
Validated by our previous classification scheme [40], we strongly believe that the
current 132 false positives could be further reduced by a factor of 13-44 with our well-
designed classifier.

VI. Discussion and Future Work
In this paper, we proposed a new fast marching-based adaptive curvature algorithm, referred
to as weighted integral curvature along normal directions (WICND), which is based on fast
marching interface propagation method and aims to connect voxels on the inner and outer
mucosa layer together by taking weighted integral along normal direction. Followed by a
clustering algorithm to group voxels with close geometrical features, a polyp candidate
determination scheme is built up for final automatic polyp detection. With minimum number
of false positive patches without any significant loss of true positive polyps, our proposed polyp
detection scheme is believed to outperform other methods, which greatly release the burden
of following false positive reduction module.

Still in some extreme cases where polyps might hidden behind polyps, or partly buried by
surrounding tissues, our proposed WICND could not detect them either. In dealing with these
abnormal cases, more efforts should be put onto the preprocessing cleansing part and
anatomical analysis as well.

Finally, our future work can be categorized into two aspects, (1) to investigate more geometrical
or texture features based on volume-based mucosa, and (2) to design a supervised/unsupervised
pattern recognition learning module to realize feature selection and training, avoiding the
possible occurrence of “curse of dimension”. Although linear discrimination for training
internal features has been investigated in our previous work, it has been found out that this
linear discriminator could not automatically identify which feature is more important, and
which is less. Our future work is to take this challenge, if necessary, nonlinear discriminator
would be seriously taken.
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Figure 1.
Schematic flowchart of polyp candidate determination.
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Figure 2.
Illustration of the segmented colon lumen as well as the colon tissue mixture distribution map,
with the first row corresponding to the original raw CT colon data, while the second and third
rows representing the cleansed colon lumen and segmented colon mixture distribution map.

Wang et al. Page 15

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2009 September 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Illustration of the neighboring geometrical structure, (a) two spheres located in the same 3D
images, (b) the irregular gradient magnitudes by the use of fixed neighbors, and (c) the distorted
gradient directions by the use of fixed neighbors.
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Figure 4.
Application of fast marching method to calculate adaptive gradient/curvature, (a) definition of
interface propagation, and (b) the adaptation to the case of partial volume colon wall.
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Figure 5.
Extraction of mucosa layer with partial volume effect.
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Figure 6.
Fast marching-based adaptive gradient magnitude testing on the sample image containing two
spheres, (a) two spheres located in the same 3D images, (b) corrected gradient magnitudes by
fast marching-based adaptive method, and (c) corrected gradient directions by fast marching-
based adaptive method.

Wang et al. Page 19

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2009 September 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Voxels along the path determined by ± normal directions.
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Figure 8.
FROC curves corresponding to WICND and LIC, which favor the use of WICND.
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Figure 9.
An example of distorted polyp by neighboring folds.
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Table 1
Threshold values for determining both seed and growable regions

Shape index curvedness

Seed region (0, 0.125) (0.02, 0.5)

Growable region (0, 0.255) (0.01, 0.6)

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2009 September 21.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wang et al. Page 24

Table 2
Performance of WICND versus LIC

Size of polyps
Detection Rate of WICND Detection rate of Previous LIC

Supine Prone Supine Prone

Large polyps (>=10mm) 100% 100% 100% 100%

median polyps (5mm-10mm) 100% 89.5% 95.2% 95%

Small polyps (<5mm) 91.7% 75% 75% 58.3%
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Table 3
Number of false positives from four different choices for detecting polyps

fix-neighbor gradient /curvature fast marching-based adaptive gradient/curvature LIC WICND

Averaged number of False positives 531 163 706 132
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