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Summary
Regression models are often used to test for cause-effect relationships from data collected in
randomized trials or experiments. This practice has deservedly come under heavy scrutiny, since
commonly used models such as linear and logistic regression will often not capture the actual
relationships between variables, and incorrectly specified models potentially lead to incorrect
conclusions. In this paper, we focus on hypothesis tests of whether the treatment given in a
randomized trial has any effect on the mean of the primary outcome, within strata of baseline
variables such as age, sex, and health status. Our primary concern is ensuring that such hypothesis
tests have correct Type I error for large samples. Our main result is that for a surprisingly large
class of commonly used regression models, standard regression-based hypothesis tests (but using
robust variance estimators) are guaranteed to have correct Type I error for large samples, even
when the models are incorrectly specified. To the best of our knowledge, this robustness of such
model-based hypothesis tests to incorrectly specified models was previously unknown for Poisson
regression models and for other commonly used models we consider. Our results have practical
implications for understanding the reliability of commonly used, model-based tests for analyzing
randomized trials.
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1. Introduction
Data sets from randomized, clinical trials are often analyzed using models such as linear
regression, logistic regression, or Poisson regression models. The validity of conclusions
drawn from model-based analyses generally relies on the assumption that the model is
correctly specified, that is, the assumption that the statistical model accurately represents the
true data generating distribution. Robins (1994, 2004), Freedman (1997, 2007a), and Berk
(2004), among others, have drawn much needed attention to the fact that when this
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assumption is false it may lead to false conclusions. Furthermore, in medical studies and
studies involving biological systems in general, due to the complexity of relationships
between variables, simple regression models may fail to accurately represent the true
relationships between these variables. It may not even be possible to detect when a model is
incorrectly specified, since for the sample sizes available in many applications, diagnostics
of model fit have good power to detect only a limited number of the potential ways that a
model may fail to be correctly specified (Freedman, 2005). It is therefore important to
understand when reported results based on regression models will be reliable, even when the
models being used are incorrectly specified.

In this paper, we examine the properties of incorrectly specified regression models (also
called misspecified models) when they are used in hypothesis tests in randomized trials. The
null hypothesis we consider throughout the paper is that the treatment being evaluated has
no effect on mean outcome within subpopulations defined by a given set of baseline
variables. For example, in a randomized trial of an HIV vaccine, this null hypothesis could
be that the vaccine has no effect on HIV infection rates for subpopulations defined by age,
study site, and presence of other sexually transmitted infections measured at baseline. A
standard technique for testing such a hypothesis involves fitting a regression model for the
mean outcome given the treatment and baseline variables. The null hypothesis is rejected at
level 0.05 if the 95%-confidence interval for the coefficient corresponding to the treatment
variable in this model excludes 0. When the model is correctly specified, such a test has
asymptotically correct Type I error, meaning that the probability of rejecting the null
hypothesis when it is in fact true converges to a value at most 0.05 as sample size goes to
infinity.

However, as argued by Robins (2004), for some classes of models, when the regression
model is incorrectly specified, Type I error may be quite large even for large sample sizes. It
has been an open problem to determine which models have this problem, and which models
are guaranteed to have asymptotically correct Type I error, even when these models are
misspecified.

Our main contribution is showing for a surprisingly large class of commonly used regression
models, that standard hypothesis tests based on these models (but using robust variance
estimators) are protected from the above problem. That is, for this large class of regression
models, the corresponding hypothesis tests are guaranteed to have asymptotically correct
Type I error, regardless of whether the actual data generating distribution behaves according
to the model or not. This is a non-trivial result, since the regression models we consider will
in general be incorrectly specified even under the null hypothesis of no mean treatment
effect within strata of baseline variables. Our results enable the use of the model-based tests
described in Section 4, without fear of inflated Type I error, at least asymptotically, under
the assumptions given in Section 3.

