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The Input-Output Transformation of the Hippocampal
Granule Cells: From Grid Cells to Place Fields

Licurgo de Almeida,' Marco Idiart,? and John E. Lisman?
'Neuroscience Program and 2Physics Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil, and *Department of Biology and
Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454

Grid cells in the rat medial entorhinal cortex fire (periodically) over the entire environment. These cells provide input to hippocampal
granule cells whose output is characterized by one or more small place fields. We sought to understand how this input- output transfor-
mation occurs. Available information allows simulation of this process with no freely adjustable parameters. We first examined the
spatial distribution of excitation in granule cells produced by the convergence of excitatory inputs from randomly chosen grid cells.
Because the resulting summation depends on the number of inputs, it is necessary to use a realistic number (~1200) and to take into
consideration their 20-fold variation in strength. The resulting excitation maps have only modest peaks and valleys. To analyze how this
excitation interacts with inhibition, we used an E%-max (percentage of maximal suprathreshold excitation) winner-take-all rule that
describes how gamma-frequency inhibition affects firing. We found that simulated granule cells have firing maps that have one or more
place fields whose size and number approximates those observed experimentally. A substantial fraction of granule cells have no place
fields, as observed experimentally. Because the input firing rates and synaptic properties are known, the excitatory charge into granule
cells could be calculated (2-3 pC) and was found to be only somewhat larger than required to fire granule cells (1 pC). We conclude that
the input- output transformation of dentate granule does not depend strongly on synaptic modification; place field formation can be
understood in terms of simple summation of randomly chosen excitatory inputs, in conjunction with a winner-take-all network

mechanism.

Introduction
The process by which neurons transform their inputs into out-
puts is fundamental to understanding brain function but has
been difficult to study. Information must be available about the
number of excitatory synaptic inputs to target neurons, their
synaptic strength, and their receptive field properties. Informa-
tion must also be available about the inhibition that interacts with
excitation. These types of information are generally not available.
One brain region where there is sufficient information is the
monosynaptic connection of layer 2 cells of the medial entorhinal
cortex with the granule cells of the dentate gyrus, the main input
region of the hippocampus. Cells in this region of the brain fire in
a way that depends on the position of the animal. The input—
output transformation is remarkable. Entorhinal cells respond to
evenly spaced positions over the entire environment and have
therefore been termed grid cells (Hafting et al., 2005; Sargolini et
al., 2006). Different grid cells have different phase and spatial
frequency. In contrast, granule cells respond only to one or a few
positions and have therefore been termed “place cells” (O’Keefe,
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1976; Leutgeb etal., 2007). Several fundamental questions may be
asked about this transformation: (1) Does this transformation
require learning or can it be accounted for by fixed properties of
the system? (2) Is the transformation done at the level of individ-
ual cells or are network processes involved? (3) Does the exact
number of synaptic inputs and their strength matter, or can the
transformation be analyzed in a simplified system? (4) Is the
absolute level of excitation much greater than threshold (and
balanced by a large inhibition), or is excitation on the same order
as threshold?

Fortuitously, extensive investigation of this brain region pro-
vides all the information necessary to analyze the input—output
transformation of dentate granule cells. First, the connections
between the entorhinal cortex and granule cells have been ana-
tomically analyzed and the number of inputs is known (Nafstad,
1967; Hama et al., 1989; Johnston and Amaral, 1998). Second, the
size, release probability, and quantal size of synapses of layer 2
entorhinal cells onto granules cells has been determined (Trom-
mald and Hulleberg, 1997; Bekkers and Clements, 1999), allow-
ing quantitative assessment of synaptic strength and its variabil-
ity. Third, properties of inhibition have been studied; notably, the
observation that cells fire phase locked to gamma oscillations
(Bragin et al., 1995; Csicsvari et al., 2003) indicates that gamma-
frequency inhibition is a major determinant of cell firing. Finally,
the firing threshold properties of the postsynaptic granule cells
have been determined (Geiger and Jonas, 2000). Together, this
data set provides the basis for analyzing the input—output trans-
formation in this system. This goal is aided by the development of
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Figure 1.  The receptive fields of grid cells have three different orientations. A—C, Three
examples show the possible orientation of grid cells in our simulations. D, An example of an
actual grid cell from Sargolini et al. (2006); dots are spikes; lines are the path of the rat.

a framework for describing the computational role of gamma
frequency inhibition (de Almeida et al., 2009). An important
aspect of this framework is that the winner-take-all process that is
performed by gamma oscillations does not depend strongly on
the exact magnitude of inhibition and can therefore be applied
when this magnitude is not known. We are thus able to analyze
the formation of place fields with no freely adjustable parameters.

