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Many pathogens have the ability to survive and multiply in abiotic environments, representing a possible
reservoir and source of human and animal exposure. Our objective was to develop a methodological framework
to study spatially explicit environmental and meteorological factors affecting the probability of pathogen
isolation from a location. Isolation of Listeria spp. from the natural environment was used as a model system.
Logistic regression and classification tree methods were applied, and their predictive performances were
compared. Analyses revealed that precipitation and occurrence of alternating freezing and thawing tempera-
tures prior to sample collection, loam soil, water storage to a soil depth of 50 cm, slope gradient, and cardinal
direction to the north are key predictors for isolation of Listeria spp. from a spatial location. Different
combinations of factors affected the probability of isolation of Listeria spp. from the soil, vegetation, and water
layers of a location, indicating that the three layers represent different ecological niches for Listeria spp. The
predictive power of classification trees was comparable to that of logistic regression. However, the former were
easier to interpret, making them more appealing for field applications. Our study demonstrates how the
analysis of a pathogen’s spatial distribution improves understanding of the predictors of the pathogen’s
presence in a particular location and could be used to propose novel control strategies to reduce human and
animal environmental exposure.

The transmission cycle of many pathogens involves biotic
hosts and abiotic environments. After infection of a host with
a pathogen like Listeria monocytogenes, Bacillus anthracis, en-
terohemorrhagic Escherichia coli, Salmonella spp., or Toxo-
plasma gondii, large numbers of the pathogen may be shed into
the environment where, under favorable conditions, they may
survive, multiply, and infect new hosts, including humans (6,
11, 13, 30, 37). It is important to identify spatially explicit
environmental and meteorological factors that favor a patho-
gen’s presence in a particular environmental location. That
information could be used to design novel measures to reduce
the presence of the pathogen in the environment and prevent
exposure and infection of animal and human hosts. For anal-
ysis of pathogens’ spatial distribution in the environment, geo-
graphic information systems (GIS) integrated with standard
statistical and epidemiological methods provide tremendous
opportunities (5).

Detection of pathogens in environmental samples is usually
based on culturing methods without enumeration, resulting in

presence/absence data. For such data, a standard statistical
approach to predict microbial presence as influenced by co-
variates would be logistic regression (LR). However, classifi-
cation trees (CT) have recently been suggested as a powerful
yet simple alternative to LR in ecological studies (7, 48). It is
therefore of interest to contrast the performance of the CT
with that of the standard LR approach in predicting pathogen
isolation from a spatial location.

The objective of this study was to develop a methodological
framework to study spatially explicit determinants affecting the
local probability of pathogen isolation by using Listeria spp. as
a model system. Specifically, our goals were (i) to examine the
effect of environmental and meteorological factors on isolation
of Listeria spp. from a spatial location and from soil, vegeta-
tion, and water layers of a location and (ii) to compare the
predictive performance of LR and CT models. The genus
Listeria was chosen as a model system because of the conve-
nience of gathering data (Listeria bacteria are relatively prev-
alent in the environment; they have been isolated from 28% of
sampled locations in the natural environment [38]) and be-
cause the genus Listeria includes the human-pathogenic spe-
cies L. monocytogenes. There are currently six species in the
genus Listeria, including two known pathogens (L. monocy-
togenes and Listeria ivanovii) and four nonpathogens (Liste-
ria innocua, Listeria seeligeri, Listeria welshimeri, and Listeria

* Corresponding author. Mailing address: Department of Veteri-
nary Integrative Biosciences, College of Veterinary Medicine and Bio-
medical Sciences, Texas A&M University, College Station, TX 77843-
4458. Phone: (979) 862-4819. Fax: (979) 847-8981. E-mail: rivanek
@cvm.tamu.edu.

� Published ahead of print on 31 July 2009.

5893



grayi). L. ivanovii is predominantly an animal pathogen,
infecting ruminants, while L. monocytogenes can cause dis-
ease (listeriosis) in a wide range of animal species, including
humans. In addition, a new Listeria species, “Listeria mar-
thii” sp. nov., has recently been identified (L. M. Graves,
L. O. Helsel, A. G. Steigerwalt, R. E. Morey, M. I. Dane-
shvar, S. E. Roof, R. H. Orsi, E. D. Fortes, S. R. Millilo,
H. C. den Bakker, M. Wiedmann, B. Swaminathan, and
B. D. Sauders, submitted for publication).

MATERIALS AND METHODS

Description of data and study area. To study the spatial distribution of Listeria
spp., we used data collected as part of a larger study, which is described by
Sauders (38). Briefly, over a 2-year period (2001 and 2002), a total of 907 samples
of soil, water (including ponds, lakes, puddles, river streams, runoff water, and
swamps), and vegetation (including pond algae, decaying logs, field grass, grass,
leaf debris, and moss) were collected in the following four areas in New York
State (NYS), representing the natural environment: Finger Lakes National For-
est (FLNF), Adirondack Park, Catskill Park, and the Connecticut Hill Wildlife
Management Area (CHWMA). Specifically, in 2001, samples were obtained
through two to three visits per study area throughout the spring, summer, and
autumn, while in 2002 each study area was visited once in the spring, summer,
and autumn. Geospatial location data for each sample were collected with a
Garmin Emap handheld global positioning system (GPS). Also, the date of
sample collection was recorded. Samples were collected into sterile Whirl-Pak
bags (Nasco, Fort Atkinson, WI) using sterile gloves and/or presterilized dispos-
able plastic spatulas or scoops. Samples were held on wet ice for up to 24 h
before being cultured. All samples were cultured for the presence of Listeria with
selective enrichment in Listeria enrichment broth (Difco, Becton Dickinson,
Sparks, MD). Isolated Listeria species were as follows: L. seeligeri (67%), L.
welshimeri (24%), L. monocytogenes (6%), “L. marthii” sp. nov. (a new species;
2%), and L. innocua (�1%). All Listeria isolates were characterized by PCR
amplification and sequencing of the partial open reading frame of the stress
response gene sigB and, for isolates collected in 2001, the housekeeping gene gap.
However, sample size limitations precluded statistical analyses at the species and
genotype levels. There were 567 unique sampling locations in the Sauders study
(38). Soil, vegetation, and water samples were collected at 303, 302, and 294 of
these unique locations, respectively. Because all of the samples collected at the
same location share an identical set of observations, we applied a simple rule to
characterize the presence of Listeria in a location: one positive sample was
sufficient to consider a location positive. The same rule was applied for isolation
of Listeria from the soil, vegetation, and water layers of a location.

Spatial data modeling. For each sampled location in the Sauders study (38),
we obtained potentially relevant spatially referenced covariates (details and
sources described below) describing the local ecology from readily available
spatial data models. All the spatial data models and GPS data for sampling
locations were imported into ArcGIS 9 (ESRI, Redland, CA), reprojected into
the universal transverse mercator coordinate system, North American Datum of
1983, clipped to the study area, and overlaid with sampling locations to obtain
information on environmental factors associated with each sampling location. In
total, we obtained 77 variables (defined in Table 1) that could be grouped under
the following categories: soil properties, precipitation, ambient temperature,
alternating freezing and thawing temperatures (freeze-thaw cycles), geographic
position, and calendar time. Soil property variables (shown in Table 1) were
obtained for 13 NYS counties where sampling was performed, namely, Schuyler,
Seneca, Hamilton, Tompkins, Greene, Delaware, Sullivan, Ulster, Essex, Fulton,
Franklin, Herkimer, and St. Lawrence, from the compiled tabular and spatial
Soil Survey Geographic (SSURGO) data (47). Information on precipitation
prior to sample collection was obtained from the U.S. Historical Climatology
Network Daily Temperature, Precipitation, and Snow Data (54). Specifically, for
each sampling site, the closest weather station with available information on the
precipitation on the day of and days before sample collection was identified. It is
not known whether precipitation occurring closer to or farther before sample
collection has more effect on isolation of Listeria from a location. Therefore, we
created four variables describing the amount of rain on the day of sample
collection, as well as on 1 day, 2 days, and 3 days before (Table 1). As the effect
of precipitation probably lasts several days, the average amount of rain over a
period of time may be a more important factor influencing isolation of Listeria
spp. from a location. Therefore, we created 10 additional precipitation variables
describing the average precipitation during an ever-increasing time window prior

