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Abstract
We describe a general method to integrate DNA strands between single-walled carbon nanotube
electrodes and to measure their electrical properties. We modified DNA sequences with amines on
either the 5′ terminus or both the 3′ and 5′ termini and coupled these to the single-walled carbon
nanotube electrodes through amide linkages, enabling the electrical properties of complementary and
mismatched strands to be measured. Well-matched duplex DNA in the gap between the electrodes
exhibits a resistance on the order of 1 MΩ. A single GT or CA mismatch in a DNA 15-mer increases
the resistance of the duplex ~300-fold relative to a well-matched one. Certain DNA sequences
oriented within this gap are substrates for Alu I, a blunt end restriction enzyme. This enzyme cuts
the DNA and eliminates the conductive path, supporting the supposition that the DNA is in its native
conformation when bridging the ends of the single-walled carbon nanotubes.

Since the elucidation of the double helical structure of DNA, scientists have been fascinated
by the possibility that the stacked aromatic base pairs of DNA may enable charge transport
(CT) over significant distances1–5. The nature of the conductive properties of duplex DNA has
consequently attracted substantial interest. Initial solution experiments featured photoinduced
DNA-mediated CT between well-defined donor and acceptor sites6–13. Long-range CT has
been shown to lead to oxidative damage in DNA over 200 Å away from the bound oxidant14,
15 and DNA CT has also been found to be exquisitely sensitive to the integrity of the base-pair
stack and to the coupling of the donors and acceptors with the DNA (ref. 10). Furthermore,
DNA CT can be attenuated by a single base mismatch16. Indeed, this sensitivity of DNA CT
to the integrity of the base-pair duplex has prompted both the consideration of roles for DNA
CT within the cell17,18 and the construction of electrochemical DNA-based sensors for
mutations, base lesions and protein binding19,20.

Previously, we have described a system for measuring the conductivity of a single molecule
covalently immobilized within a nanotube gap21–24. In this system, gaps are formed in single-
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walled carbon nanotubes (SWNTs) that can be reconnected by one or a few molecules attached
to both sides of the gap through amide bond formation. This strategy allows molecules to be
wired into metal electrodes by means of robust amide linkages, avoiding the problems
commonly associated with suspending DNA between electrodes and forming irreproducible
electrical contacts. Moreover, the devices are sufficiently robust that aqueous environments
can be used. Using this method we have made molecular devices that are able to change their
conductance as a function of pH (ref. 21), and others that are sensitive to the binding between
protein and substrate22, or that switch their conductance when the bridging molecules are
photoswitched24. Here we describe the first measurements of the conductivity of a single DNA
duplex when it is wired into a carbon electrode through covalent bonds.

Numerous CT measurements on DNA strands bridging two electrodes have also been carried
out in an effort to establish the conductivity of DNA. These measurements have yielded a
remarkably wide range of resistance values (1 to 1 × 107 MΩ)25–31. For example, DNA ropes
suspended on a metallic grid were found to behave as a semiconductor with a resistance on the
order of 1 MΩ (ref. 25). However, one group initially found wide bandgap semiconducting
behaviour for DNA duplexes set between two nanoelectrodes using high-voltage electrostatic
trapping26, but later found insulating behaviour for longer strands27. In contrast, in other
research it was found possible to induce superconductivity at low temperatures in dehydrated
DNA bundles on rhenium/carbon electrodes28.

In general, the variability in the results obtained can be understood by considering the solution
experiments, which show that DNA CT depends sensitively upon the integrity of the base-pair
stack, the absence of damage within the duplex, and the electrical connections to the duplex.
It should be noted that measurements using both conducting atomic force microscopy (AFM)
29 and scanning tunnelling microscopy (STM)30–32 under aqueous conditions have recently
been carried out and show that well-matched DNA exhibits a low resistance (1–10 MΩ), as
well as an increase in resistance with an intervening base mismatch31,32. Also, STM
measurements on DNA monolayers have shown effective charge transport for well-matched
DNA oriented by the STM tip33. However, none of these measurements was of a single duplex,
but instead they were carried out for a collection of duplexes on the surface below the AFM
or STM tip. Thus, in the conductivity measurements carried out so far, the integrity of the DNA
was not well established, the connections to the duplex were not well defined, or the
measurement was not definitively of a single DNA duplex.