Materials and Methods

Grid cells. Activity maps of simulated grid cells and place cells were rep-
resented by a square matrix of bins, each bin representing an area of 1
cm?ina 1 X I m square environment. To simulate the activity of grid
cells, we used the expression developed by Blair et al. (2007) according to
which the rate at spatial location 7 = (x,y) is as follows:
’ 4
G(r,A,0,c) =g Ecos ﬁu(ﬂk +0)-(r—ol], (1)
k=1 ‘

where u(6,) = (cos(6,),sin(6,)) is the unitary vector pointing to the
direction “6,.” Each cosine in Equation 1 establishes a pattern of alter-
nating maxima and minima in the direction “6,.” The combined sum of
the three patterns at angles 6, = —30° 6, = +30° and 6; = +90°is a
honeycomb grid with intervertex spacing equal to A. The angle 6 is an
arbitrary rotation that we assume to be either 6 = 0°, 20°, or 40°. ¢ = (x,,
¥,) is the spatial phase of the grid. The resulting grid orientations are
illustrated in Figure 1 A—C. g is a monotonically increasing gain function
given by g(x) = exp[a(x — b)] — 1. The parameter b was set to —3/2 so
that the minimal firing rate is zero, since the summation of the three
cosine functions has a minimum value of —3/2. The parameter a was
chosen to be 0.3 to make the spatial decay from the center of each vertex
match the experimentally observed decay (Leutgeb et al., 2007), as dem-
onstrated in Figure 2.

Granule cells. In our model, granule cells receive excitatory input from
randomly chosen grid cells. The place cells that are active for a given
position in the environment are then determined according to the inter-
action of the summed excitation and inhibition using a rule based on the
percentage of maximal suprathreshold excitation (E%-max) winner-
take-all process (see below).

The excitatory input received by the ith place cell from the grid cells is
given by Equation 2:
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Figure 2.  Firing rate as a function of distance between the vertices of grid cells. We used
Equation 1 to define this spatial decay of activity from the vertices (maximum activity) and
matched this decay to that measured in (Leutgeb etal., 2007) (values here are normalized to the
intervertex distance). Firing rate falls to 50% at a distance that is 21% of the intervertex dis-
tance. This condition is met for @ = 0.3. At the half point between vertices there is ~8%
activity; the true minima is even lower, but not located along this line.

Hgrid

;rid(r) = EVV:']'G]‘(T’) > (2)

where W;; is the synaptic weight of each input. W;; can be either 0 (no
connection) or a positive random value distributed according to a func-
tion described below.

The activity of the ith place cell is given by the following:

pace(!) = Iiar) + H(Iysg(r) — (1 = k) = 25(0) (3)

where the range of k (0.05-0.15) was as estimated in our companion
paper (de Almeida et al., 2009). Specifically, k (referred to as E%-max)
determines which cells fire according to the following rule: cells fire if
their feedforward excitation is within E% of the cell receiving maximal
excitation. We assume here that E is very close to total excitation; this is a
reasonable approximation given the results computed at the end of the
Results section. I (r) is the maximum input received by a place cell for
the position . H(x) is the Heaviside function, where H(x) = 1 ifx>0and
is 0 otherwise.

Distribution of synaptic weights. We have used the measured size dis-
tribution of excitatory synapses onto granules cells (Trommald and Hul-
leberg, 1997) to a fit a function for this distribution:

P(s) =A(1 - ef<(e;>) (e«%) ‘B A%)) R

where s is the synaptic area (in square micrometers). s ranges from 0 to
0.2 um?*and A = 100.7, B=0.02, 0, = 0.022 um?, o, = 0.018 um ?,and
o5 = 0.15 um?. Synaptic weight is related to synapse size through the
relationship:

W(s) (5)

s s

B 0.2<s + 0.0314> '
The first term expresses the linear dependence of quantal release proba-
bility on synapse area (for justification, see Results); the second term
shows how quantal size depends on synapse area. The area, which pro-
duces a quantal current that is half that at the largest synapses (0.2 um?),
is 0.0314 um?. This value was calculated according to the model of
Raghavachari and Lisman (2004), which correctly predicts the rise-time,
amplitude, and variance of the quantal response. We thank Sridhar
Raghavachari (Duke University, Durham, NC) for using this model to
systematically vary synapse size and thereby determine the 0.0314 value.

