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Abstract
Genome-wide association studies (GWAS) have identified seven breast cancer susceptibility loci,
but these explain only a small fraction of the familial risk of the disease. Five of these loci were
identified through a two-stage GWAS involving 390 familial cases and 364 controls in the first stage,
and 3,990 cases and 3,916 controls in the second stage1. To identify additional loci, we tested over
800 promising associations from this GWAS in a further two stages involving 37,012 cases and
40,069 controls from 33 studies in the CGEMS collaboration and Breast Cancer Association
Consortium. We found strong evidence for additional susceptibility loci on 3p (rs4973768: per-allele
OR = 1.11, 95% CI = 1.08–1.13, P = 4.1 × 10−23) and 17q (rs6504950: per-allele OR = 0.95, 95%
CI = 0.92–0.97, P = 1.4 × 10−8). Potential causative genes include SLC4A7 and NEK10 on 3p and
COX11 on 17q.

Genome-wide association studies (GWAS) have been successful at identifying many disease
susceptibility loci, including several for common cancers. We recently conducted a multistage
GWAS based on 390 breast cancer cases with a strong family history of the disease and 364
controls in the first stage, and 3,990 cases and 3,916 controls in the second stage. We then
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genotyped the 30 most significant SNPs in a third stage involving 21,860 cases and 22,578
controls from 22 studies in the Breast Cancer Association Consortium (BCAC; see URLs
section in Methods). Through this combined analysis, we identified five loci with strong
statistical evidence of association1. One of these loci, FGFR2, was also identified in a second
scan2, and additional susceptibility loci on 2q, 5p and 6q have been identified in subsequent
scans3–5. Together, these loci explain an estimated 5.4% of the known familial aggregation of
breast cancer, suggesting strongly that further loci remain to be identified.

In an attempt to identify further loci at which common variants are associated with breast cancer
risk, we conducted a more comprehensive evaluation of promising associations from our
GWAS (Fig. 1). We identified a further 925 SNPs that showed evidence for association in the
first two stages of our study (combined P trend <0.014) and attempted to genotype them in a
third stage, involving a further 3,878 cases and 3,928 controls from three studies corresponding
to stage 2 of the Cancer Genetic Markers of Susceptibility (CGEMS) collaboration. We
successfully genotyped 814 of these SNPs as part of a 30,278 SNP custom Illumina iSelect
array. After combination of these data with the original GWAS data, three SNPs had P values
<10−5 (rs4973768, rs4132417, rs6504950). We then evaluated these SNPs in a fourth stage,
using data from a further 27 studies in BCAC. We also incorporated data from two further
studies contributing to the Cancer Genetic Markers of Susceptibility (CGEMS)
collaboration2 and, for rs4973768, data from 1,143 cases and 1,141 controls obtained as part
of the CGEMS GWAS2. In total, 36,141 controls and 33,134 cases of invasive breast cancer
were genotyped as part of stage 4.

One SNP, rs4973768, showed clear evidence of association in the stage 4 replication (Table 1
and Fig. 2; per-allele OR = 1.11, 95% CI = 1.08–1.13, P = 1.4 × 10−18) and overall (P = 4.1 ×
10−23). A second SNP, rs6504950, also showed evidence of replication and reached ‘genome-
wide’ significance overall (Table 1 and Fig. 2; per-allele OR = 0.95, 95% CI = 0.92–0.97, P =
0.00010 in stage 4; P = 1.4 × 10−8 overall). There was no evidence of heterogeneity in the OR
estimates among studies in stage 4 for either SNP. For both SNPs, the per-allele OR was very
similar in populations of European and Asian descent (rs4973768: 1.11, 95% CI = 1.00–1.23
in Asians versus 1.11, 1.08–1.14 in Europeans; rs6504950: 0.96, 0.82–1.12 in Asians versus
0.95, 0.93–0.98 in Europeans; Fig. 2), and were similar between hospital-based and population-
based case-control studies. rs4132417 showed no evidence of association in the replication
(per-allele OR = 1.00, 95% CI = 0.97–1.03, P = 0.97 in stage 4, P = 0.016 overall) and is
therefore likely to have been a false positive association in stages 1–3.