Fabrication of the cut SWNT devices has been previously described in detail21–24. In brief,
SWNTs were grown using chemical vapour deposition (CVD) on highly doped silicon wafers
with 300 nm of thermally grown silicon oxide on their surface. Metal electrodes consisting of
5 nm of Cr overlaid with 50 nm of Au were deposited through a shadow mask onto the carbon
nanotubes. The silicon wafer serves as a global back gate for the devices. We then spin-cast a
layer of polymethylmethacrylate (PMMA) over the entire device structure and used ultrahigh-
resolution electron beam lithography to open a window in the PMMA. This process exposed
a section of the SWNT only a few nanometres in length, which was excised with an oxygen
ion plasma. The oxidative etching of the carbon nanotube generated carboxylic acid
functionalities on both sides of the gap (Fig. 1a), which can be bridged with amine-terminated
molecules.

We reconnected the carbon nanotube gap with single DNA molecules terminated with amines
using a two-step strategy. First, the freshly cut carbon nanotubes were immersed in a buffer
solution containing standard amide coupling and activating agents (Sulfo-NHS, EDCI). Then,
the activated carbon nanotube termini were reacted with amine-modified DNA to covalently
bridge the gap with a single molecule. Given that the cross-sectional area of duplex DNA (~3
nm2) is comparable to that of the SWNTs grown here, it is unlikely that more than one DNA
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duplex can fit lengthwise within the gap. We explored two different methods to bridge these
gaps. In one method (Fig. 1b), one end each of the two strands of the DNA duplex are bound
to the SWNT electrodes. In a second method (Fig. 1c), a single strand is bound between the
ends of the SWNT electrodes. The strategy in Fig. 1c is inherently more interesting because it
allows for dehybridization/rehydridization with mismatched strands. The measurements were
carried out under ambient conditions. (See Supplementary Information for experimental details
on DNA synthesis, device reconnection and DNA dehybridization/rehybridization.)

Figure 2 shows representative I–V curves for these two different methods of DNA attachment.
We could not determine any significant difference between the conductance measurements
when using these two connection strategies. In Fig. 2a we used a DNA duplex functionalized
on both strands with an amine at the 5′ end. In the other case (Fig. 2b), we used a DNA duplex
containing a strand functionalized at both the 5′ and 3′ ends. The black curves show the source–
drain current (ISD) as a function of the gate voltage (VG) at a constant source–drain bias of 50
mV for the pristine nanotube. Before cutting of the SWNT, the device in Fig. 2a is a hole
transporting semiconducting device, and the one in Fig. 2b is a metallic device. After cutting
and initial treatment of the gap with coupling agents, the devices show no measurable current
(as indicated by the red curves). The green curves in Fig. 2a,b illustrate the conductance of the
two devices after reconnection with the two amine-modified DNAs.

In both cases shown here, the reconnected carbon nanotube devices recover their original p-
type semiconducting or metallic properties. Note that the gate voltage that can be applied to
the reconnected devices is limited; device breakdown is observed for gate voltages greater than
6 V. Over time, at these higher gate biases, the DNA bridges became poorer and poorer
conductors until, ultimately, the current levels are at the noise level of the measurement (see
Supplementary Information, Figs S1 and S2). It is difficult to determine if this effect could be
due to a hydration layer of water around the devices. Table 1 summarizes the device
characteristics measured in the course of this study for the devices before cutting, after cutting
and after reconnection with amine-terminated DNA sequences. (See Supplementary
Information, Figs S1–S7, for experimental details of the electrical measurements.) Using this
method we obtained 10 working devices out of 370 that were tested.