Analysis of place fields. To compare real data with the place fields pro-
duced by our model, two measures were adopted: number of place fields,
i.e., the number of regions in the recorded area that met the criterion for
a place field (see below), and the size of these place fields. The environ-
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Figure3. The spatial frequency of grid cells as a function of distance along the dorsoventral

axis of the entorhinal cortex. According to Hafting et al. (2005), the intervertex distance varies
from ~35 cm in the most dorsal region to ~8 m in more ventral regions (the most ventral
region has not been recorded from). Granule cell recordings are from the dorsal hippocampus;
based on anatomical results showing that this region receives input from only part of the
entorhinal cortex, we estimate that the grid cells that provide input to granule cells have a
spacing that varies from 35 cm to 1 m (two-headed arrow near bottom) (see Results).
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Figure 4. Morphology and receptive field properties of dentate granule cell. 4, Camera
lucida drawing of a rat granule neuron adapted from Rahimi and Claiborne (2007). Scale bar, 5
um. Inset shows magnified region on which spines can be seen. B, Activity (marked by +
signs) of a dentate granule cell in a 1 m by 1 m square box. Twisting lines indicate path of rat
through the box. There are several place fields; adapted from Leutgeb et al. (2007).

ment for real and simulated data was 1 m by 1 m. Following the definition
of this (Muller and Kubie, 1989), a place field was defined as a continuous
region of at least 200 cm? consisting of bins that exceed a firing rate of
20% of the cell’s peak firing rate. The number of place fields and their
average area were calculated using simple image recognition programs
implemented specially for these simulations. The experimental data on
dentate place fields was obtained from (Leutgeb et al., 2007).

All computations were performed using the Matlab programming lan-
guage (MathWorks).

Results

Grid cells in layer 2 of the medial entorhinal cortex have widely
varying spatial frequency ranging from 30 cm to over 8 m (Fig. 3).
This variation in frequency is systematically mapped along the
dorsal ventral axis of the entorhinal cortex (Hafting et al., 2005).
Grid cells make monosynaptic connections onto granule cells of
the dentate gyrus (Fig. 4A). These cells do not have grid-like
receptive fields, but rather have one or a few place fields (Fig. 4 B).
The overall question we address is how this transformation
occurs.

To determine the range of spatial frequencies that provide
input to a granule cell, it is necessary to account for the fact that
the region of dentate gyrus from which recordings are made re-
ceives input from only part of the dorsoventral axis of the medial
entorhinal cortex. The region of the dentate where recordings
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have been made receives input from ~1/4 of this axis (Witter,
2007) (M. Witter, personal communication). The region of the
largest recorded grid-cell spacing (8 m) is only 60% along the
entire axis. Based on these facts (and the assumption of logarith-
mic mapping), we estimate that the spatial frequency of inputs to
recorded granule cells varies from 35 cm to 1 m (Fig. 3, two-
headed arrow near bottom).

We next estimated the number of synapses made by grid cells
onto granule cells. The dendritic region of dentate granule cells is
divided into three layers. In the rat, it is the middle layer that
receives input from grid cells (for review, see Witter, 2007). Ac-
cording to Johnston and Amaral (1998), granule cells have
~3000 um of dendrite and the spine density is 2.3 spines/micro-
meter. There are thus ~6840 spines, each of which contains one
synaptic input. Approximately 30% of these are in the middle
molecular layer (Hama et al., 1989), where the layer 2 cells form
synapses. Of the synapses in this region, ~85% receive input
from layer 2 of the entorhinal cortex (Nafstad, 1967). But not
every cell in layer 2 is a grid cell; Sargolini et al. (2006) indicate
that only 72% of the cells in this layer have well defined grid fields.
Taking all this information into consideration yields a total of
1200-1300 spines on the granule cell that have synaptic inputs
from grid cells. The results of Min et al. (1998) indicate that the
fraction of silent synapses is small in this cell type; we therefore
take 1200 as the number of nonsilent synapses made by grid cells
onto granule cells.

Excitatory drive to granule cells

To determine the excitatory drive to a granule cells from grid
cells, we used a brute force procedure. We made a library of
10,000 grid cells, each with a different spatial frequency (varying
from 35 cm to 1 m), phase, and orientation (see Materials and
Methods). We then made 1200 random selections from the li-
brary and summed them, yielding an excitation map, one of
which is illustrated in Figure 5A. In these initial simulations, each
synapse was assumed to have the same synaptic strength. Figure
5B shows the excitation map if we summed a smaller number
(300) of grid cell inputs. It can be seen that the spatial modulation
of the normalized excitation map is much less with 1200 inputs
than with 300 inputs, as would be expected from an averaging
process. This comparison underscores the importance of quanti-
tatively accounting for the inputs to granule cells.