Examples of this robustness to misspecified models, for some types of linear regression
models, have been shown in (Robins, 2004; Freedman, 2007a). We show that this property
of robustness to incorrectly specified models holds for two very large classes of commonly
used models. First, we show it holds for a large class of linear regression models and give a
simple procedure for augmenting any linear model to ensure it has this robustness property.
Second, we show the robustness property holds for many commonly used models including
logistic regression models, probit regression models, binary regression models with
complementary log-log link, and Poisson regression models; the main requirement is that the
linear part in such models be of a certain commonly used form that we describe in Section 5.
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Important work has been done using semiparametric methods to construct estimators and
hypothesis tests that are robust to incorrectly specified models in the setting of randomized
trials, for example (Robins, 1986, 1994; van der Laan and Robins, 2003; Tsiatis et al., 2007;
Zhang et al., 2007; Moore and van der Laan, 2007; Rubin and van der Laan, 2007). The
emphasis of this paper, in contrast, is on standard regression-based methods. Regression-
based methods have the advantage that they may be more familiar to many statisticians, who
already have much expertise implementing regression analyses in statistical software.

Throughout the paper, we assume the true data generating distribution, which is unknown to
the experimenter, may not be in the experimenter's model. We only make the following
three assumptions on the data generating distribution: treatment is randomly assigned, all
variables are bounded, and each subject's data are independent and identically distributed
(i.i.d.) from an unknown distribution. The first assumption will be true in all randomized
trials. The second holds for most variables of interest. The third assumption, also made in
(Robins, 2004; Tsiatis et al., 2007; Zhang et al., 2007; Moore and van der Laan, 2007), will
only be true in some types of randomized trials; we explain this further in the discussion
section. The focus of this paper is hypothesis testing, and we note that our robustness results
do not, in general, imply analogous results for estimation; we discuss this issue in Section 8.

In the next section, we give an example that typifies how regression models are used to draw
conclusions from randomized trials, and we show how our results apply to this example. We
describe the hypothesis testing problem and robustness property considered in this paper in
Section 3. In Sections 4 and 5 we give our main results in terms of robustness of certain
regression-based hypothesis tests to incorrectly specified models. In Sections 6 and 7, we
use simulations and a data example from a recently completed randomized trial (Padian et
al., 2007) to compare the performance of regression-based hypothesis tests to other robust
methods. We discuss the practical implications of our results in Section 8 and defer all
proofs to the Web Appendices. (The URL for the Web Appendices is given at the end of the
paper.)

2. Example of a Regression-Based Hypothesis Test in a Randomized Trial
To illustrate how our results are motivated by issues arising in the analysis of clinical trials,
we consider the recently completed “Randomized Trial of Inhaled Cyclosporine in Lung-
Transplant Recipients” (Iacono et al., 2006). The treatment was an inhaled drug to help
prevent rejection after lung transplantation. Half the subjects were randomly assigned a
placebo drug. The primary outcome was the number of severe (grade 2 or higher) rejection
events per year of follow-up time. We refer to this count using the variable REJECTIONS.
In one of the main analyses, a Poisson regression model was used to test for differences in
mean outcome between the treatment group and control group, within subpopulations
defined by several baseline variables. These baseline variables included indicators of
whether there was a serologic mismatch between donor and recipient (denoted by V1), and
of whether a rejection episode had occurred before the first inhaled treatment was given
(denoted by V2). We denote the treatment group by A = 1 and the control group by A = 0.
The Poisson model specifies that the logarithm of the conditional mean of the variable
REJECTIONS given treatment and baseline variables has the form:

(1)

(Throughout the paper, log refers to the natural logarithm.) The model also specifies that
conditioned on A, V1, V2, the variable REJECTIONS has a Poisson distribution.
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This Poisson model was used to carry out a hypothesis test of whether there was any mean
treatment effect within strata of baseline variables V1, V2. First, the model was fit using
maximum likelihood estimation, giving an estimate of the coefficient vector β. Then, if the
95% confidence interval around the estimate for the coefficient β1 were found to exclude 0,
it would be concluded that there was a statistically significant difference in the outcome due
to the treatment (inhaled cyclosporine). (In the case of this trial, the observed difference
turned out not to be statistically significant.)

Standard arguments to justify the validity (in terms of Type I error) of such model-based
hypothesis tests rely on the model being correctly specified, at least approximately. In the
above example, there is no a priori reason to think this should be the case, and no reason
based on subject-knowledge about rejection events in lung transplant recipients is given in
the paper. Thus, it may be the case that the above model is not correctly specified. Our goal
in presenting this example is not to criticize a particular analysis. We merely wanted to
illustrate the commonly used practice of model-based hypothesis tests in randomized trials,
and point out the potential for models to be misspecified. Freedman (2007a) provides many
other examples of randomized trials in which regression models are used.