to sample collection (Table 1). For our analysis, all the rainfall measurements
were converted from inches to millimeters (1 in. � 25.4 mm). In addition to
precipitation, information was obtained on the ambient temperature on the day
of and days prior to sample collection (54). However, again, it is unclear whether
minimum, average, or maximum daily temperature most influences the recovery
(isolation) of Listeria spp. from a location. Also, it is unclear whether the tem-
perature on days closer to sample collection or on days farther before is more
influential. Furthermore, the effect of ambient temperatures may be cumulative,
and so an average of the measurements over several days may be a better
predictor for Listeria recovery. Therefore, following the same approach used to
derive and name precipitation variables, we created 14 variables for each of the
minimum, average, and maximum daily ambient temperatures (Table 1). For our
analysis, all temperature measurements were converted from degrees Fahrenheit
to degrees Celsius {°C � [(F � 32)/9] � 5}. We were also interested in the effect
of freeze-thaw cycles on the status of isolation of Listeria spp. from a location.
The occurrence of freeze-thaw cycles was estimated from Williams et al. (54): if
on any day during the 10-day period prior to sample collection or on any two
consecutive days during that period the minimum daily temperature was below
0°C while the maximum was above 0°C, this was recorded as the occurrence of
a freeze-thaw cycle. From this information, we created six “freeze-thaw cycle”
variables (Table 1). We were also interested in whether the geographic position
of a sampling location with respect to cardinal directions, described by easting
and northing geographic coordinates (expressed in meters), had any effect on
isolation of Listeria spp. from a location. Easting refers to the eastward measured
distance from the “false easting,” which is uniquely defined in each universal
transverse mercator zone, while northing refers to the northward measured
distance from the equator. Finally, we were interested in whether the calendar
time when samples were collected and the proximity to roads and water bodies
(lakes, rivers, and streams) had any effect on isolation of Listeria spp. from a
location (Table 1). To determine the proximity of a sampling location to the
closest road, we used road data for the NYS counties where samples were
collected as well as for two nearby counties, Oneida and Clinton (45). Spatial
data on hydrography (31) were used to estimate the proximity of the sampling
location to the nearest body of water. While potentially relevant, there was no
information about the exposure of the location to sunlight, e.g., north versus
south slope. As L. monocytogenes was the only pathogenic Listeria species rep-
resented in the data set used and as it represented only 6% of all isolated Listeria
spp., the proximity and density of livestock and wildlife populations in the study
area were not considered.

Statistical analysis. All statistical analyses were performed by using R (34).
Independent variables were first evaluated for unconditional associations with
the dependent variable (i.e., the overall, as well as soil-, vegetation-, and water-
specific occurrence of Listeria) using a chi-square test for categorical data and
t test for continuous data. Fisher’s exact test was used when one or more of the
expected cell frequencies in two-by-two tables were less than 5 and when more
than 20% of the expected cell frequencies were less than 5 in larger tables. To
assess whether continuous variables satisfied the normality assumption, required
for application of the t test, the D’Agostino-Pearson omnibus test was per-
formed. If a continuous variable did not satisfy the normality assumption, the
Wilcoxon rank-sum test was used. Continuous variables with considerable num-
bers of ties (e.g., related to a common weather station) were assessed by the exact
Wilcoxon rank-sum test that computes exact conditional (on the data) P values
and quantiles using the shift algorithm (43). Associations between independent
categorical variables were tested by use of the chi-square test. Correlations
between independent continuous variables were assessed based on Pearson’s
correlation coefficient for the normally distributed variables. Correlations be-
tween variables that did not satisfy the normality condition were assessed based
on Spearman’s rho coefficient. Associations between independent categorical
and continuous variables were assessed by the t test, the Wilcoxon rank-sum test,
or the exact Wilcoxon rank-sum test as appropriate. In the univariate analysis,
P values of �0.05 were considered statistically significant. Correction for multi-
ple comparisons was not performed because of the exploratory character of the
research to make sure that all important associations were identified. If more
than one independent variable was associated with the dependent variable of
interest at the 5% level, these variables were tested in a multivariable LR and
CT. When two or more of the independent variables applicable for multivariable
modeling were correlated, among the variables that had the most significant
relationship with the dependent variable, the one that led to the greatest change
in deviance in LR was retained in the LR and CT. Usually, this was the preferred
discriminating factor in CT. Multivariable modeling was carried out on a subset
of data, with complete observations on variables chosen to be included in the full
LR model to assure a fair comparison between the LR and CT methods. The
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TABLE 1. Names, descriptions, defining attributes, and units of measurement (where applicable) of the considered variables grouped into
soil properties, precipitation, ambient temperature, freeze-thaw cycles, geographic position, and calendar timea

Category and variable
name Description Defining

attribute
Unit of

measurement

Soil properties
Loam.soil Obtained by grouping all soil types in the SSURGO database as loam soil

and not loam soil
Loam soil type

Slope.gradient Difference in elevation between two points, expressed as a percentage
between two points and shown as the weighted avg slope gradient of all
components in the unit of the SSURGO map

%

Water.depth The shallowest depth to a wet soil layer (water table) during the yr,
expressed as cm from the soil surface for components whose
composition in the SSURGO map unit is equal to or exceeds 15%

cm

Water.Storage.25 The vol of water that the soil to the specified depth can store that is
available to plants and expressed as the weighted avg of all components
in the SSURGO map unit

25 cm cm

Water.Storage.50 As for Water.Storage.25 50 cm cm
Water.Storage.100 As for Water.Storage.25 100 cm cm
Water.Storage.150 As for Water.Storage.25 150 cm cm
Drainage The natural drainage condition of the soil (referring to the frequency and

duration of wet periods) of the dominant drainage class for the
SSURGO map unitb

Precipitation
Precipitation.0 Amt of rain on the specified day Day t0 mm
Precipitation.1 As for Precipitation.0 Day t1 mm
Precipitation.2 As for Precipitation.0 Day t2 mm
Precipitation.3 As for Precipitation.0 Day t3 mm
Precipitation.0_1 Avg precipitation for the specified period Period t0–t1 mm
Precipitation.0_2 As for Precipitation.0_1 Period t0–t2 mm
Precipitation.0_3 As for Precipitation.0_1 Period t0–t3 mm
Precipitation.0_4 As for Precipitation.0_1 Period t0–t4 mm
Precipitation.0_5 As for Precipitation.0_1 Period t0–t5 mm
Precipitation.0_6 As for Precipitation.0_1 Period t0–t6 mm
Precipitation.0_7 As for Precipitation.0_1 Period t0–t7 mm
Precipitation.0_8 As for Precipitation.0_1 Period t0–t8 mm
Precipitation.0_9 As for Precipitation.0_1 Period t0–t9 mm
Precipitation.0_10 As for Precipitation.0_1 Period t0–t10 mm

Ambient temp
Temperature.L.0 Minimum daily temp on the specified day Day t0 °C
Temperature.L.1 As for Temperature.L.0 Day t1 °C
Temperature.L.2 As for Temperature.L.0 Day t2 °C
Temperature.L.3 As for Temperature.L.0 Day t3 °C
Temperature.L.0_1 Avg of the minimum daily temp in the specified period Period t0–t1 °C
Temperature.L.0_2 As for Temperature.L.0_1 Period t0–t2 °C
Temperature.L.0_3 As for Temperature.L.0_1 Period t0–t3 °C
Temperature.L.0_4 As for Temperature.L.0_1 Period t0–t4 °C
Temperature.L.0_5 As for Temperature.L.0_1 Period t0–t5 °C
Temperature.L.0_6 As for Temperature.L.0_1 Period t0–t6 °C
Temperature.L.0_7 As for Temperature.L.0_1 Period t0–t7 °C
Temperature.L.0_8 As for Temperature.L.0_1 Period t0–t8 °C
Temperature.L.0_9 As for Temperature.L.0_1 Period t0–t9 °C
Temperature.L.0_10 As for Temperature.L.0_1 Period t0–t10 °C
Temperature.a.0 Avg daily temp on the specified day Day t0 °C
Temperature.a.1 As for Temperature.a.0 Day t1 °C
Temperature.a.2 As for Temperature.a.0 Day t2 °C
Temperature.a.3 As for Temperature.a.0 Day t3 °C
Temperature.a.0_1 Avg of the avg daily temp in the specified period Period t0–t1 °C
Temperature.a.0_2 As for Temperature.a.0_1 Period t0–t2 °C
Temperature.a.0_3 As for Temperature.a.0_1 Period t0–t3 °C
Temperature.a.0_4 As for Temperature.a.0_1 Period t0–t4 °C
Temperature.a.0_5 As for Temperature.a.0_1 Period t0–t5 °C
Temperature.a.0_6 As for Temperature.a.0_1 Period t0–t6 °C
Temperature.a.0_7 As for Temperature.a.0_1 Period t0–t7 °C
Temperature.a.0_8 As for Temperature.a.0_1 Period t0–t8 °C
Temperature.a.0_9 As for Temperature.a.0_1 Period t0–t9 °C
Temperature.a.0_10 As for Temperature.a.0_1 Period t0–t10 °C
Temperature.H.0 Maximum daily temp on the specified day Day t0 °C
Temperature.H.1 As for Temperature.H.0 Day t1 °C

Continued on following page
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presence of spatial patterns in the Listeria spp. isolation data was analyzed by
examination of the nearest-neighbor distance.