These considerations prompted us to consider not only the
number of input synapses, but also their differing synaptic
weights. Clearly if some synapses are almost silent, they will con-
tribute little, thus lowering the effective number of synaptic in-
puts. It is thus important to take into account the variability of
synaptic strengths of grid cell inputs. Morphological analysis in-
dicates that, as in most brain region, the size of synapses onto
dentate granule cells is highly variable (Trommald and Hulle-
berg, 1997). Recent physiological work strongly argues that syn-
aptic strength and size are related. Specifically, the number of
postsynaptic receptors (AMPAR) is proportional to synapse area
(Nusser et al., 1998) and therefore to spine size (Lisman and
Harris, 1993). Furthermore, the AMPA current evoked by local
two-photon uncaging of glutamate is proportional to spine size
(Matsuzaki et al., 2001). Finally, during long-term potentiation
(LTP), spine size and synapse size increase (Harris et al., 2003;
Matsuzaki et al., 2004), whereas during long-term depression,
spine size decreases (Zhou et al., 2004) (the effect on synapse size
has not been determined).

We base our estimate of the strength distribution of dentate
synapses on the size distribution of synapses (Fig. 6 B), as deter-
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Figure 6.  Synaptic weight and contribution as a function of synpapse size. A, Relationship
between synaptic weight and synapse size (in square micrometers) according to Equation 5 (see
Materials and Methods and Results). B, Comparison between the analytical expression derived
to describe the size distribution of synapses (line) and the experimental data (bars) (Trommald
and Hulleberg, 1997). €, Input contribution (synaptic weight multiplied by the fraction of syn-
apses of that size) as a function of size.

mined by serial section electron microscopy (Trommald and
Hulleberg, 1997). These data show that synapse size varies over a
20-fold range. We developed an equation for calculating relative
synaptic strength from spine size, as follows. Synaptic strength is
the product of quantal size and quantal content. Quantal size is
relatively invariant with synapse size (Raghavachari and Lisman,
2004; Lisman et al., 2007); quantal size falls only if a synapse is
smaller than the 100 nm radius hotspot of AMPA channel acti-
vation produced by the glutamate released from a single vesicle,

Excitation maps in granule cells normalized to the average excitation. The typical excitation maps for different input
configurations: A, Equal synaptic weights from 1200 grid cells. B, Equal synaptic weights from 300 grid cells. ¢, D, Two examples
with input from 1200 grid cells, but with synaptic weights varying according to the distribution in Figure 6 8.
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as described by the second term in Equa-
tion 5. The probability of release has been
demonstrated to be proportional to the

min  readily releasable pool, which has been
identified as docked vesicles (Murthy et
al., 2001). The number of docked vesicles
is proportional to synapse area (Schikorski
and Stevens, 1997). Therefore, the number
of vesicles released is expected to be pro-
portional to synapse size. Taking this
size dependence of quantal size and
quantal release probability into consid-
eration, we derived Equation 5 for the
dependence of synaptic strength on syn-
apse size (Fig. 6A).

In passing, we note that small synapses
max  are numerous (Fig. 6 B) but weak, whereas
large synapses are few but strong; when the
“excitatory input contribution” (product
of number of synapses and their strength)
is plotted, it is nearly invariant with syn-
apse size (Fig. 6C). This is a surprising re-
sultand could reflect some unknown prin-
ciple that controls the distribution of
synaptic strength.

Given the development of an expression for the variation in
synaptic strength (Fig. 6A), we could calculate the effect of 1200
realistic inputs to granule cells. We computed excitation maps by
choosing 1200 grid cells at random, but also assigning synaptic
strength at random according to the measured distribution of
synapse size. This yielded excitation maps such as the two exam-
ples shown in Figure 5, C and D. By comparing these graphs to
Figure 5A, it can be seen that taking into consideration the vari-
ability of synaptic strength has as a major effect on excitation
maps (increases the spatial variation).