Our main result provides asymptotic guarantees for Type I error without having to assume
the model is correctly specified. In particular, our results imply that the above hypothesis
test will have asymptotically correct Type I error, if the confidence interval is instead
computed using the sandwich estimator of Huber (1967) (described in detail in Web
Appendix B), and if the subjects represent a random sample from a larger population. In this
case, with probability tending to 0.95, for large sample sizes, one is protected against falsely
concluding there is a mean effect of the treatment within some stratum of the baseline
variables V1 and V2, when no such effect exists, even when the model used is misspecified.

3. Notation, Assumptions, Hypothesis Testing Problem, and Robustness
Property

We now explain the underlying assumptions and goal of the hypothesis testing problem that
we address in the remainder of the paper. We start by introducing our notation. Let Y
represent the outcome of interest, A represent the treatment assignment, and V represent a
vector of baseline variables such as age, sex, and past health status. We assume there are k
different treatments being evaluated in the randomized trial, so that A takes values in {0,…,k
− 1}; many randomized trials have k = 2, corresponding to a single treatment (A = 1) being
compared to a control (A = 0). We consider regression models m(A, V|β) of the mean
outcome given treatment and baseline variables: E(Y|A, V). Some of these models (e.g.
Poisson regression) specify additional characteristics of the distribution of Y. As a technical
condition, we assume all variables are bounded1. We also note that all of our results hold
even when the regression model used (such as a Poisson regression model) assumes that
variables are unbounded. This is because, as discussed below, our results hold whether or
not the assumptions underlying the regression model are true. Our results, however, only
guarantee asymptotically correct Type I error, and we note that when the regression model
used is a poor approximation to the true data generating distribution, this may result in low
power, as discussed in Section 6.

Since we never assume that the model m(A, V|β) is correctly specified, it may be better to
think of it as a “working model”; that is, since we never assume the data generating
distribution obeys the constraints of the model, m(A, V|β) can be considered merely as a

1Boundedness of variables is used in our proofs to establish integrability of the log-likelihood and its first two derivatives. We find the
boundedness assumption natural in that most variables in practice will have minimum and maximum possible values.
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mathematical formula given as input, along with the data, to a hypothesis testing procedure.
For example, the Poisson model (1) in the previous section can be viewed as a working
model, that is, simply a formula used by statistical software to generate a 95%-confidence
interval for the coefficient β1; this confidence interval is used to decide whether to reject the
null hypothesis or not, depending on whether it excludes 0. The purpose of this paper is to
prove guarantees for the Type I error of such hypothesis testing procedures, without
assuming the model is correctly specified.

The only assumptions we make on the data generating distribution are that each subject's
data is i.i.d. from an unknown distribution (which is a common assumption in the
superpopulation inference framework, further discussed in Web Appendix F), that all
variables are bounded, and that treatments are randomly assigned. We also prove our results
under a modified set of assumptions that better represents the actual way in which data is
generated in randomized trials; in particular, these modified assumptions allow for treatment
being randomly assigned to fixed proportions of the study subjects, instead of being
assigned i.i.d. This modified set of assumptions is given in Web Appendix D.

Our focus throughout the paper is testing the null hypothesis of no mean treatment effect
within strata of a set of baseline variables V. More formally, we define our null hypothesis:

(2)

The above expectations are taken with respect to the true data generating distribution.

Because we assume the data come from a randomized trial, E(Y|A = a, V = v) has a causal
interpretation as the mean outcome that would have been observed had everyone with
baseline variables V = v in the population from which the trial participants were drawn been
assigned treatment A = a. Cast in this light, our null hypothesis is that the treatment has no
effect on the mean outcome, within strata of baseline variables.

Note that this null hypothesis is weaker than the null hypothesis of no effect at all of
treatment on the distribution of the outcome within such strata2; our null hypothesis only
posits that the mean of the outcome within such strata is not affected by which treatment is
administered. However, in the special case that Y is binary, so that the conditional mean of Y
characterizes the entire conditional distribution of Y, our null hypothesis simplifies and is
equivalent to no effect at all of treatment on the distribution of the outcome within strata of
V. In this case, certain permutation tests can also be used to test our null hypothesis; we will
compare the power of our regression-based tests to a permutation test of Rosenbaum (2002)
in Section 6. Throughout this paper, we are concerned with testing the null hypothesis (2);
however, in Web Appendix C we also prove a result for testing a different type of null
hypothesis–that of no effect modification by baseline variables.