PCA. Correlation analysis indicated that weather variables, including 14 vari-
ables grouped under the rainfall set, 42 variables describing ambient tempera-
tures (14 variables for each of the minimum, average, and maximum daily
temperature measurements), and 6 variables describing freeze-thaw cycles, were
highly correlated. Therefore, the 62 weather-related variables were subjected to
a principal component analysis (PCA) to examine whether the three weather
variables (precipitation, ambient temperatures, and freeze-thaw cycles) do in fact
emerge. Because variables were measured in different units, prior to PCA, the
data were standardized by subtracting the mean and dividing by the standard
deviation, i.e., we performed an eigenanalysis of the correlation matrix. The
number of meaningful components to retain was determined based on the
proportion of variance accounted and the interpretability criteria (16). Accord-
ing to the proportion of variance accounted criterion, only components account-
ing for �5% of the total variance were retained. According to the interpretability
criteria, (i) there had to be at least three variables with major loadings on each
retained component (a general rule of thumb for a value of a loading that
designates a useful signal is �0.2 to 0.35 [35]) and (ii) the rotated pattern had to
demonstrate “simple structure.” Here, loading is a correlation coefficient be-
tween a variable and its principle component, while “simple structure” means
that (a) most variables have relatively high factor loadings on only one compo-
nent and near zero loadings on the other components and (b) most components
have relatively high factor loadings for some variables and near zero loadings for
the remaining variables.

The results of PCA were utilized in two scenarios. In the first scenario, weather
variables loading on the same principal component were individually tested in
univariate analysis and, among those statistically significantly associated with the
dependent variable, one variable was chosen for the multivariable LR and CT
modeling (as explained above). In the second scenario, weather variables in each
retained principal component were substituted by a single continuous variable

containing the predicted factor (component) scores. These variables were subject
to univariate analysis and, where appropriate, used in the multivariable LR and
CT modeling instead of all of the actual weather variables in the principal
component.

LR. The multivariable LR models were selected through an automatic step-
wise regression (the “stepAIC” function in the MASS package) (49) based on the
Akaike information criterion while obeying the principle of marginality. When
applicable, the selected model was further simplified by extracting nonsignificant
terms (P � 0.05), starting with the most complex one. Each term deletion was
followed by a likelihood ratio test. The assumption of a linear relationship
between continuous explanatory variables and outcome was assessed by adding
a quadratic term (the explanatory variable squared) to the model (9). When the
quadratic term was found to be significant, the applicability of other polynomials
was explored. An assessment of how the models fit the data was determined by
using the Le Cessie-van Houwelingen-Copas-Hosmer test. Collinearity was in-
vestigated by calculating variance inflation factors (VIFs) for each of the explan-
atory variables in the multivariable model. To reduce high collinearity (VIF
values of �10 and a mean of the VIFs considerably larger than 1) (4), one or
more continuous variables in the model were centered (by subtracting the mean
of the variable). Then the centered version of the variable was used in the model.
An LR model can account for spatial autocorrelation in the data by inclusion of
a spatial dependence variable and is then formally called an autologistic regres-
sion model (28). To assure a fair comparison with CT, which cannot directly
consider spatial dependence in the data, we focused on analysis of the nonspatial
LR models that did not consider spatial dependence. However, for the final
nonspatial LR models that considered the actual weather variables (i.e., not the
predicted component scores from PCA), variograms of the residuals were ex-
amined for evidence of spatial autocorrelation and the models were modified by
inclusion of an autocovariate term. These autologistic regression models were
analyzed to assess whether capturing spatial dependency in an LR model would

TABLE 1—Continued

Category and variable
name Description Defining

attribute
Unit of

measurement

Temperature.H.2 As for Temperature.H.0 Day t2 °C
Temperature.H.3 As for Temperature.H.0 Day t3 °C
Temperature.H.0_1 Avg of the maximum daily temp in the specified period Period t0–t1 °C
Temperature.H.0_2 As for Temperature.H.0_1 Period t0–t2 °C
Temperature.H.0_3 As for Temperature.H.0_1 Period t0–t3 °C
Temperature.H.0_4 As for Temperature.H.0_1 Period t0–t4 °C
Temperature.H.0_5 As for Temperature.H.0_1 Period t0–t5 °C
Temperature.H.0_6 As for Temperature.H.0_1 Period t0–t6 °C
Temperature.H.0_7 As for Temperature.H.0_1 Period t0–t7 °C
Temperature.H.0_8 As for Temperature.H.0_1 Period t0–t8 °C
Temperature.H.0_9 As for Temperature.H.0_1 Period t0–t9 °C
Temperature.H.0_10 As for Temperature.H.0_1 Period t0–t10 °C

Freeze-thaw cycles
Freeze.thaw.0 Freeze-thaw cycle occurring on the specified day Day t0 NA
Freeze.thaw.1 As for Freeze.thaw.0 Day t1 NA
Freeze.thaw.2 As for Freeze.thaw.0 Day t2 NA
Freeze.thaw.3 As for Freeze.thaw.0 Day t3 NA
Freeze.thaw.0_3 Freeze-thaw cycle on any of the days in the specified period Period t0–t3 NA
Freeze.thaw.s.0_10 Total no. of freeze-thaw cycles during the specified period Period t0–t10 NA

Geographic positions
Northing Position with respect to the specified cardinal direction To the North m
Easting Position with respect to the specified cardinal direction To the East m
Dtoroad Proximity to the nearest road m
Dtowater Proximity to the nearest body of water m
Park Natural area where samples were collected NA

Calendar time
Season Season when samples were collected NA
Month Month when samples were collected NA

a The day of sample collection is denoted as t0, the day before is t1, and so on until 10 days before sample collection (t10). NA, not applicable.
b The original SSURGO categories were regrouped such that “excessively” and “somewhat excessively” drained classes formed the excessively drained class,

“well-drained” and “moderately well-drained” classes became the moderately drained class, while “poorly,” “somewhat poorly,” and “very poorly” drained classes were
recategorized into the poorly drained class.
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change parameter estimates and their significance as well as the predictive
performance of these models.

CT. CT were built using the rpart package (44). The Gini index was used as a
measure of node impurity. In pruning the tree to its optimal size, we used 10-fold
cross-validation to choose the tree with the smallest misclassification error based
on the “1 � standard error” (1 � SE) rule. Microbial cultures used to detect a
pathogen in an environmental sample usually have a very high specificity (mean-
ing that there are very few if any false positive [FP] isolation results) and low
sensitivity (meaning that many negatives are actually false negative [FN] results).
Consequently, all the positives in the data set are most likely to be truly positive,
while many negatives may in fact be FN. To account for that, FN were penalized
more than FP; costs of an FN and FP were set to 4 and 1, respectively. These
costs produced trees with at least two nodes and were chosen through a trial-
and-error method.

Testing the predictive performance of LR and CT. To compare models pro-
duced by two different statistical methods, one would need a common criterion.
This criterion must be unbiased and independent of the method used to develop
a particular model (48). Comparing CT with LR is difficult because none of the
error rates and goodness-of-fit statistics computed by the methods satisfy these
requirements. The solution is to compare the models on the basis of their
predictive accuracy, that is, the ability to correctly classify new cases in an
independent test data set (48). However, we did not have the luxury of a large
data set that could be divided into learning and independent test data sets.
Therefore, predictive performance of the LR and CT was assessed on the same
set of 10 subsamples of data through a 10-fold cross-validation and compared on
two statistics, sensitivity and specificity. The outcome values predicted from a CT
are dichotomous and could be easily summarized in a confusion matrix, from
which sensitivity and specificity could be easily computed. However, the values
predicted from an LR model vary continuously between 0 and 1. To dichotomize
results of an LR model, a cutoff value is required. Choosing 0.5 as the cutoff is
reasonable only if the prior probabilities of class 1 and class 0 are the same in the
population of interest and if the costs of an FP and FN are the same (48).
However, in our data sets, neither of the conditions was met. To account for the
low sensitivity and high specificity of microbial cultures (and the corresponding
high number of FN and low number of FP) and to assure comparability with the
CT method, costs of an FN and FP were set to 4 and 1, respectively. Using these
class-conditional misclassification costs, costs were estimated over the full range
of possible cutoffs obtained from 10-fold cross-validation. The cutoff with the
lowest associated misclassification cost was considered optimal and was used
to dichotomize the LR output so that the confusion matrix could be con-
structed and sensitivity and specificity could be calculated. Because both LR
and CT models were evaluated on the same data sets, Linnet and Brandt’s
test, an adaptation of McNemar’s test for comparison of correlated propor-
tions, was applied to test whether an observed difference in the test perfor-
mances was statistically significant (25). Positive and negative isolates were
divided into four groups according to the combined predictions of the two
classifiers, LR and CT (Fig. 1). Then, the test statistic was

z � �b	 � c	
/��b	 � c	
 � k2�b � c
 �

�b � c
/��1/k2
�b	 � c	
 � �b � c


where k � (a	 � b	 � c	 � d	)/(a � b � c � d). The null hypothesis of no differ-

ence between LR and CT was rejected if the absolute value of z exceeded 1.96
(two-sided test; 2� � 0.05). If the Linnet and Brandt’s test showed a statistically
significant difference between LR and CT, two separate McNemar’s tests were
conducted to test the null hypotheses of equal sensitivities (from the “Listeria
present” cross-tabulation in Fig. 1) and specificities (from the “Listeria absent”
cross-tabulation in Fig. 1) obtained for the two classifiers (LR and CT).

