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Although phosphines serve as nucleophilic catalysts for an array of useful transformations,
comparatively few highly enantioselective variants in the presence of chiral phosphines have
been described.[1,2] In 1994, Trost discovered a novel dppp-catalyzed (dppp=1,3-bis
(diphenylphosphino)propane) cyclization of hydroxy-2-alkynoates that generates saturated
oxygen heterocycles.[3] Interestingly, despite the importance of such structures, due to their
presence in a wide range of bioactive molecules,[4] there has been no progress toward the
development of an asymmetric version of the Trost cyclization. In this report, we establish that
a chiral spiro phosphepine (1) can achieve this objective with a variety of hydroxy-2-alkynoates
with good enantiomeric excess (eq 1).

(1)

A plausible pathway, originally suggested by Trost,[3] for the phosphine-catalyzed cyclization
of hydroxy-2-alkynoates is illustrated in Scheme 1. On the basis of this mechanism, it seemed
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reasonable to anticipate that the catalytic asymmetric synthesis of oxygen heterocycles might
be achieved through the use of an appropriate chiral phosphine. In our initial studies, we
investigated the cyclization of hydroxy-2-alkynoate 2 to form tetrahydofuran 3 in the presence
of an array of chiral bisphosphines (for a sampling, see entries 1−4 of Table 1), since Trost had
observed that dppp is significantly more effective than PPh3 for non-asymmetric processes.
[3] Because the results were not especially promising, we turned our attention to
monophosphines (e.g., entries 5−9). Phosphepines emerged as the most promising catalysts,
[5,6] with the spiro phosphepine of Zhou (1)[7] accomplishing the desired cyclization with
particularly good ee and yield (entry 9).[8]

The conditions that we developed for the cyclization of hydroxy-2-alkynoate 2 can be applied
to a variety of substrates (Table 2), providing not only tetrahydrofurans (entries 1−3), but also
tetrahydropyrans (entries 4−8), in high ee and generally good yield. Substituents can be present
α, β, or γ to the hydroxyl group.

To date, phenols have not been employed as nucleophiles in phosphine-catalyzed syntheses of
oxygen heterocycles from 2-alkynoates. We have determined that, under similar conditions as
for aliphatic alcohols,[9] spiro phosphepine 1 catalyzes the cyclization of 2-alkynoates that
bear pendant phenols, thereby providing access to enantioenriched dihydrobenzopyrans[10]
(Table 3). Phenols with ortho substituents or that are fused to nitrogen heterocycles are suitable
substrates.

We have not yet pursued extensive mechanistic studies of this phosphine-catalyzed method
for the enantioselective synthesis of oxygen heterocycles. According to 31P NMR
spectroscopy, when benzoic acid is added to a solution of spiro phosphepine 1 in THF, proton
transfer to form an ion pair does not occur. Furthermore, the resting state of the phosphepine
during the catalytic cycle is free phosphepine 1 (rather than, for example, one of the
phosphonium salts illustrated in Scheme 1). Spiro phosphepine 1 is reasonably air-stable (after
exposure of the solid to air for three days at room temperature, no phosphine oxide is observed
by 1H NMR spectroscopy). In addition, the phosphine oxide does not serve as a catalyst for
the cyclization.

Prior to this study, three types of phosphine-catalyzed processes had been described that furnish
very good enantioselectivity with some generality: acylations of alcohols, Morita-Baylis-
Hillman reactions, and couplings of allenes with an unsaturated partner (e.g., an alkene or
imine).[2] The current process, adding to some promising earlier results with carbon
nucleophiles,[11] represents a fourth class of asymmetric transformations that can be
effectively catalyzed by chiral phosphines: γ additions of nucleophiles to unsaturated carbonyl
compounds.

In conclusion, we have established that a chiral phosphine can catalyze the transformation of
an array of hydroxyl-bearing 2-alkynoates into saturated oxygen heterocycles with good
enantioselectivity. In particular, we have demonstrated that spiro phosphepine 1, which had
previously proved effective as a chiral ligand in transition-metal chemistry, catalyzes the
synthesis of tetrahydrofurans, tetrahydropyrans, and dihydrobenzopyrans with high efficiency.
Additional studies are underway that exploit the rich potential of chiral phosphines as
asymmetric nucleophilic catalysts.
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Scheme 1.
Outline of a possible pathway for the phosphinecatalyzed synthesis of oxygen heterocycles
from hydroxy-2-alkynoates.
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Table 1
Catalytic enantioselective synthesis of oxygen heterocycles by chiral bidentate and monodentate phosphines.

entry cat. ee (%)[a] yield (%)[b]

1 (S,S)-CHIRAPHOS - <2

2 (R,R)-DIPAMP 22 70

3 (R,R)-Me-DUPHOS - <2

4 (R,R)-BINAPHANE 17 9

5 (R)-MOP - <2

6 (S)-MONOPHOS - <2

7 (S)-4 −66 72

8 (S)-5 −45 65

9 (S)-1 87 80

All data are the average of two experiments.

[a]
A negative value for the ee signifies that the enantiomer of 3 is formed preferentially.

[b]
The yield was determined by GC analysis with the aid of a calibrated internal standard.
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Table 2
Catalytic enantioselective synthesis of tetrahydrofurans and tetrahydropyrans.

entry substrate ee (%) yield (%)[a]

1 87 78

2 94 90

3 87 63

4 92 90

5 94 85
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entry substrate ee (%) yield (%)[a]

6 92 72
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entry substrate ee (%) yield (%)[a]

7 94 82

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2010 January 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chung and Fu Page 9

entry substrate ee (%) yield (%)[a]

8 91 80

All data are the average of two experiments.

[a]
Yield of purified product.
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Table 3
Catalytic enantioselective synthesis of dihydrobenzopyrans.

entry substrate ee (%) yield (%)[a]

1 88 86

2 63 82

3 84 89

4 84 79

All data are the average of two experiments.
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[a]
Yield of purified product.
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