The property we will prove for hypothesis tests based on many commonly used regression
models is the following:

(3)

We say a hypothesis test at level α is asymptotically robust to misspecification if for any data
generating distribution satisfying the above null hypothesis (2), the asymptotic probability of

2In our framework, we say there is no effect at all of treatment on the distribution of the outcome within strata of V if the treatment A
is mutually independent of baseline variables V and outcome Y.
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rejecting the null hypothesis is at most α. If a hypothesis test satisfies this property at all
levels α, we simply say it is asymptotically robust to misspecification.

4. Main Result
Our main result is that for a large class of commonly used regression models, a type of
hypothesis test (that we describe in detail below) based on such models has the robustness
property (3). We make the following assumptions:

(A1) The data are generated as described in Section 3.

(A2) A regression model m(A, V|β) in one of the classes given in Section 5 below is
used. For example, if the outcome is dichotomous, one could use the logistic regression
model

(4)

(A3) βi is a pre-specified coefficient of a term containing the treatment variable A in the
linear part of the model chosen in (A2). For example, if using the logistic model (4),
one could specify either β1 or β3. One can also use more than one of these coefficients.
For example, one could use both β1 and β3 if using the logistic model (4).

Consider the following hypothesis test:

(*)

For concreteness, we consider the case of testing at level α = 0.05. The parameter β is
estimated with ordinary least squares estimation if the model used is linear; otherwise it is
estimated with maximum likelihood estimation. The standard error is estimated by the
sandwich estimator, which can easily be computed with standard statistical software; we
describe the sandwich estimator in detail in Web Appendix B. If a single coefficient βi is
chosen in (A3), then the null hypothesis of no mean treatment effect within strata of V is
rejected at level 0.05 if the estimate for βi is more than 1.96 standard errors from 0. If
several coefficients are chosen in (A3), one can perform a similar test based on a Wald
statistic that uses the estimates of these coefficients along with their covariance matrix based
on the sandwich estimator; we describe this procedure in Web Appendix B.

We note that in some cases, such as when the design matrix is not full rank or the maximum
likelihood estimator fails to converge, the estimators we consider will be undefined. We
therefore specify that regardless of whether the estimate for the coefficient βi is more than
1.96 standard errors from 0, we always fail to reject the null hypothesis if the design matrix
has less than full rank or if the maximum likelihood algorithm fails to converge. Since
standard statistical software (e.g. Stata or R) will return a warning message when the design
matrix is not full rank or when the maximum likelihood algorithm fails to converge, this
condition is easy to check.

The main result of this paper is the following theorem (proved in Web Appendix D):

Theorem:
Under assumptions (A1)-(A3), the hypothesis test (*) has the robustness property (3). That
is, it has asymptotic Type I error at most 0.05, even when the model is misspecified.
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We point out that the above theorem is non-trivial, since the regression models in the two
classes we describe in Section 5 below will generally be incorrectly specified if V is high-
dimensional, under the null hypothesis (2). This follows since even under this null
hypothesis of E(Y|A, V) = E(Y|V), a correct model of E(Y|V) would have to exactly capture
how the mean of the outcome Y depends on the baseline variables V; when V is high-
dimensional, this is generally impossible unless the mechanisms that determine Y have
simple, well understood functional forms.

We briefly outline the main steps in the proof of the above theorem; readers who are mainly
interested in the application of this method in practice may prefer to skip to Sections 5-7.
The full proof of the above theorem is given in Web Appendix D. The main work of the
proof is showing that under the assumptions (A1)-(A3) above, the estimate β ̂i of the
coefficient βi is asymptotically normal, and converges to 0 under the null hypothesis (2).
Once this is proved, the theorem follows from the fact that robust variance estimates
computed by the sandwich estimator are asymptotically correct even for misspecified
models. That β ̂i is asymptotically normal follows from a standard result characterizing the
convergence of maximum likelihood estimators for generalized linear models, as given in
Theorem 5.23 in (van der Vaart, 1998, pg. 53). It remains, then, to show that under the null
hypothesis (2), β ̂i converges to 0 as sample size goes to infinity. The proof of this fact is the
main technical contribution of this paper. It relies on A being independent of V (as is the
case in a randomized trial), on the null hypothesis (2), and on the exponential form of the
likelihood for generalized linear models.