RESULTS

Of the 567 unique sampling locations (Fig. 2), 159 (28%)
tested positive for Listeria spp. Listeria bacteria were isolated
from samples collected at 19% (57/303), 34% (103/302), and
16% (48/294) of the unique sampling locations of soil, vegeta-
tion, and water, respectively. Among 303 unique soil sampling
locations, one location had a duplicate sample collected (both
positive). Among 302 locations where vegetation was sampled,
five locations had a duplicate sample collected (four with one
positive and one negative sample and one with both samples
positive) and one had three samples collected (all three posi-
tive). No duplicate samples of water were collected from the
same location. The median of the nearest-neighbor distance
was 52 m (range, 1 to 11,750 m) for all sampling locations, 95 m
(range, 2 to 12,660 m) for soil, 87 m (range, 2 to 12,660 m) for
vegetation, and 60 m (range, 1 to 19,040 m) for water. In all
four data sets, the median of the nearest-neighbor distance was
greater among positive locations than among negative loca-
tions, but the ranges of these measurements overlapped con-
siderably. Weather data were obtained from the weather sta-
tion closest to the sampling site. The average distance to the
closest weather station was 38 km (range, 4 to 71 km).

Univariate analyses. Table 2 shows a cross-tabulation of
data between each of the response variables (i.e., occurrence of
Listeria in [i] a spatial location as well as in [ii] the soil, [iii]
vegetation, and [iv] water layers) and significantly associated
categorical explanatory variables. The season and month of
sample collection were associated with all four response vari-
ables. However, because these independent variables are only

FIG. 1. Cross-tabulations of isolation results (Listeria absent and
Listeria present) for Linnet and Brandt’s test to compare the predictive
performance of any two classifiers A and B (e.g., LR and CT models).
“0” indicates a negative isolation result, and “1” indicates a positive
one. b	 is the number of negative samples classified correctly by clas-
sifier B and classified falsely by classifier A and conversely for c	
samples. Analogous reasoning applies to the positive samples.

FIG. 2. Study area.
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TABLE 2. Categorical independent variables for isolation of Listeria spp. from the environmenta

Variable group,
variable, and categoryb

Listeria absent Listeria present
OR OR lowerc OR upperc P value

No. % No. %

Spatial location
Position

Park NA NA NA NA NA NA NA NA
Adirondacks 95 0.23 23 0.14 1 NA NA NA
Catskill 112 0.27 49 0.31 1.81 1.03 3.18 0.039
FLNF 120 0.29 42 0.26 1.45 0.81 2.57 0.208
CHWMA 81 0.2 45 0.28 2.29 1.28 4.11 0.005

Soil properties
Loam.soil NA NA NA NA NA NA NA NA

0 154 0.42 34 0.23 1 NA NA NA
1 214 0.58 115 0.77 2.43 1.58 3.76 0.000

Drainage NA NA NA NA NA NA NA NA
Excessive 30 0.09 5 0.04 1 NA NA NA
Poor 149 0.46 42 0.3 1.69 0.62 4.63 0.302
Well 145 0.45 94 0.67 3.89 1.46 10.38 0.004

Freeze-thaw cycle
Freeze.thaw.2 NA NA NA NA NA NA NA NA

0 247 0.61 128 0.81 1 NA NA NA
1 161 0.39 31 0.19 0.37 0.24 0.58 0.000

Freeze.thaw.3 NA NA NA NA NA NA NA NA
0 269 0.66 140 0.88 1 NA NA NA
1 139 0.34 19 0.12 0.26 0.16 0.44 0.000

Soil layer
Freeze-thaw cycle

Freeze.thaw.0 NA NA NA NA NA NA NA NA
0 170 0.69 48 0.84 1 NA NA NA
1 76 0.31 9 0.16 0.42 0.2 0.9 0.022

Freeze.thaw.3 NA NA NA NA NA NA NA NA
0 175 0.71 49 0.86 1 NA NA NA
1 71 0.29 8 0.14 0.4 0.18 0.89 0.022

Vegetation layer
Soil properties

Loam.soil NA NA NA NA NA NA NA NA
0 63 0.35 19 0.19 1 NA NA NA
1 118 0.65 79 0.81 2.22 1.23 3.99 0.007

Drainage NA NA NA NA NA NA NA NA
Excessive 22 0.13 4 0.04 1 NA NA NA
Poor 58 0.33 28 0.3 2.66 0.83 8.44 0.089
Well 94 0.54 61 0.66 3.57 1.17 10.86 0.018

Freeze-thaw cycle
Freeze.thaw.0 NA NA NA NA NA NA NA NA

0 133 0.67 84 0.82 1 NA NA NA
1 66 0.33 19 0.18 0.46 0.26 0.81 0.007

Freeze.thaw.2 NA NA NA NA NA NA NA NA
0 121 0.61 85 0.83 1 NA NA NA
1 78 0.39 18 0.17 0.33 0.18 0.59 0.000

Freeze.thaw.3 NA NA NA NA NA NA NA NA
0 131 0.66 92 0.89 1 NA NA NA
1 68 0.34 11 0.11 0.23 0.12 0.46 0.000

Water layer
Position

Park
Adirondacks 57 0.23 6 0.13 1.00 NA NA NA

Continued on following page
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proxies for seasonal weather characteristics, they were not
considered further in the multivariable LR and CT analyses
and are not shown in Table 2. Table 3 shows medians and
interquartile ranges of continuous variables for locations with
and without Listeria isolates significantly associated with the
response variables. For variables that were subjected to PCA
(Tables 2 and 3), we show only variables that loaded on only
one of the principal components (Table 4). These variables did
not show a complex structure and were therefore considered
for testing in univariate analysis and, where applicable, in mul-
tivariable LR and CT.

PCA. Weather variables (precipitation; ambient tempera-
ture, including average, minimum, and maximum daily mea-
surements; and freeze-thaw cycles) in the four analyzed data
sets representing (i) all unique spatial locations and unique
locations with sampled (ii) soil, (iii) vegetation, and (iv) water
were subjected to a PCA. In all four data sets, only the first
three components accounted for more than 5% of the total
variance (Table 4). Combined, the three first components ac-
counted for 87% or more of the total variability. Variables and
corresponding factor loadings are presented in Table 4. In
interpreting the rotated factor pattern, an item was said to load
on a given component if an absolute value of the factor loading
was 0.24, 0.25, 0.24, and 0.35 or greater for that component in
all locations and soil, vegetation, and water layers, respectively,
and was less than that for the other two components. Several
variables describing average and minimum daily temperatures
averaged over a period of time prior to sample collection were
found to load on the first component, which was subsequently
labeled as the temperature component (“PC.temperature”).
Several precipitation variables loaded on the second compo-
nent, subsequently labeled as the precipitation component
(“PC.rain”). Finally, variables describing the occurrence of
freeze-thaw cycles as well as minimum, maximum, or average
daily temperature on days just prior to sample collection
were loaded on the third component and were labeled as the
“PC.freeze.thaw” component. These results demonstrate the
simple structure of the weather data. For each retained com-
ponent, a corresponding new variable was created with as-
signed predicted component scores.

LR. The results of nonspatial multiple LR for the four data
sets (i.e., [i] all unique spatial locations and unique locations
with sampled [ii] soil, [iii] vegetation, and [iv] water) are pre-
sented in Table 5. These results allowed us to calculate the
probability of isolation of Listeria spp. (and uncertainty around
the estimated probability) as a function of the determinants in
the model. For example, a location with loam soil, 10 cm of
water stored in up to 50 cm of soil depth, and no history of a
freeze-thaw cycle had a 67% (�1 SE � 37% and 87%) prob-
ability of harboring Listeria spp.: P(isolation) � 1/{1 �
e�[�0.95 � 0.611 � (0.04)(10 � 6.7) � 0.281(10 � 6.7)]} � 0.67. The
probability of isolation of Listeria spp. decreased to 30%, albeit
with overlapping confidence intervals (�1 SE � 21% and
42%), if the same location did not have loam soil. Examining
interaction effects identified for isolation of Listeria spp. from
a spatial location indicated that the probability of isolation of
Listeria spp. decreased with increasing water storage if a loca-
tion was exposed to a freeze-thaw cycle, whereas it increased in
the absence of a freeze-thaw cycle. However, confidence inter-
vals around these predictions overlapped considerably.