rs4973768 showed clear evidence of an increasing risk with number of rarer (T) alleles, with
an estimated OR = 1.12 (95% CI = 1.08–1.17) in heterozygotes and 1.23 (1.17–1.29) in
homozygotes for the T allele (Table 1). There was some suggestion of a trend in OR by age,
with a higher OR below age 50 y (Ptrend = 0.038; Supplementary Table 1 online). The per-
allele OR was higher for ER-positive (per-allele OR = 1.12, 95% CI = 1.09–1.16) than for ER-
negative breast cancer (OR = 1.06, 1.01–1.12; P = 0.022 for heterogeneity in the OR by ER
status; Supplementary Table 2 online), consistent with a pattern observed for several other
breast cancer susceptibility loci, notably FGFR2 and the 8q24 locus6. Contrary to the pattern
seen for other susceptibility loci, there was no evidence of an association with a positive family
history of breast cancer (Supplementary Table 3 online). However, the number of cases with
a positive family history was limited, and the effect predicted under a multiplicative polygenic
model (an approximately 50% greater effect in women with a family history, or per-allele OR
= 1.16) could not be clearly excluded in this analysis. rs6504950 also showed a stronger
association in ER-positive disease (OR = 0.94, 95% CI = 0.91–0.97) versus ER-negative
disease (OR = 1.03, 0.98–1.09; P = 0.00078 for heterogeneity in the OR by ER status), but no
association with age or family history.
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In addition to the three SNPs above, we identified a further 13 SNPs that were significant at
P < 10−4 (but not P < 10−5) after stages 1–3. We evaluated these associations using a further
3,777 cases and 4,171 controls from three additional studies (Supplementary Table 4 online).
Only one SNP, rs1357245, showed evidence of association in this replication study, in the
same direction as the original association (P = 0.0010; P = 1.9 × 10−7 overall). Notably, this
SNP lies in the same 600-kb linkage disequilibrium (LD) block as rs4973768 on 3p and is
correlated with it (r2 = 0.58).

To further refine the evidence for association in this 3p24 region, we identified all SNPs within
the LD block that were correlated with either rs4973768 at r2 > 0.2 or rs1357245 at r2 > 0.3
according to the HapMap CEU (Caucasians of European descent from Utah) data. These SNPs
could be tagged with a set of 28 SNPs (minimum r2 = 0.8; Fig. 3a). We genotyped these 28
SNPs in 2,301 cases and 2,256 controls from the UK SEARCH study (Supplementary Table
5 online). In forward stepwise logistic regression analysis, the strongest marker was rs2307032,
and no SNP provided a significant improvement in fit after adjustment for rs2307032.
rs2307032 is correlated with both rs4973768 and rs1357245 (r2 = 0.45 and 0.39, respectively).
Haplotype analysis identified two common haplotypes (carrying the same alleles at rs2307032,
rs4973768 and rs1357245) associated with disease risk (haplotypes B and J in Supplementary
Table 6 online). These results suggest that the association with SNPs in this region may be
driven by a single common variant correlated with rs2307032, rs4973768 and rs1357245.
However, full resequencing of the region and genotyping in larger case-control studies will be
required to provide clear evidence as to the likely causal variant(s).

The associated region on 3p24 contains two known genes, NEK10 and SLC4A7. NEK10
(Never-in mitosis related kinase 10) is one of a family of 11 NIMA (never in mitosis a) related
kinases that are involved in cell cycle control7. No function has been ascribed to NEK10, but
NEK2, NEK6, NEK7 and NEK9 seem to be involved in regulation of mitosis, whereas NEK1
and NEK8 have been associated with polycystic kidney disease8. SLC4A7 (solute carrier family
4, sodium bicarbonate cotransporter, member 7) is a potential tyrosine kinase substrate that
has been shown to have reduced expression in breast tumor sections and cell lines9. The protein
is located in the cell membrane and has been predicted to affect the pH of the micro-
environment around breast tumor cells9.

rs6504950 lies in a 300-kb LD block on 17q23.2 (Fig. 3b). The SNP itself lies in intron 1 of
STXBP4 (syntaxin binding protein 4), an insulin-regulated STX4-binding protein involved in
the control of glucose transport and GLUT4 vesicle translocation10. Other genes in the block
include COX11 (cytochrome C assembly protein 11, approximately 10 kb upstream of
rs6504950) and TOM1L1 (target of myb1-like1). Of interest, the risk allele of rs6504950 is
associated with higher levels of COX11 expression in lymphocytes in the HapMap samples
(P = 0.000014)11, but not with expression levels of either STXBP4 or TOM1L1.

Given the OR and allele frequency estimates for European populations, rs4973768 would
explain approximately 0.4% of the familial risk of breast cancer, and rs6504950 would explain
approximately 0.07% (although the true strength of the associations at these loci might be
stronger if the causal variant(s) are not in strong LD with the marker SNP). Taking these
together with previously identified loci, we estimate the fraction of the familial risk explained
by all known common susceptibility alleles to be 5.9%.

This analysis emphasizes that follow-up of tentative associations in GWAS through large
replication studies (such as the ~ 40,000 cases and ~ 40,000 controls in the current study) can
reliably identify additional susceptibility loci. However, the power to have detected these
associations with this strategy was still limited (37% for rs4973768, and less than 1% for
rs6504960, assuming a perfect tag in the initial scan), suggesting that other breast cancer loci
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should be detectable by further large GWAS, together with combined analyses of GWAS and
large-scale replication.

METHODS
Study design

Subjects, genotyping methods and analysis of the stages 1 and 2 of the GWAS have been
described previously1. The studies that participated in stages 3 and 4 are summarized in
Supplementary Table 7 online. Stage 3 comprised three studies participating in phase 2 of the
CGEMS collaboration. Stage 4 comprised 27 studies from BCAC, two further studies from
CGEMS phase 3 and data from the NHS obtained from the CGEMS GWAS. BCAC studies
provided individual-level data on disease status (invasive breast cancer case, carcinoma-in-situ
case or control), age at diagnosis or interview, ancestry group, first-degree family history of
breast cancer and bilaterality of breast cancer. Twenty-one studies provided data on estrogen
receptor (ER) status of the primary tumor. CGEMS studies provided summary-level data on
disease status and (for five studies) ER status of the tumor. All but two studies (TWBCS and
SEBCS) were conducted in Europe, North America or Australia and were comprised primarily
of subjects of European ancestry. In this analysis, subjects identified as belonging to minority
ancestry groups (non-Thai for TWBCS, non-Korean for SEBCS, non-European for other
studies) by questionnaire or genotyping were excluded.