5. Classes of Regression Models that Guarantee the Robustness Property
We now describe two classes of regression models that can be used in the hypothesis test
described in the previous section; when any of these models is used, the resulting hypothesis
test is guaranteed to have the robustness property (3). We emphasize that these models are
considered ”working models,” in that we never assume they are correctly specified. We first
give a class of linear models and then give a class of generalized linear models. The choice
of model can have a large effect on the power of the hypothesis test, which we explore in
Section 6 below and in Web Appendix A. Note that the choice of which model to use must
be made prior to looking at any of the data from the randomized trial. Otherwise, the risk of
such data snooping would be that Type I error could be increased.

5.1 Linear Models
We exactly characterize the class of linear models for which the hypothesis test (*) has a
model with the robustness property (3). Before giving a formal characterization of this class
in (5) below, we give an informal description and several examples. Consider the special
case of A a binary treatment, taking values 0 and 1. Roughly speaking, a linear model is in
our class if for every term f(A, V) in the model, the terms f(1,V) and f(0,V) are contained in
the model as well, or else these corresponding terms must be linear combinations of other
terms in the model. For example, the linear model

is in our class, since corresponding to the A term, we also have an intercept term. Also, the
following models are in our class:
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since for the term AV we have the corresponding main term V, and for the term AV2, we
have corresponding term V2. The following model

does not contain a term (or linear combination of terms) corresponding to setting A = 0 in
e(2A−1)V, is not in our class of models, and does not have the robustness property (3).
However, if we set A = 0 in e(2A−1)V, producing the term e−V, and add this term to the above
model, we get the following model that is in our class:

and so has the robustness property (3). This illustrates a general method by which one can
add terms to any existing linear model to obtain a model with the robustness property (3).

In the above models m1,m2,m3, all terms containing the treatment variable A are a product of
a function of A and a function of the baseline variables V. The class of linear models of this
form, in which for each such product term f(A)g(V) the model also contains the term g(V),
was shown by Robins (2004) to have the robustness property (3). Our result extends Robins'
class to a larger class of linear models which we formally define next. This larger class
includes model m5 for example. We show in Web Appendix D that this larger class is the
largest possible, in that it contains all linear models having robustness property (3).

We now formally define our class of linear models to be all models of the form:

(5)

where {fj,gk} can be any functions bounded on compact sets such that for each term fj(A, V),
we have E(fj(A, V)|V) is a linear combination of terms {gk(V)}. We denote the parameter
vector (β(0),β(1)) simply by β. Since our setting is a randomized trial in which the
probabilities of treatment assignment A are independent of baseline variables V and are set
by the experimenters, one can always directly compute the conditional expectations E(fj(A,
V)|V) = Σa fj(a, V)p(a).

The theorem in Section 4 states that when the hypothesis test (*) uses a linear model of type
(5), it has the robustness property (3), which guarantees asymptotically correct Type I error
for testing the null hypothesis (2) even when the model is misspecified. The converse is also
true. That is, when the hypothesis test (*) uses a linear model not having the property
described just after (5), but for which the terms are linearly independent, then it will not
have the robustness property (3). This is proved in Web Appendix D.

5.2 Generalized Linear Models
In this section we define our class of generalized linear models for which the hypothesis test
(*) has the robustness property (3). Before giving a formal characterization of our class of
generalized linear models in (6) below, we give an informal description and some examples.
Consider the following types of generalized linear models: logistic regression, probit
regression, binary regression with complementary log-log link function, and Poisson
regression with log link function. A generalized linear model is in our class if it is of one of
these types, and if the linear part is of a commonly used form defined precisely in (6) below.
We now give specific examples of generalized linear models in this class. We show just a

Rosenblum and van der Laan Page 8

Biometrics. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



few of the many possibilities. Note that the linear parts (for example, β0 + β1A + β2V) shown
in any of the models below can be used in any of the other models.