The best LR model for isolation of Listeria spp. from soil
samples had only one variable (Table 5): precipitation on day
2 before sample collection with a positive but modest effect
(odds ratio [OR] � 1.14 per mm of rain). Considering that
several variables were associated with isolation of Listeria spp.
from soil in univariate analyses, the presence of confounding
was investigated but not detected. The best LR model for the
occurrence of Listeria in the vegetation layer (Table 5) showed
a complex structure. Calculating the probability of isolation of
Listeria spp. as a function of the determinants in the model
shows that in the northernmost part of the study area, the
probability of isolation of Listeria spp. decreases with increas-
ing ambient temperature for locations that are unexposed to a
freeze-thaw cycle but have loam soil (Fig. 3A). The probability
of isolation of Listeria spp. increases with increasing tempera-
tures for any other type of soil. However, the signs of slopes
changed to the opposite direction in the southernmost part of
the study area; there, the probability of isolation of Listeria
spp. increases as a function of temperature in the presence

TABLE 2—Continued

Variable group,
variable, and categoryb

Listeria absent Listeria present
OR OR lowerc OR upperc P value

No. % No. %

Catskill 68 0.28 17 0.35 2.38 0.88 6.42 0.082
FLNF 78 0.32 4 0.08 0.49 0.13 1.81 0.274
CHWMA 43 0.17 21 0.44 4.64 1.72 12.48 0.001

Soil properties
Loam.soil NA NA NA NA NA NA NA NA

0 104 0.47 10 0.23 1.00 NA NA NA
1 117 0.53 34 0.77 3.02 1.42 6.42 0.003

Freeze-thaw cycle
Freeze.thaw.3 NA NA NA NA NA NA NA NA

0 173 0.70 42 0.88 1.00 NA NA NA
1 73 0.30 6 0.13 0.34 0.14 0.83 0.014

a NA, not applicable; variables are defined in Table 1.
b “0” indicates a negative isolation result, and “1” indicates a positive one.
c OR lower and OR upper indicate lower and upper bounds of a 95% confidence interval, respectively.
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TABLE 3. Continuous independent variables for isolation of Listeria spp. from the environmenta

Variable group and
variable

Listeria absent Listeria present
P value

Median 25th % 75th % Median 25th % 75th %

Spatial location
Position

Northing (103) 4,702 4,670 4,711 4,693 4,670 4,707 0.036

Soil properties
Slope.gradient 6.00 2.80 10.00 12.00 5.00 20.00 0.000
Water.depth 31.00 0.00 38.00 31.00 0.00 54.00 0.007
Water.storage.50 5.42 4.78 6.65 6.60 5.42 8.05 0.000
Water.storage.100 7.76 5.78 10.10 8.10 6.78 11.35 0.003
Water.storage.150 7.78 6.78 11.35 8.96 7.22 11.83 0.005

Precipitation
Precipitation.2 0.00 0.00 0.00 0.00 0.00 2.41 0.006
Precipitation.0_3 0.38 0.00 1.84 0.95 0.19 2.03 0.048
Precipitation.0_6 1.09 0.18 3.63 1.16 0.22 4.35 0.002

Temp
Temperature.a.0_2 9.82 6.30 17.41 14.63 7.22 21.30 0.003
Temperature.a.0_3 8.33 5.97 17.78 15.14 8.06 20.28 0.000
Temperature.a.0_4 9.44 6.11 18.78 14.33 7.11 20.56 0.000
Temperature.a.0_5 9.63 5.56 19.44 13.70 6.57 20.56 0.000
Temperature.a.0_6 8.41 6.19 19.52 13.10 6.51 21.43 0.001
Temperature.a.0_7 7.43 6.67 19.44 13.06 6.46 22.01 0.008
Temperature.a.0_8 8.15 6.70 19.14 13.02 6.54 22.28 0.011
Temperature.a.0_9 8.28 6.50 19.22 13.22 7.28 22.33 0.006
Temperature.L.0_6 3.49 1.03 12.62 6.59 2.78 14.84 0.000
Temperature.L.0_7 2.57 2.15 12.43 6.60 2.29 15.00 0.003
Temperature.L.0_8 3.09 2.01 12.65 6.85 1.67 15.19 0.010

Freeze-thaw cycle
Temperature.a.3 15.56 2.22 20.56 17.22 8.89 20.56 0.011
Temperature.L.0 5.56 �0.56 12.78 9.44 2.78 15.00 0.000
Temperature.L.3 8.89 �1.67 13.33 11.11 2.78 14.44 0.007
Temperature.L.0_1 4.17 0.56 10.83 7.78 3.19 14.86 0.000

PCA scores
PC.temperature 1.90 �3.04 3.75 �0.81 �3.97 2.85 0.000
PC.rain 0.56 �0.36 1.19 0.33 �0.36 1.15 0.004

Soil layer
Position

Easting (103) 495.5 353.1 550.4 363.1 352.7 511.6 0.012

Soil property
Water.depth 31.00 0.00 48.00 41.00 20.00 54.00 0.045

Precipitation
Precipitation.0 0.00 0.00 0.25 0.00 0.00 4.06 0.011
Precipitation.2 0.00 0.00 0.00 0.00 0.00 8.13 0.004

Freeze-thaw cycle
Temperature.L.0_1 5.00 0.56 14.72 7.78 5.00 11.67 0.041

PCA score
PC.freeze.thaw �0.27 �0.84 0.26 �0.03 �0.31 0.15 0.045

Vegetation layer
Position

Northing (103) 4,694 4,680 4,711 4,693 4,669 4,707 0.047

Precipitation
Precipitation.2 0.00 0.00 0.00 0.00 0.00 2.41 0.024

Continued on following page
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of loam soil, while it decreases in the absence of loam soil
(Fig. 3B).

Inclusion of an autocovariate term, estimated by an inverse
distance-weighting scheme, into the final LR models resulted
in deflation of parameter estimates and inflation of P values
(data not shown). The results of LR using predicted compo-
nent scores instead of the actual weather variables were very
difficult to interpret and so are not shown here.

CT. Figure 4A depicts a CT for the occurrence of Listeria in
a spatial location. Occurrence of a freeze-thaw cycle prior to
sample collection was the most important factor influencing
the occurrence of Listeria spp. in a spatial location, indicated
by its position closest to the root of the tree. The tree predicts
that a location is more likely to show a positive result if it is
located farther to the south (�4,791,000 northing) and has
water storage of �5 cm to a soil depth of 50 cm. If water
storage is �5 cm but the sampling site is located farther to the

south, it is likely that isolation results will be positive. The best
tree for the occurrence of Listeria in soil (Fig. 4B) showed
precipitation occurring on 2 days before the sample collection
and multiple nodes with the easting variable. If there was less
than 7 mm of rain, the location was predicted to be negative.
Multiple occurrences of easting in the tree as a splitting vari-
able are difficult to interpret and may reflect differences among
the four sampled areas. The optimal tree for the occurrence of
Listeria in the vegetation layer of a location (Fig. 4C) predicted
an interesting interplay among three variables (freeze-thaw
cycle, loam soil, and northing). In a location, Listeria spp. will
be isolated from the vegetation layer if there was no freeze-
thaw cycle 3 days before sample collection and the site is
located farther to the south from 4,791,000 northing. Even if
there was a freeze-thaw cycle, a location will likely harbor
Listeria if it has loam soil and is located farther to the south
from 4,692,000 northing. The optimal tree for isolation of

TABLE 3—Continued

Variable group and
variable

Listeria absent Listeria present
P value

Median 25th % 75th % Median 25th % 75th %

Temperature
Temperature.a.0_2 9.82 6.30 17.41 16.67 9.82 21.48 0.000
Temperature.a.0_3 9.10 5.97 18.19 17.36 8.33 21.25 0.000
Temperature.a.0_4 9.44 6.11 18.44 18.11 7.69 21.64 0.000
Temperature.a.0_5 9.63 5.56 18.89 18.06 7.34 21.67 0.000
Temperature.a.0_6 8.41 6.19 19.52 17.78 7.22 22.08 0.000
Temperature.a.0_7 7.43 6.46 19.44 17.78 7.29 22.17 0.000
Temperature.a.0_8 8.15 6.54 19.14 17.84 7.07 22.38 0.001
Temperature.a.0_9 8.28 6.50 19.22 17.44 7.51 22.92 0.001
Temperature.L.0_6 3.49 1.03 12.06 10.79 2.96 15.97 0.000
Temperature.L.0_7 2.57 2.15 12.43 10.83 2.41 16.25 0.000
Temperature.L.0_8 3.09 1.67 12.65 10.93 2.49 16.48 0.000

Freeze-thaw cycle
Temperature.a.3 15.56 2.22 20.56 18.33 10.00 21.11 0.000
Temperature.L.0 5.56 �0.56 11.67 10.00 3.33 15.00 0.000
Temperature.L.3 8.89 �1.67 13.33 12.22 3.33 15.56 0.000
Temperature.L.0_1 4.17 0.35 10.83 8.89 5.00 15.00 0.000
Temperature.H.3 17.78 6.11 26.67 23.89 17.22 27.22 0.005

PCA score
PC.temperature 2.10 �2.81 3.97 �2.36 �4.37 2.82 0.000

Water layer
Position

Northing (103) 4,706 4,668 4,711 4,691 4,670 4,693 0.022

Soil properties
Slope.gradient 6 1.9 9 12 5.75 20 0.000
Water.storage.50 5.2 4.78 6.6 6.6 5.795 8.05 0.000
Water.storage.100 6.42 5.57 10.09 9.98 7.91 12.54 0.000
Water.storage.150 7.22 6.5 11.35 9.98 7.943 15.57 0.001

Precipitation
Precipitation.0 0 0 0.254 0.127 0 0.762 0.011
Precipitation.0_4 0.76 0.20 1.89 0.81 0.46 5.08 0.022
Precipitation.0_5 0.85 0.17 1.64 1.21 0.85 4.23 0.008
Precipitation.0_6 1.07 0.18 3.63 3.63 1.09 4.35 0.001

PCA score
PC.rain 0.69 �0.08 1.46 0.31 �0.35 0.99 0.045

a PC.rain, PC.temperature, and PC.freeze.thaw denote component scores predicted from PCA.rain, PCA.temperature, and PCA.freeze.thaw, respectively; other
variables are defined in Table 1. 25th % and 75th % indicate 25th percentile and 75th percentile, respectively.
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Listeria spp. from the water layer has only one predictor, slope
gradient (Fig. 4D). In a location with a steep slope (�9.5%), it
is likely that Listeria will be isolated from water. In models
which considered component scores from PCA, CT were very
similar to those that used the actual weather variables (and are
therefore not shown here). Briefly, in the model for isolation of
Listeria spp. from a spatial location and in the vegetation layer
of a location, the freeze-thaw cycle at the root of the tree was
replaced with the PC.temperature variable. In the soil model,
precipitation was replaced by the PC.freeze.thaw variable. The
optimal CT for the occurrence of Listeria in the water layer
using component scores was identical to the one shown in
Fig. 4D.