Devices were also reconnected with mismatched DNA, as it has been shown in a variety of
experiments that single-base mismatches dramatically attenuate CT. The DNA duplexes and
mismatches explored here are shown in Fig. 3a. The mismatched devices were found to have
higher resistance than corresponding devices reconnected with well-matched DNA. These
results could not be compared quantitatively with those on the well-matched duplex, because
different devices were fabricated to test the different duplexes. A device was therefore first
reconnected with well-matched DNA duplexes functionalized with the amines on the 5′ and 3′
termini of one strand, and then the duplex was dehybridized using a 1:1 solution of formamide
and deionized water at 30 °C and rehybridized with different complements (Fig. 3a–c).

Figure 3b shows the corresponding current–voltage curves for this sequence of experiments,
and Fig. 3c shows the current at VG = −3 V for this sequence at a constant source drain bias of
50 mV. Rehybridization with the complement so as to generate a CA mismatch reduced the
current significantly and yielded an increase in the on-state resistance of nearly 300-fold from
0.5 MΩ to 155 MΩ (Fig. 3c). Replacing the complement featuring a CA mismatch with a
complement featuring a GT mismatch yielded no changes in the device characteristics.
However, the original on-state resistance and nanoamp current levels could then be recovered
by replacing the GT mismatched complement with the original well-matched sequence.
Importantly, the device could be taken through multiple dehybridization/rehybridization
cycles, as shown in Fig. 3b,c.
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As further confirmation that CT in the carbon nanotube gap is DNA-mediated, we reconnected
separate devices first with DNA featuring a GT mismatch or DNA featuring a CA mismatch
(see Supplementary Information, Figs S3 and S4). Dehybridization of the mismatched DNA
and replacement with well-matched DNA yielded an increase in the current and a decrease in
the on-state resistance in both instances. It is important to note that the thermodynamically
stable GT mismatch produced an effect that is identical to that found with the
thermodynamically destabilizing CA mismatch. As we have found in solution experiments,
the attenuation in DNA CT seen with mismatches does not correlate with thermodynamic
stability of the duplex34. Ultrafast spectroscopic experiments indicate that DNA CT depends
upon the sequence-dependent dynamics of DNA (ref. 35). Certainly, the changes observed here
in the electrical characteristics of the device with mismatches cannot be due to poorer stability
of the DNA.

Although the mismatch experiments provide strong evidence that the observed signals do not
result from ionic conduction from the DNA molecules, as an additional control, newly cut
devices were subjected to the same reconnection conditions but with the DNA excluded. After
removal from the solution and rinsing, all of the devices treated in this manner remained at
open circuit with no measurable current.

Devices were also reconnected with single-stranded DNA featuring amines at both the 5′ and
3′ ends but without its complement. Although carbon nanotube gaps could be bridged with the
single-stranded DNA, the resulting devices were found to be highly unstable (see
Supplementary Information, Fig. S5). After three voltage cycles, the current passing through
single-stranded DNA degraded to open-circuit levels. Such instability may result from voltage-
induced oxidation of the exposed nucleobases and was not observed with duplex DNA.

Additional control experiments were performed to determine if non-specific absorption of
DNA could be responsible for the conduction changes during dehybridization/rehybridization.
Devices were partially cut with a shorter oxygen plasma treatment before being taken through
the sequential steps of reconnection and exchanges from matched to mismatched sequences.
In essence, the SWNT is only nicked, not cut completely through, so the electrical connection
is maintained. The devices treated in this way displayed little change in either the resistance
or threshold voltage (see Supplementary Information, Fig. S6).

As a final test that the duplex DNA within the gap adopts a native conformation under the
conditions of the experiment, we used Alu I, a blunt end restriction enzyme, to cut the DNA
(Fig. 4). Alu I only cuts DNA that is in its native conformation. Devices were reconnected with
duplex DNA containing the restriction sequence 5′-AGCT-3′. The device was subsequently
incubated with Alu I, resulting in a concomitant decrease in the current to the noise limits of
the measurement. As another control, a device reconnected with a nearly identical sequence
that featured the sequence 5′-AGTC-3′ in place of the restriction site was incubated with Alu
I. In this instance, no significant change was observed in the electrical characteristics of the
device (see Supplementary Information, Fig. S7). These data support the observation of a
sequence-specific restriction event. The enzyme is able to cleave its target sequence, yielding
no detectable current in the device. Under the experimental conditions presented, then, the
DNA duplex is intact, and the results suggest that it adopts a native conformation.