Examples of Generalized Linear Models for which Robustness Property 3 Holds:

• Logistic Regression: For Y binary and logit(x) = log(x/(1 − x)), the following model
for P(Y = 1|A, V):

• Probit Regression: For Y binary and Φ(x) the cumulative distribution function of
the standard normal, the following model for P (Y = 1|A, V):

• Binary Regression with complementary log-log link function: The complementary
log-log function is ζ(μ) = log(− log(1 − μ)). The following model for P (Y = 1|A,
V):

• Poisson Regression: For Y a “count” (that is, Y a nonnegative integer), the Poisson
(log-linear) model:

We now give a formal description of the generalized linear models in our class. Consider the
following types of generalized linear models3: logistic regression, probit regression, binary
regression with complementary log-log link function, and Poisson regression with log link
function. We define our class of generalized linear models to be any generalized linear
model from the previous list, coupled with a linear part of the following form:

(6)

for any measurable functions {fj,gj,hk} such that for all j, there is some k for which gj(V) =
hk(V); we also assume the functions {gj,hk} are bounded on compact subsets of ℝq, where V
has dimension q. Note that (6) is more restrictive than the constraint (5) on linear models
above, but includes many models used in practice (such as the models given as examples
above). A model being in this class is a suffcient condition, but not a necessary condition,
for the hypothesis test (*) to have the robustness property (3).

Our results also hold for other families of generalized linear models, such as Gamma and
Inverse-Gaussian models with canonical link functions, but certain regularity conditions4 are
needed for the robustness property (3) to hold in these cases. For the models described
above, no regularity conditions beyond those given just after (5) and (6) are needed.

3See McCullagh and Nelder (1998) for more details on generalized linear models.
4These regularity conditions are primarily technical, and result from the fact that for Gamma and Inverse-Gaussian models, the log-
likelihood is only defined when the linear part η(A, V|β) in (6) above is strictly positive.
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6. Simulation Studies
We use simulations to compare the power of the regression-based method of this paper to
other hypothesis testing methods. Model-based hypothesis tests have been shown to
sometimes have more power than the intention-to-treat based hypothesis test (Robinson and
Jewell, 1991; Hernández et al., 2004; Moore and van der Laan, 2007). However, depending
on the data generating distribution and working model used, model-based hypothesis tests
can also have lower power than the intention-to-treat based test. In this section, we examine
the power of six robust methods under various data generating distributions. We only
present the results of one set of simulations that are representative of the findings from a
larger set of simulations; this larger set of simulations is given in Web Appendix A.

For simplicity, we consider randomized experiments with binary outcome Y, two possible
treatments A = 0 and A = 1, and a continuous-valued baseline variable V. The hypothesis
being tested is that of no mean treatment effect within strata of this baseline variable, as
formally defined in (2). Since the robustness property (3) is the main focus of this paper, we
chose to compare the method of this paper to other methods that also have this robustness
property. Below, we give summaries of the methods we will be comparing, each of which
has the robustness property (3); detailed descriptions are given in Web Appendix A.

Hypothesis Testing Methods
M0: Regression-based test—This is the hypothesis testing method (*) described in
Section 4. The estimated coefficients corresponding to all terms in the working model that
contain the treatment variable are combined into a Wald statistic, as described in Web
Appendix B.

M1: Intention-to-treat based test—Estimate the risk difference by taking the difference
between the empirical means of the two treatment groups. Reject the null hypothesis
whenever the 95% confidence interval for the estimated risk difference excludes 0.

M2: Cochran-Mantel-Haenszel test—(Cochran, 1954; Mantel and Haenszel, 1959)
First, the baseline variable is discretized. Then, the Cochran-Mantel-Haenszel test is run.

M3: Permutation test—(Rosenbaum, 2002) First, the binary outcome Y is regressed on
the baseline variable V using logistic regression. Pearson residuals for each observation are
calculated based on the model fit. Then, the residuals for observations in which A = 1 are
compared to those for A = 0 using the Wilcoxon rank sum test.

M4: Targeted Maximum Likelihood based test—(Moore and van der Laan, 2007;
van der Laan and Rubin, 2006) The risk difference is estimated, adjusting for the baseline
variable using the targeted maximum likelihood approach; the null hypothesis is rejected if
the 95% confidence interval for the risk difference excludes 0.

M5: Augmented Estimating Function based test—(Tsiatis et al., 2007; Zhang et al.,
2007) The log odds ratio is estimated, using an estimating function that is augmented to
adjust for the baseline variable; the null hypothesis is rejected if the 95% confidence interval
for the log odds ratio excludes 0.