Predictive performance of LR and CT. Table 6 summarizes
the predictive performance of nonspatial LR and CT models.
Overall, LR and CT models for the occurrence of Listeria in a
spatial location and in the vegetation layer had relatively high
sensitivities, while their specificities were quite low. The oppo-
site was true for the models for isolation of Listeria spp. from
the soil and water layers. The hypotheses of equal overall
classification performances of LR and CT were rejected in
three out of four analyses (Table 6). In these three analyses,
CT had better sensitivity once and better specificity twice, i.e.,
it seemed to have a slightly better performance than LR. In-
clusion of autocovariate terms into LR models significantly
altered the predictive performance of LR models (quantitative
results not shown). Compared with the nonspatial LR models,
specificities of the corresponding autologistic regression mod-

els were significantly higher in predicting Listeria in all spatial
locations and in the vegetation layer but significantly lower in
soil and water layers. For the vegetation layer, the reduction in
specificity was accompanied by a significantly better sensitivity.
However, the predictive performances of all autologistic re-
gression models were indistinguishable from the correspond-
ing CT (quantitative results not shown). The predictive per-
formance of models using component scores instead of the
actual weather variables was evaluated as follows: CT had a
very similar performance to those shown in Table 6, while
either the performances of the nonspatial LR models were
similar (all spatial locations model) or the models’ sensitivity
increased, albeit at the cost of reduced specificity (soil, vege-
tation, and water layer models) (quantitative results not
shown).

DISCUSSION

In this study, we proposed a methodological framework for
analysis of the spatially explicit factors affecting the local prob-
ability of pathogen isolation from the natural environment by
using Listeria spp. as a model system. Specifically, LR and CT
models were developed from common spatial data, and pre-
dictors for isolation of Listeria spp. were identified. Soil prop-
erties and weather characteristics were found to be the most
important factors affecting isolation of Listeria spp. from a
location, with combinations of factors differing for the soil,
vegetation, and water layers of a location. In the following

TABLE 4. Principal component analysis of weather variables in data sets of (i) all unique spatial locations and of unique locations with
sampled (ii) soil, (iii) vegetation, and (iv) watera

Name of variable
Spatial location Soil layer

PC1 PC2 PC3 PC1 PC2 PC3

Precipitation.0 0.04 �0.33 0.19 0.03 0.29 �0.12
Precipitation.1 �0.02 0.40 �0.24
Precipitation.2 �0.01 �0.42 0.00 �0.01 0.37 0.14
Precipitation.0_2 �0.01 �0.48 0.14 �0.01 0.46 �0.14
Precipitation.0_3 �0.01 �0.49 0.11 �0.01 0.47 �0.09
Precipitation.0_6 0.05 �0.42 �0.06 0.06 0.39 0.17
Temperature.a.3 �0.23 �0.02 �0.28
Temperature.a.0_2 �0.25 0.02 0.09 �0.28 �0.01 �0.10
Temperature.a.0_3 �0.25 0.01 �0.01 �0.28 �0.01 0.01
Temperature.a.0_4 �0.25 0.01 �0.03 �0.28 �0.02 0.04
Temperature.a.0_5 �0.25 0.02 �0.03 �0.29 �0.02 0.03
Temperature.a.0_6 �0.25 0.02 0.00 �0.29 �0.02 0.00
Temperature.a.0_7 �0.25 0.02 0.04 �0.29 �0.02 �0.04
Temperature.a.0_8 �0.25 0.01 0.06 �0.28 �0.01 �0.06
Temperature.a.0_9 �0.24 0.01 0.07 �0.28 �0.01 �0.07
Temperature.L.0 �0.21 0.05 0.32
Temperature.L.3 �0.22 0.00 �0.29
Temperature.L.0_1 �0.22 0.02 0.28
Temperature.L.0_6 �0.25 0.02 0.05 �0.28 �0.02 �0.03
Temperature.L.0_7 �0.25 0.02 0.07 �0.28 �0.02 �0.06
Temperature.L.0_8 �0.25 0.02 0.09 �0.28 �0.02 �0.08
Temperature.H.3 �0.22 �0.04 �0.27
Freeze.thaw.0 0.13 0.00 �0.55 0.16 �0.03 0.56
Freeze.thaw.2 0.18 0.18 0.34 0.21 �0.14 �0.49
Freeze.thaw.3 0.17 0.17 0.27 0.19 �0.13 �0.51

SD (% of variance;
cumulative %)

4.01 (0.67; 0.67) 1.95 (0.16; 0.83) 1.35 (0.08; 0.90) 3.49 (0.61; 0.61) 2.12 (0.22; 0.83) 1.10 (0.06; 0.89)

a Bold numbers indicate variables loading on the principle component (PC) represented by the column, i.e., the correlation coefficient between a variable and the
corresponding PC. Variables are defined in Table 1. PC1, PC2, and PC3 indicate PC.temperature, PC.rain, and PC.freeze.thaw, respectively.
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paragraphs, we discuss issues related to the findings, interpre-
tations, limitations, and possible applications of the proposed
methodological framework.

Appropriate inferential question and approach. Utilization
of GIS data starts with an understanding of the appropriate
inferential question and inferential approach given the type of
spatial data available. According to Waller (51), the three
categories of spatial data are (i) spatial point process data, (ii)
geostatistical data, and (iii) data from a set of regions parti-
tioning the study area (referred to as lattice and regional data).
In category i, spatial point process data, locations themselves
are considered realizations of some random process, and we
seek inference regarding the properties of the process. We may
thus ask if observations are equally likely in all locations (as
shown in reference 8). If not, where are observations more or
less likely to occur? Category ii, geostatistical data, consists of
a set of measurements taken at fixed locations, e.g., the tem-
perature measured at each of a set of weather stations. In this
case, the locations are set by design. Therefore, an inferential
question of interest is the prediction of the same outcome at
locations where no measurement was taken (as shown in ref-
erence 33). Category iii, regional data, generally involves
summary measures for each region (such as the number of
residents). Inferential questions often involve an accurate
estimation of summaries from regions with small sample sizes
or generalized linear modeling of outcomes and covariates
measured on the same set of regions.

The occurrence of pathogens in the environment may be the
realization of a random process. However, unless there are

biological markers of pathogen presence, such as the occur-
rence of the associated disease, the presence of pathogens in
the environment is unknown until a sample from a location
chosen as part of a study design is collected and examined. For
example, a common sampling strategy to study the occurrence
of pathogens in the environment is to obtain a collection of
convenience samples (such as in the Sauders data used here
[38]) and/or samples from fixed entities, such as agricultural
fields. Data collected in such a way fall into the geostatistical
data category. The applicable inferential question for such data
is the prediction of microbial presence in locations that were
not or could not be sampled. However, if sampling locations
are regularly distributed (such as in the study of Campylobacter
spp. distribution in the environment [3]), the data could still be
considered spatial point process data and analyzed for the
presence of spatial patterns (e.g., clustering).