We can now place the values found here in the proper context to establish a range for the
conductivity of a single, intact DNA duplex. Our measurements place the resistance of well-
matched DNA duplexes with ~6 nm length in the range of 0.1–5 MΩ (Table 1). For comparison,
based on the bulk c-axis resistance, highly oriented pyrolytic graphite (HOPG) with similar
dimensions should also have a resistance of ~1 MΩ (ref. 36). We estimate this value by
substituting a HOPG stack of equivalent diameter for the double-stranded DNA. Thus it appears
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that DNA, in its well-matched and well-stacked duplex form, behaves electrically much like
an array of stacked aromatic graphite planes. Importantly, just as we have seen in solution, the
presence of intervening mismatches attenuates DNA-mediated CT. This attenuation leads to a
~300-fold increase in resistance. Such an increase in the resistance of mismatched DNA is
consistent with previously reported STM measurements31–33. Also, it should be noted that
even within our own measurements, the covalent σ-bonded linkages at the termini of the DNA
duplex must also decrease the conductivity observed versus the conductivity expected with
coupling directly into the base-pair stack. Therefore, the values obtained represent the upper
limits of the resistance of the DNA π-stack.

In conclusion, we have outlined a method to integrate a single DNA duplex within an electrical
device. The DNA molecules are covalently wired into electrical circuits through robust amide
linkages that are stable over a wide range of chemistries and conditions. The experiments
presented here illustrate the ability of DNA to mediate CT over significant distances and allow
for the direct measurement of the resistance of a single well-matched DNA molecule. It is
perhaps not surprising that DNA, if in its native conformation, and containing a stack of
aromatic heterocycles in its core, resembles the aromatic stacked planes of graphite with respect
to electrical characteristics. However, significantly, CT through a DNA assembly is sensitive
to perturbations that arise in the base-pair stack. As illustrated directly here, as well as in
solution experiments, single base mismatches attenuate CT through DNA. A molecular π-
stacked array in solution is necessarily less robust than a solid-state conductive material. Thus,
although the sensitivity of DNA CT to perturbations in stacking suggests that DNA may not
be appropriate to serve as a robust wire for nanoelectronic circuits, DNA molecules bridging
nanodevices can surely serve as uniquely powerful reporters to transduce biochemical events
into electrical signals at the single-molecule level.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A method to cut and functionalize individual SWNTs with DNA strands
a, Functionalized point contacts made through the oxidative cutting of a SWNT wired into a
device. b, Bridging by functionalization of both strands with amine functionality. c, Bridging
by functionalization of one strand with amines on either end.
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Figure 2. Device characteristics for individual SWNTs connected with DNA
a,b, Source–drain current versus VG at a constant source –drain voltage (50 mV) before cutting
(black curve: 1), after cutting (red curve: 2) and after connection with the DNA sequence shown
(green curve: 3), for a semiconducting SWNT device (a) and a metallic SWNT device (b).
Guanine, G; cytosine, C; adenine, A; thymine, T.
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Figure 3. Mismatches have a large effect on DNA conductance
a, Replacing well-matched (WM) duplexes with CA and GT mismatches. b, Source–drain
current versus VG at a constant source–drain voltage (50 mV) for a SWNT device taken through
the sequence 1 through 6. The current levels for points 2, 3, 5 and 6 are ~300 times lower. c,
Source–drain current at VG = −3 V at a constant source–drain voltage (50 mV) for the sequence
1 through 6.
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Figure 4. Enzymes can be used to cleave the DNA between the ends of the SWNTs
Source–drain current versus VG at a constant source–drain voltage (50 mV) for a metallic
SWNT device after cutting and reconnection with the shown DNA sequence before (green
curve: 1) and after reaction with Alu 1 (red curve: 2).
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