Interaction of excitation and inhibition

We next considered how excitation and inhibition interact to
produce place fields. Extracellular recordings from the dentate
gyrus show prominent gamma frequency oscillations (Bragin et
al., 1995; Csicsvari et al., 2003). Such oscillations arise at least in
part through excitation of interneurons by granule cells and feed-
back inhibition back onto the granule cells (Sik et al., 1997; Bartos
etal.,2002; Mann et al., 2005). To simulate the formation of place
fields in granule cells, it is therefore necessary to account for the
interaction of gamma frequency inhibition with the excitation
maps. We used a framework developed in a previous study (de
Almeida et al., 2009). According to this framework, as inhibition
declines during a gamma cycle, the most excited cell fires first.
This triggers rapid global feedback inhibition. However, because
there is a few millisecond delay in this feedback, other slightly less
excited cells will fire during this delay. In contrast, because there
remains significant inhibition during the delay, many cells with
substantial excitation will not reach threshold. The overall pro-
cess can be described as an E%-max winner-take-all process: at
each point in space, all cells that have excitation that is within E%
of the cell with maximal excitation will fire. The value of E%-max
is approximated by the ratio d/7, where d is the delay between the
time of a granule cell spike and the onset of the consequent feed-
back inhibition. Based on physiological studies in CA1, d is 2-3
ms (Miles, 1990) and appears to be similar in the dentate (Geiger
et al., 1997; Kraushaar and Jonas, 2000; Alle et al., 2001). 7is the
membrane time constant, which is ~30 ms in granule cells
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Figure 7. Comparison of computed granule cell place fields to experimentally observed

fields. A, Different examples of the computed spatial firing of different granule cells (£%-max =
10%). B, Granule cell place fields measured by Leutgeb et al. (2007).

(Schmidt-Hieber et al., 2008). Thus, E%-max is ~10%. The ratio
of inhibition to excitation in the dentate gyrus is not known; it is
therefore fortunate that E%-max does not depend on the exact
value of this ratio (de Almeida et al. 2009).

The E%-max computation involves competition between
granule cells, i.e., it is a network process. To calculate place fields,
it is therefore necessary to simulate the interaction of many gran-
ule cells. To do this, we constructed an excitation map for 10,000
granule cells and implemented the E%-max rule at each point in
space. This was done by finding the cell with maximal excitation,
as well as all cells with excitation at least 10% of this maximal
value. These cells were considered to fire at a rate proportional to
the degree of suprathreshold excitation. We then plotted the re-
ceptive fields of granule cells, with a color code representing firing
rate (dark red represents maximum activity; dark blue minimum
activity). The resulting place field properties were then compared
with experimental data. According to our analysis of the experi-
mental data (see Materials and Methods), the average granule
cells has 2.2 place fields and the average area of each place field =
667.3 cm? [n = 13 based on examples of place fields from (Leu-
tgeb etal., 2007)]. In our simulations, granule cells had an average
of 1.5 place fields and these had an average area of 627 cm? (Fig.
7B). Given the somewhat arbitrary criteria for defining place
fields and the small amount of experimental data available (13
place fields), the agreement between simulation and experiment
(Fig. 7A) is quite reasonable. Although the value of E%-max =
10% used in these simulation is supported experimentally (see
above), we have examined somewhat larger and smaller values. If
E%-max = 5%, the average number of place fields = 1.2 and their
average area = 367 cm?; if E%-max = 15%, the average number
of place fields = 2.1 and their average area = 1311 cm”.

Recent experimental work indicates that only a small fraction
(2—8%) of dentate granule cells show c-Fos activation in a given
environment (Chawla et al., 2005; Ramirez-Amaya et al., 2006;
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Figure 8.  Average number of computed place fields as function of the number of granule
cells used in the simulations. Each cell here s connected to 1200 grid cells with equal weights. As
the number of granule cells is increased, the average number of place fields reaches an asymp-
totic value.

Tashiro et al., 2007). Although c-Fos activation reflects plasticity
processes rather than firing per se (and thus provides a lower
limit estimate of number of cells that have place fields), the low
fraction of cells showing c-Fos activation still suggests that many
granule cells do not have place fields. Consistent with this, we
found that with E%-max = 10%, only 25% of simulated granule
cells had place fields (for E%-max = 5%, 3% had place fields; for
E%-max = 15%, 74.5% had place fields). We conclude that the
competitive process is such that a substantial fraction of granule
cells will never be winners.

Recent experiments show that although only a small fraction
of granule cells have place fields, 85% of granule cells active in one
environment will also be active in another (Leutgeb et al., 2007)
[see related findings by Chawla et al. (2005) and Tashiro et al.
(2007)]. We wondered whether part or all of this effect might
simply result because, by chance, these cells had greater average
synaptic strength than others. To explore this hypothesis, we im-
plemented “different environments” by assuming that the
changes in the entorhinal cortex from one environment to an-
other randomly reshuffled (remapped) the properties of grid
cells. We simulated 4500 granule cells, each getting input from
1200 grid cells. If granule cells retained their synaptic strengths,
63.5% of granule cells had place fields in both environments. In
contrast, if we eliminated synaptic memory by using different
random weights in the two environments, the number fell to
22.1%. Thus, at least part of the effect observed by Leutgeb et al.
(2007) can be accounted for by the fact that some cells have
stronger synapses than others. To specifically test this explana-
tion of our simulations, we computed the average synaptic
strength and found that it was stronger in cells that were winners
in both environments (0.134) than in cells that were not (0.124).