Factors affecting the probability of isolation of Listeria spp.
Isolation of Listeria is often considered indicative of conditions
that pose an increased risk that food and the environment may
be contaminated with the food-borne pathogen L. monocyto-
genes (for an example, see reference 46). The ecology of L.
monocytogenes and Listeria spp. has been extensively studied in
food processing environments (e.g., in the smoked fish pro-
cessing plant environment [23]). However, an understanding of
Listeria ecology in the natural environment is important as
well, because a contaminated natural environment may be a
source of L. monocytogenes contamination of feed for food-
producing animals, raw food for human consumption, and for
contamination of food processing environments and other en-

TABLE 4—Continued

Vegetation layer Water layer

PC1 PC2 PC3 PC1 PC2 PC3

0.03 0.28 �0.15
�0.02 0.40 �0.13 0.04 �0.40 0.34

0.00 0.37 0.08 0.02 �0.38 �0.12
�0.01 0.46 �0.09 0.03 �0.46 0.21
�0.01 0.46 �0.06 0.03 �0.47 0.13

0.05 0.39 0.10 �0.05 �0.42 �0.11
�0.23 0.00 0.28
�0.25 �0.01 �0.09
�0.25 �0.01 0.01 0.34 0.03 0.02
�0.25 �0.01 0.03 0.34 0.04 0.01
�0.25 �0.02 0.02 0.34 0.04 0.01
�0.25 �0.02 �0.01 0.34 0.05 0.03
�0.25 �0.01 �0.04 0.34 0.04 0.05
�0.25 �0.01 �0.06
�0.24 0.00 �0.07
�0.21 �0.04 �0.32
�0.22 �0.02 0.28
�0.22 �0.01 �0.28
�0.25 �0.02 �0.05 0.34 0.04 0.05
�0.25 �0.02 �0.07 0.34 0.04 0.07
�0.25 �0.01 �0.09
�0.22 0.02 0.27

0.13 �0.03 0.52 �0.18 0.01 �0.37
0.18 �0.15 �0.36 �0.27 0.14 0.37
0.17 �0.13 �0.30 �0.25 0.13 0.38

4.00 (0.64; 0.64) 2.12 (0.18; 0.82) 1.37 (0.08; 0.90) 2.88 (0.52; 0.52) 2.06 (0.26; 0.78) 1.22 (0.09; 0.87)
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vironments (retail environments, home environments, etc.)
that may lead to contamination of human foods (20). Our
findings indicate that there is a strong association between
weather and soil properties and the probability of isolation of
Listeria spp. from locations in the natural environment. Fur-
thermore, different factors and their combinations had distinct
effects on the probability of isolation of Listeria spp. from soil,
vegetation, and water layers.

The likelihood of isolation of Listeria spp. from any spatial
location (Table 5), as well as from the vegetation (Table 5)
(Fig. 4C) and water layers (Table 5) was generally higher if
there was no freeze-thaw cycle prior to sample collection. This
is consistent with the reported lethal or inhibitory effect of
freeze-thaw cycles on microorganisms in natural environments
and in foods (1, 12). The probability of isolation of Listeria spp.
from the vegetation layer of a location was higher if the soil
was of the loam type. Loam soil is generally considered ideal

for growing crops. Thus, one could hypothesize that loam soil
in a location provides for thriving vegetation, which then sup-
ports the survival of Listeria spp. in that location. However, in
the absence of a freeze-thaw cycle, the effect of soil on the
probability of isolation of Listeria spp. differed with geographic
position (northing) (Fig. 3 and 4C) and temperature (Fig. 3):
with increasing ambient temperatures, loam soil was negatively
associated with the occurrence of Listeria bacteria in the north-
ern part of the study area, while it was positively associated
with their occurrence in the southern part. Because Listeria
spp. are known to survive and multiply over a wide range of
temperatures, from 1°C or 2°C to 45°C (21), this complex
structure, if real, may be a consequence of adaptation of other
microorganisms to different temperatures, as the microorgan-
isms may compete with Listeria spp. in different soil types and
geographic areas. Interestingly, precipitation increased the
probability of isolation of Listeria spp. from soil, but it did not

TABLE 5. Nonspatial multiple logistic regression models obtained for isolation of Listeria spp. from (i) all spatial locations and from the (ii)
soil, (iii) vegetation, and (iv) water layersj

Parameter description Parameter
estimate SE P value

Spatial location
Intercept �0.95 0.26 0.000
Northing.ca �0.01 0.00 0.013
Slope.gradient.cb 0.03 0.01 0.025
Water.storage.50.cc 0.04 0.07 0.632
Freeze.thaw.3�1d �6.68 2.19 0.002
Loam.soil�1 0.61 0.30 0.041
(Freeze.thaw.3�1)�(Loam.soil�1)e 5.20 2.08 0.013
(Water.storage.50.c)�(Loam.soil�1) 0.28 0.12 0.024
(Slope.gradient.c)�(Freeze.thaw.3�1) 0.09 0.05 0.066
(Water.storage.50.c)�(Freeze.thaw.3�1) �0.64 0.35 0.069

Soil layer
Intercept �1.79 0.19 7.3E�22
Precipitation.2 0.13 0.03 7.7E�05

Vegetation layer
Intercept �2.99 0.96 0.002
Northing.cf �0.03 0.01 0.025
Temperature.a.0_5.cg 0.45 0.21 0.028
Freeze.thaw.3�1 8.38 5.16 0.104
Loam.soil�1 2.84 0.98 0.004
(Temperature.a.0_5.c)�(Loam.soil�1) �0.45 0.21 0.032
(Temperature.a.0_5.c)�(Freeze.thaw.3�1) 1.20 0.66 0.070
(Northing.c)�(Loam.soil�1) 0.04 0.02 0.022
(Northing.c)�(Temperature.a.0_5.c) 0.01 0.00 0.016
(Northing.c)�(Temperature.a.0_5.c)�(Loam.soil�1) �0.01 0.00 0.007

Water layer
Intercept �3.46 0.62 0.000
Northing.ch �0.01 0.01 0.085
Freeze.thaw.3�1 �1.68 0.59 0.004
Slope.gradient 0.04 0.02 0.022
Water.storage.50 0.34 0.09 0.000
(Northing.c2̂)i 0.00 0.00 0.013

a Prior to fitting a model for all spatial locations, the variable was centered by subtracting 4,706,297 and dividing by 1,000 to express in kilometers.
b Prior to fitting a model for all spatial locations, the variable was centered by subtracting 11.6.
c Prior to fitting a model for all spatial locations, the variable was centered by subtracting 6.7.
d “�1” indicates presence of a risk factor.
e “�” indicates interaction.
f Prior to fitting a model for the vegetation layer, the variable was centered by subtracting 4,707,076 and dividing by 1,000 to express in kilometers.
g Prior to fitting a model for the vegetation layer, the variable was centered by subtracting 13.61705.
h Prior to fitting a model for the water layer, the variable was centered by subtracting 4,704,903 and dividing by 1,000 to express in kilometers.
i “2̂” indicates a quadratic term.
j Variables are defined in Table 1.
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have any effect on isolation of Listeria spp. from vegetation.
That is surprising, because it is generally considered that rain
and water irrigation increase the probability of produce con-
tamination with microorganisms (14).

The probability of isolating Listeria spp. from the soil layer
was strongly associated with the amount of rain 2 days prior to
sample collection, and the specificity of the LR model with
precipitation as a single variable was very high (94%). This
finding is consistent with data from food processing plants
where Listeria bacteria are more frequent in plants with water
and a high level of moisture (40). Also, it has been reported
that higher soil moisture increases the survival of L. monocy-
togenes (53) and other food-borne pathogens, including Salmo-
nella spp. (17).

Slope gradient was found to be the best predictor of the

occurrence of Listeria spp. in water (based on the CT method)
(Fig. 4D). This finding is consistent with a study by Smith et al.
(41), which reported that watersheds with large proportions of
urban land cover and agriculture on steep slopes had a very
high probability of being contaminated with pathogens. The
probability of isolation of Listeria spp. from a location as well
as from the vegetation and water layers seemed to decrease
with the geographic position of the sampling location farther to
the north, while the probability of its isolation from soil de-
creased farther to the east. These trends may be real, but they
may also reflect the difference in the isolation of Listeria spp.
probability between sampled areas.

Because of the intimate contact between soil and vegetation
in a location and their shared routes of L. monocytogenes
contamination, Ivanek et al. (20) proposed that in a predictive
model of L. monocytogenes dynamics in the natural environ-
ment, the soil and vegetation layers could be modeled jointly.
Along the same line of reasoning, the same control measures
would control L. monocytogenes contamination in the two lay-
ers. However, findings of this study indicate that different en-
vironmental factors and their combinations have distinct ef-
fects on the probability of isolation of Listeria spp. (and likely
of L. monocytogenes isolation) from the soil, vegetation, and
water layers of a location. This suggests that soil, vegetation,
and water represent three distinct ecological niches for Listeria
spp. and should be modeled separately. Correspondingly, the
three layers will probably require distinct approaches to con-
trol L. monocytogenes contamination.

Predictive performance of LR and CT methods. The classi-
fication performance of CT was slightly better than that of
nonspatial LR and indistinguishable from that of autologistic
regression models. However, it should be borne in mind that
the predictive performance of LR and CT may have been
affected by modeling strategies applied to assure their fair
comparison. Specifically, we restricted CT analysis to the sub-
set of data with complete observations on variables used in the
LR model. Because the CT method can use data with missing
observations, this strategy resulted in a loss of eligible infor-
mation and may have impaired CT performance. In the LR
modeling, we used automatic stepwise regression for model
selection so that model building would be comparable to the
“automatic” variable selection in the CT. An alternative ap-
proach, potentially better for LR, would be to apply causal
concepts to data analysis, i.e., to list effects and interactions of
interest prior to model fitting based on the knowledge and
understanding of the system (26). Because of these reasons
and a small number of models in which the performance of LR
and CT was compared, there are not enough grounds in this
study to claim better performance of the CT method. Rather,
we conclude that the predictive performances of the two meth-
ods were comparable.