Genotyping
Genotyping for stage 3 was conducted using a custom-designed Illumina iSelect array, as part
of the replication phase 2 of CGEMS. Twenty-eight studies in stage 4 performed genotyping
as part of BCAC (genotyping round VII). Twenty-seven studies genotyped the SNPs using a
5′ endonuclease assay (Taqman), using reagents supplied by Applied Biosystems and tested
centrally. Five studies genotyped SNPs using MALDI-TOF mass spectrometry using
Sequenom’s MassARRAY system and iPLEX technology. Each study also provided genotypes
for at least 2% of samples in duplicate, genotypes for a standard test plate (94 samples) and
sample cluster plots. We excluded individuals that failed on two or more SNPs, or 20% of the
total if more than ten SNPs were typed by that study. We excluded the data on a SNP for a
given study that failed to achieve prespecified quality control criteria: these included an overall
call rate of > 95%, duplicate concordance and concordance of test plate genotypes of > 98%,
and no evidence of deviation from Hardy-Weinberg equilibrium at P < 0.005. Two further
studies (NOR and RADT) were genotyped as part of CGEMS replication phase 3, using Taq-
man. Data on the NHS were taken from their GWAS, conducted using an Illumina Infinium
550k array (these data were included in stage 4 since they were not used in the analysis of stage
3 and the selection of the three SNPs for stage 4)2.

Analysis
Analyses were based on the risk of invasive breast cancer (cases of carcinoma-in-situ were
also genotyped in stage 4 but are not reported here). Odds ratios (ORs) were estimated using
unconditional logistic regression, adjusted for study. The ORs quoted in the text are based on
the final replication phase (stage 4), as these will be least affected by ‘winner’s curse’.
Significance levels were based on the Mantel extension test, stratified by study. Significance
levels for stage 4 only and for all stages combined are emphasized in the text. In the latter,
scores from stage 1 were given a weight of 2 to allow for the selection of cases for a strong
family history, consistent with previous analyses1. Differences in the SNP associations by ER
status were assessed using multivariate logistic regression, allowing a three-level outcome (ER-
positive, ER-negative and control), and testing for the difference in the risk estimates for ER-
positive versus ER-negative disease using a likelihood ratio test. The effect of family history
was assessed using an equivalent test. Modification by age at diagnosis was tested by fitting a
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SNP by age-group interaction term in a logistic regression model. To estimate the power to
detect each of the associations found, we computed the noncentrality parameter for the test
statistic at each stage using the per-allele relative risk and allele frequency. This was used to
estimate power on the basis of a simulated tetravariate normal distribution for the score statistics
after each stage to allow for the correlations in the test statistics. We assumed significance
thresholds of P < 0.05, P < 0.014, P < 10−5 and P < 10−7 after stages 1–4.

URLs
Breast Cancer Association Consortium, http://www.srl.cam.ac.uk/consortia/bcac/.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Summary of the study design. Stages 1 and 2 are as reported in Easton et al.1. Stages 3 and 4,
below the dotted line, are the stages conducted in this follow-up study.

Ahmed et al. Page 9

Nat Genet. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Forest plots of the per-allele OR by study for rs4973768 (left) and rs6504950 (right). Squares
represent the estimated OR for each study. Lines indicate the 95% confidence interval.
Diamonds represent the OR estimates and confidence limits for the subgroups indicated.
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Figure 3.
Maps of associated regions on 3p24 and 17q23.2. (a) HapMap CEU–derived ~ 600-kb LD
block around the 3p loci illustrating all the common SNPs (MAF 0.05). Extent of block
delimited by dotted lines. Squares on the LD block indicate the correlation (r2) between SNP
genotypes on a greyscale (darker squares = higher correlations). Approximate size and
transcripts of NEK10 (chromosome positions 2712398–27307988) and SLC4A7 (chromosome
positions 27389218–27473249) inferred from the NCBI reference assembly (solid arrow) and
Ensembl (dashed arrow) are indicated. Genotyped tag SNPs are marked by circles: black filled
circles show SNPs significantly (P < 0.05) associated with breast cancer in the SEARCH study;
black-outline-only circles show tag SNPs not associated with disease. The most strongly
associated tag SNPs, as discussed in the text, are marked by stars (1, rs1357245; 2, rs4973768;
3, rs2307032). (b) HapMap CEU–derived ~ 300-kb LD block on 17q tagged rs6504950
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(marked by star). Extent of block delimited by dotted lines. The approximate size and
transcripts associated with the three known nearby genes COX11, TOM1L1 and STXBP4 as
inferred by NCBI are indicated.
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