In making all the simulations in our study, we considered a
realistic number of inputs to the granule cell, but simulated the
E%-max winner-take-all process using only small fraction of
granule cells (typically 4500 of a million). We investigated
whether this lack of realism affected our results. We quantified
the number of place fields as we varied the number of granule cell
from 500 to 5000 (Fig. 8). As can be seen, when the number of
granule cells was >3000, there was no further effect on the num-
ber of place fields. Thus, the 4500 granule cells we have used in
simulations are sufficient to accurately capture the competitive
process.
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The size of the granule cell EPSC generated by grid cell inputs
It has not been previously possible to calculate the excitatory
input to a cell in vivo from the properties of the input. The great
deal of information that is known about the firing of grid cells and
their synaptic connection to dentate granule cells provides a
unique opportunity to do so. To achieve this goal, the first ques-
tion that had to be addressed is how many presynaptic axons are
active when the rat is in the place field of a granule cell. From the
spatial distribution of firing of grid cells (Fig. 1), one can define
the area around the vertex in which the majority (80%) of action
potentials occurs. We calculate that this region constitutes ~38%
of the total area. Thus, at any one position, ~460 of the 1200
inputs to granule cells will contribute.

The effectiveness of these 460 inputs in triggering the firing of
the postsynaptic cell requires that we consider their timing; only
inputs that are simultaneously active within the integration time
of the granule cell membrane are relevant. We take as the inte-
gration time the membrane time-constant [~30 ms; as deter-
mined using the whole-cell configuration of the patch-clamp
technique (Schmidt-Hieber et al., 2008)]. Given that the average
firing rate of grid cells is ~10 Hz over the vertexes of grids (E.
Moser, personal communication), the average spike separation
(100 ms) is somewhat longer than the integration time. From this
we conclude that the probability of a spike within the integration
period is ~0.4. It follows that ~180 input axons will be active
during an integration period.

However, because the generation of a postsynaptic response at
individual synapses is probabilistic, not every action potential
will generate a postsynaptic response. The probability of trans-
mission varies dramatically from synapse to synapse (Malinow et
al., 1994) and is related to synapse size (Schikorski and Stevens,
1997; Murthy et al., 2001), which varies >20-fold (Fig. 6 B). One
estimate of the average probability of transmission in dentate
granule cells comes from measurement of the probability of a
postsynaptic response in response to minimal stimulation (the
activation of a single axon). By this technique, the average prob-
ability of response is 0.45 in granule cells (Min et al., 1998). How-
ever, minimal stimulation may slightly overestimate the proba-
bility of response of a single synapse because axons can
sometimes make multiple synapses with their target. Indeed,
work on granule cells shows that the nonfailure response ampli-
tude evoked by minimal stimulation can be reduced slightly by
lowering response probability in low Ca®" (Bekkers and Clem-
ents, 1999), a result that indicates that a small fraction of axons
indeed make multiple synapses with individual granule cells. A
method that avoids this problem is the measurement of the prob-
ability of a presynaptically evoked Ca*" response within a single
spine, a method that in CA1 yields an average probability of
transmission of 0.3 (Emptage et al., 2003). Assuming this value
applies to granule cells, we conclude that of the 150 synapses at
which an action potential occurs within the integration period,
only ~50 will release a synaptic vesicle and produce a postsynap-
tic response.

The current produced by these 50 synapses can be estimated
from the measured charge flow during the quantal response. In
voltage-clamped granule cells, the average miniature (mEPSC)
amplitude is ~5 pA (Bekkers and Clements, 1999) and the AMPA
current falls with a time-constant of 5-6 ms. Thus, ~0.025 pC
enters through AMPA channels during a mEPSC. It follows that if
50 synapses release a vesicle, the integrated EPSC will be ~1 pC.
In addition to this AMPA-mediated component, there will be
charge entry through the NMDA channel. These channels are
largely, but not completely blocked near resting potential; exper-

J. Neurosci., June 10, 2009 - 29(23):7504 7512 + 7509

iments in dentate granule cells (Keller et al., 1991) indicate that
although the NMDAR current is small, it is long enough to pro-
duce a charge entry slightly larger than that through the faster
AMPAR. We thus estimate that the total charge generated by
AMPA and NMDA channels will be 2-3 pC. This value can be
compared with the amount of charge needed to bring the granule
cell to threshold, which can be derived from the current injection
[Geiger and Jonas (2000), their Fig. 2Db], and is ~1 pC. We
conclude that the excitatory input from the medial entorhinal
cortex is somewhat larger, but not massively larger, than required
to reach the threshold of granule cells.