While having a classification performance comparable to
that of LR, CT demonstrated excellent interpretability, which
may be particularly useful in field applications. Other advan-
tages of using a CT over an LR method are related to its
inherent nonparametric character; it handles very well highly
skewed, multimodal, categorical (ordinal and nonordinal) pre-
dictors. It is robust to outliers, and missing predictor variables
are not dropped from the analysis. Unlike LR and other para-
metric models, which are intended to uncover a single domi-

FIG. 3. The probability of isolation of Listeria spp. from the vege-
tation layer in the northernmost (A) and southernmost (B) parts of the
study area for different levels of average temperature over the 5 days
before sample collection, for loam soil (denoted as “Loam.soil,” with
“�0” and “�1” indicating its absence and presence, respectively), and
for a freeze-thaw cycle occurring 3 days before sample collection (de-
noted as “Freeze.thaw,” with “�0” and “�1” indicating its absence
and presence, respectively). The probability is calculated based on the
corresponding LR model in Table 5.
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nant structure in data, CT is designed to work with data that
might have multiple structures (interactions). A disadvantage
of CT methods noticed here is related to the treatment of
continuous predictor variables as discrete categories. CT can
represent a continuous factor only by a series of distinct sub-
ranges. We experienced this in our CT through multiple oc-
currences of a continuous factor as a partitioning variable (e.g.,
the easting variable in the soil model [Fig. 4B]). Therefore, LR

is often better at capturing an algebraic relationship between
the response variable and a continuous factor. The ability of
LR to capture spatial dependence (in autologistic regression
models) could be seen as an advantage over CT. However, the
validity of autologistic regression has recently been questioned:
an assessment using artificial simulation data with known prop-
erties indicated that autologistic regression models consistently
underestimate the effect of environmental variables and give

FIG. 4. CT for isolation of Listeria spp. from a spatial location (A) as well as from the soil (B), vegetation (C), and water (D) layers of a spatial
location. Freeze.thaw.3, freeze-thaw cycle occurring on day 3 before sample collection; Water.Storage.50, available water storage to a soil depth
of 50 cm; Precipitation.2, the amount of rain on the second day before sample collection; Loam.soil, presence of loam soil type; Slope.gradient,
slope gradient. On top of each node there is a rule used for data partitioning (for example, in panel A, the occurrence of a freeze-thaw cycle 3
days before sample collection is “Freeze.thaw.3�1”); the subset of data satisfying this rule will partition to the left daughter node, while the rest
of the data will partition to the right daughter node. N in a terminal node denotes prediction of a negative result for Listeria, with, for example,
“109/15” indicating the number of negative/positive observations, i.e., the number of true negatives/FN. P in a terminal node denotes the prediction
of isolation of Listeria spp., with, for example, “92/94” indicating the number of negative/positive observations, i.e., the number of FP/true positives.

TABLE 6. Performance of nonspatial LR and CT modelsa

Parameter Optimal
cutoff Sensitivity Specificity Proportion

correct

Probability of no
difference

between models

Probability of no
difference

between models’
sensitivities

Probability of no
difference

between models’
specificities

Spatial location �0.001 0.01 0.001
LR 0.18 0.91 0.41 0.56
CT NA 0.86 0.49 0.6

Soil layer �0.001 0.001 �0.001
LR 0.3 0.28 0.94 0.81
CT NA 0.51 0.77 0.72

Vegetation layer 0.002 0.30 0.01
LR 0.16 0.91 0.34 0.54
CT NA 0.86 0.43 0.58

Water layer 0.06 1.00 �0.001
LR 0.32 0.57 0.89 0.84
CT NA 0.55 0.76 0.72

a NA, not applicable.
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biased estimates compared with a nonspatial LR (10). Consis-
tent with this, the inclusion of contagion terms in the LR
models developed here resulted in deflated effects of indepen-
dent variables and higher P values. Both LR and CT could use
misclassification penalties to account for an imperfect sensitiv-
ity of microbial isolation methods. Generally, a higher penalty
for an FN would result in better sensitivity and consequently
lower specificity. This has an important practical implication
because both LR and CT could be manipulated if the goal was
to achieve better sensitivity or specificity, whichever is desired.
To conclude, based on our findings, LR and CT methods have
comparable predictive performances and complementary
strengths and weaknesses in identifying risk factors. Therefore,
for analysis of microbial presence in the environment, our
recommendation would be to apply both methods whenever
feasible.

Spatial autocorrelation. Spatial autocorrelation may be an
important source of bias in spatial analyses (39), leading to
poorly specified models and inflated significance estimates for
predictor variables (24). It occurs as a consequence of the
direct relationship between distance and likeness and the fact
that elements of an ecosystem close to one another are more
likely to be influenced by the same generating process and will
therefore be similar (29). The two main procedures used to
minimize the effect of spatial correlation are subsampling and
inclusion of the contagion term (39), such as that used in
autologistic regression models. In this study, the systematic
subsampling could not be performed because of a relatively
small sample size. Inclusion of a contagion term has been
reported to be more effective than subsampling, but it prevents
extrapolation beyond the geographic range of the calibration
data (39). That is of concern in analysis of geostatistical data,
such as that used in this study, because we were interested in
prediction of the same outcome at locations where no samples
were collected. Furthermore, as stated earlier, the validity of
autologistic regression has been questioned (10). It has been
reported that CT are less vulnerable to the effect of spatial
correlation than generalized linear models (39), which may
have contributed to a slightly better predictive performance of
CT than the nonspatial LR in our study. Our findings about the
indistinguishable predictive performance of autologistic re-
gression models and CT support this.

Value of principle component analysis. Large, complex data
sets are characteristic for environmental microbiology whose
exploration would often benefit from multivariate methods
(32). PCA is one of the most popular multivariate exploratory
analyses. We used PCA with two objectives. The first was to
explore weather data, which resulted in the valuable confirma-
tion that three distinct variables (temperature, precipitation,
and freeze-thaw cycles) do indeed exist among the considered
weather variables. Second, we predicted component scores
(linear combinations of the original variables that account for
most of the variance in the data) and used them in multivariate
modeling instead of the actual weather variables. This ap-
proach allowed us to utilize information from several weather
predictors simultaneously without the need to pick one from
among several highly correlated variables. However, for the
most part, the predictive performance of the models developed
using predicted component scores was comparable to that
achieved with the models using weather variables. Also, com-

ponent scores were particularly difficult to interpret as they did
not correspond to any real ecological entity.

Methodological implications for the control of infectious
and food-borne pathogens. The generalizability of findings of
our study is limited to Listeria spp. in natural environments.
However, the methodological framework proposed here is
adaptable to study ecological determinants for the presence of
free-living stages of many infectious and food-borne agents
(e.g., E. coli, Salmonella spp., and Vibrio parahaemolyticus) in
natural as well as in agricultural environments. The proposed
framework may be particularly relevant to the control of the
respective diseases as part of precision farming as well as to
biosafety and biosecurity. Precision farming is an agricultural
concept, based on recognition of the within-field variability,
that uses technologies such as GPS, GIS, and remote sensing
to find optimal agricultural management practices (52). Man-
agement practices are optimized from several points of view,
including profitability, increased crop quality, improved sus-
tainability, lower management risk, product traceability, and
environmental protection (36). However, we propose that
farmers’ management decisions could also be optimized for the
production of microbiologically safer foods by linking precision
farming with models that can predict microbial presence in a
location based on the site-specific environmental, meteorolog-
ical, and management factors (similar to the one proposed
here). Similarly, predictive models of microbial presence in the
environment could be coupled with a predictive model of
pathogen fecal shedding (19) and be used by farmers that use
GIS-based livestock production (2, 50) to predict when fields
may have an increased risk of animal exposure if used for
grazing.

From the biosafety and biosecurity perspective, the presence
of free-living stages of infectious and food-borne pathogens in
the natural environment is of obvious concern to human and
animal health. The methodological approach proposed here
complements GIS-based spatial analyses that have been ap-
plied to elucidate pathogen epidemiology. For example, spatial
analysis of Cryptococcus gattii distribution in the Pacific North-
west region of Canada indicated that human-mediated dis-
persal vehicles and footwear may be important mechanisms for
dispersal of this pathogen (22). Similarly, analysis of temporal
and spatial distribution of V. parahaemolyticus in mussels indi-
cated that water salinity, modulated by seawater temperature
in periods and areas of reduced salinity, is a primary factor
governing the occurrence of this food-borne pathogen (27).
Understanding how environmental factors affect pathogen oc-
currence in the natural environment could be translated into
risk maps indicating areas and times with a higher exposure
hazard to humans and animals, as has been done for disease
vectors (e.g., ticks [55] and mosquitoes [18]). Furthermore, to
fully account for environment-pathogen-host interaction, the
predictive modeling of free-living pathogens in a location could
be linked with mathematical models of within-host population
disease transmission. This would be similar to the modeling of
environment-vector-host interaction (such as modeling of the
climate-driven transmission of plague in prairie dogs [42]). It is
accepted that changes in weather patterns in the coming de-
cades will likely cause important changes in the incidence and
distribution of diseases with free-living stages, such as E. coli,
Campylobacter spp., Salmonella spp., and C. gattii (15). Under-
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standing how environmental factors affect pathogen occur-
rence in the environment could be used to predict microbial
occurrence as a consequence of global climate change.
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