Discussion

We have used simulation methods to examine how the inputs
from entorhinal grid cells can result in the formation of place
fields in dentate granule cells. We have taken into consideration
the great deal of anatomical and physiological information about
the synaptic connections involved. Place fields were computed by
summing the input of 1200 synapses made by the grid cells onto
granule cells. The entorhinal input to each synapse was chosen
randomly from 10,000 grid cells of varying spatial frequency and
phase. The strength of synapses can be highly variable (20-fold),
and this was taken into consideration. Once the excitation maps
of granule cells were computed, they were subject to an E%-max
winner-take-all process governed by gamma frequency feedback
inhibition (de Almeida etal., 2009); at each position, the cells that
fire are those having excitation within 10% of the cell with max-
imum excitation. Using this procedure, which has no freely ad-
justable parameters, we found that computed place fields have
strong similarities to actual place fields. Specifically, the area of
computed place fields is in good agreement with experimental
data. Furthermore, granule cells can have multiple place fields
(~2) and our estimate of 1.5 is probably within experimental
error. We furthermore found that a large percentage (75%) of
simulated granule cells has no place fields at all; similarly, a large
fraction (possibly a larger fraction) of actual granule cells has no
place fields. Our main conclusion is that the place fields of gran-
ule cells can be largely accounted for by the summation of inputs
from randomly selected grid cells, the contribution of synapse
strength variability, and the interaction of excitation with gamma
frequency inhibition. Thus, to a first approximation, learning is
not required for the formation of place fields. This conclusion
stands in contrast to previous, less realistic simulations (see be-
low), which led to the conclusion that place field formation is
strongly dependent on synaptic plasticity. Our findings do not
exclude a minor role for plasticity; indeed, it is known that syn-
aptic plasticity is required to enhance the long-term stability of
place cells (McHugh et al., 1996; Cho et al., 1998; Kentros et al.,
1998), and some minor refinement of place cells properties dur-
ing this process might well occur.

The proposal that place fields do not depend strongly on
learning is consistent with several lines of other evidence: (1)
Place cells are evident as soon as firing occurs in a new environ-
ment rather than developing slowly, as would be expected if place
fields depended on plasticity (Hill, 1978; Wilson and McNaugh-
ton, 1993; Frank et al., 2004). (2) If place fields were learned, they
should not be present in a novel environment if synaptic plastic-
ity is blocked. Since the synapses of grid cells onto granule cells
have the NMDAR-dependent form of LTP (Hanse and Gustafs-
son, 1992; Colino and Malenka, 1993), mice lacking NMDARs in
the dentate should have relatively normal place fields. Such mice
exist (McHugh et al., 2007; Niewoehner et al., 2007), but their
place field properties have not yet been reported. However, ex-
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periments in which NMDARSs are absent or nonfunctional have
been performed in CAl, a region where place fields are also
driven by grid cell input (Brun et al., 2008). It was found that CA1
place fields are nearly normal (McHugh et al., 1996; Kentros et al.,
1998) in the absence of NMDARs. It might be argued that the
existence of NMDARs in granule cell synapses is itself suggestive
of involvement in place field formation; however, there are other
potential functions of such receptors, notably to associate the
inputs from the lateral and medial entorhinal cortex that con-
verge onto granule cells (Lisman et al., 2007). (3) If, contrary to
our model, place fields are learned by modification of excitatory
synapses, then excitatory input should come to have a spatial
distribution that closely matches the place field itself. Therefore,
it should be difficult to make the cell fire outside of their place
fields. In contrast, if the excitatory input distribution is spatially
broad, and firing is focused by inhibition, then pharmacological
agents that decreased the ratio of inhibition to excitation could
potentially make firing maps broad. Perhaps consistent with this
latter possibility, there is at least one known perturbation (sco-
polamine) that can greatly broaden place fields (Brazhnik et al.,
2004). A more direct test of the properties of excitatory input
would be to measure it directly by intracellular recording. Re-
cently this kind of measurements has been done in CA1 in awake
behaving rats. It was found that the spatial tuning of subthreshold
depolarization in CALl is very broadly tuned and that depolariza-
tion increases only modestly as the rat passes through the place
field of the cell (Lee et al., 2008). These results are consistent with
the idea that narrow place fields arise by a process that converts
small differences in excitatory drive into large differences in firing
rates. A related conclusion follows from analysis of orientation
selectivity (de Almeida et al., 2009).

According to the theory we have developed, excitation is not
only broadly tuned but, by itself, exceeds threshold over broad
spatial regions; what usually keeps the voltage below threshold is
gamma-frequency inhibition. As each cycle of inhibition wanes,
it creates a rising ramp in principal cells. As the ramp progresses,
the most excitable cells reach threshold and fire. These then set in
motion the feedback inhibition that terminates further firing and
initiates the next gamma cycle (de Almeida et al., 2009). Excita-
tory input to dentate granule cells has not yet been measured, but
the dentate granule cells provide a unique situation for accurately
calculating it. This is because the firing properties of the presyn-
aptic cells in the medial entorhinal cortex have been well charac-
terized, because the number of inputs from these cells to granule
cells is known, and because there is detailed physiological analysis
that allows estimation of the average postsynaptic charge pro-
duced by a presynaptic spike. Based on these data, we estimate
that the excitatory input charge from the medial entorhinal cor-
tex is 2-3 times greater than necessary to reach threshold. Two
testable predictions that follow from this conclusion are (1) that
spiking in the dentate gyrus would be enormously increased by
blocking inhibition and (2) that the medial entorhinal input is
sufficient to fire granule cells; thus, a depolarizing tone from the
other major input to dentate granule cells (from the lateral ento-
rhinal cortex) may occur, but is not required.

Our simulations provide insight into the factors required to
correctly analyze place field formation. There appears to be no
shortcut to account for the excitatory drive to granule cells; each
input must be considered. The reason for this is straightforward.
Place field formation depends on a compromise between two
factors. On the one hand, many cells must summate so that that
the receptive field of the granule cell does not display the spatially
broad and periodic properties of grid cells. On the other hand, if
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too many inputs summate, the excitation map will be so flat (an
inevitable consequence of averaging) that all cells will satisfy the
E%-max requirement and do so at all positions; in this case firing
will occur over the entire environment, contrary to observation.
The existing number of inputs can be seen as a compromise be-
tween these extremes. It follows that to simulate place cell forma-
tion one must use the actual number of inputs. Moreover, since
many synapses are extremely weak, the effective number of in-
puts is less than the actual number. It is thus necessary to take into
consideration the large variability in synaptic strength.

Since the identification of grid cells (Fyhn et al., 2004; Haft-
ing et al., 2005), many computational models have addressed
their function. Some efforts have concentrated on the role of
grid and place fields in navigation (Gaussier et al., 2007;
Guanella and Vershure, 2007; Guanella et al., 2007). Other
models have focused, as we have done, on how place fields are
formed from grid cells (Rolls et al., 2006; Solstad et al., 2006;
Franzius et al., 2007; Hayman and Jeffery, 2008; Molter and
Yamaguchi, 2008). These studies have concluded that place
field formation relies strongly on synaptic plasticity, contrary
to our conclusions. This difference, we believe, occurs because
we have used a dynamic form of feedback inhibition (as occurs
in hippocampal neurons) and because we have realistically
modeled the actual number of synapses involved. An impor-
tant next step in the modeling of hippocampal place fields will
be to account for additional factors, notably the theta phase
precession of place cells (O’Keefe, 1976) and the nonspatial
input that comes from the lateral entorhinal cortex.

In summary, we argue that the input—output transformation
of dentate granule cells occurs largely by simple summation of
randomly chosen excitatory inputs from grid cells, in conjunc-
tion with a highly effective winner-take-all process mediated by
gamma-frequency feedback inhibition. Because this feedback
process depends on properties of the network, the formation of
place cells must be viewed not as a single cell process, but as a
network process. This is a very fundamental point, but can be
counterintuitive. It is tempting to view the hills and valleys of the
excitation landscape of individual cells (Fig. 5) and to think that
interaction with inhibition will make the highest peaks the loca-
tion of place fields. This, however, is not correct: there is no
process that compares excitation at different positions (to which
the rat comes at different times). Rather, our results suggest that
a cell has a place field when its excitation at that place (and time)
is greater than that of other cells in the network. We propose that
the required cross-cell comparison is a network process per-
formed by gamma-frequency inhibition. Given the occurrence of
these oscillations in many brain regions, receptive field formation
by this mechanism may be of general importance.
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