In all the scenarios we consider below, the data consist of 200 independent, identically
distributed samples drawn from a data generating distribution P. Each observation consists
of a single baseline variable V, a binary treatment A, and a binary outcome Y. First, we
generate the baseline variables V from a mixture of two normal distributions with variance 1
and with probability 1/2 of being centered at 0 or 1. The randomized treatment A is then
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generated, with probability 1/2 of being 0 or 1, independent of V. Lastly, the outcome Y is
generated according to a logistic regression model for the probability that Y = 1 given
treatment A and baseline variable V. We consider three different such logistic regression
models, each of which leads to a different data generating distribution. The first contains just
the treatment: P(Y = 1|A, V) = logit−1(A); the second contains the treatment and the baseline
variable as main terms P(Y = 1|A, V) = logit−1(A + V); and the third contains both main
terms and an interaction term P(Y = 1|A, V) = logit−1(A + V − AV). This completes the
description of the three data generating distributions used below, which we call data
generating distributions 1, 2, and 3, respectively.

We next define the three working models used by the above methods in our simulations.
Methods M0, M4, and M5 require working models for the probability that the outcome Y
equals 1, given the treatment A and the baseline variable V. We define Working Model 1 as

(7)

This is a correctly specified model for the data generating distributions above. Working
Models 2 and 3 are misspecified models. Working Model 2 has the wrong functional form,
and Working Model 3 uses a “noisy” version of the baseline variable V (to represent the
effect of measurement error). These working models are fully described in Web Appendix
A. We point out that methods M1 and M2 do not use working models. Also, the
permutation-based method M3 requires working models for the probability that the outcome
Y equals 1, given just the baseline variable V; we define working models for method M3,
analogous to those defined above, in Web Appendix A, where we also give the R code for
our simulations.

Table 1 below gives the approximate power, based on 100,000 Monte Carlo simulations, of
methods M0-M5, under the three data generating distributions and three working models
defined above. The columns correspond to data generating distributions 1, 2, and 3,
respectively. The rows are in blocks corresponding to Working Models 1, 2, and 3,
respectively. Starting in the leftmost column, we see that all methods have roughly the same
power (about 90%), except method M0 (regression-based method of this paper) and
sometimes M3 (permutation-based) have less power (as low as 81%). As one goes from left
to right in the table, corresponding to going from data generating distribution 1 to 2 to 3, all
methods except M0 consistently lose power. This is because both the risk difference and
odds ratio decrease as we go from data generating distribution 1 to 2 to 3, and all methods
except M0 generally have less power at alternatives for which the risk difference and odds
ratio are smaller. Method M0, in contrast, has more power than the other methods at data
generating distribution 3 (representing interaction between the treatment and baseline
variable). Method M0 is better able, at least in these simulation examples and the
simulations in Web Appendix A, to take advantage of the interaction effect, since method
M0 is based on estimated regression coefficients corresponding to both the main term A and
the interaction term AV.

Comparing the power of methods M0-M5 when using correctly specified Working Model 1
vs. misspecified Working Models 2 and 3, we see that misspecification reduces the power of
all methods (except the intention-to-treat method M1, which completely ignores baseline
variables). See Web Appendix A for more simulations, in which the power of methods M0-
M5 is compared for different sample sizes, data generating distributions, and working
models. Also in Web Appendix A, we consider the following: Type I error at various sample
sizes, the impact of using different sets of coefficients in hypothesis test (*), and the
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possibility of combining several test statistics based on different methods or working
models.

7. Data Example from Randomized Trial
We apply the regression-based hypothesis test (*) to the data from a recently completed
randomized trial. The Methods for Improving Reproductive Health in Africa (MIRA)
randomized trial (Padian et al., 2007) investigated the effect of diaphragm and lubricant gel
use in reducing HIV infection rates among susceptible women. 5,045 women were randomly
assigned either to the active treatment arm (which we call the “diaphragm arm”) or to the
control arm. By the end of the trial, there were 158 HIV infections in the diaphragm arm and
151 HIV infections in the control arm. The intention-to-treat analysis for the risk difference
yielded the 95% confidence interval (−0.02, 0.01). This is strong evidence that the
intervention has little or no effect on overall HIV rates, but the question remained as to
whether the diaphragm intervention may have an effect for some high-risk subpopulations.
The principal investigators identified five baseline variables they thought indicative of HIV
risk: age, condom use reported at baseline, prevalence of HSV infection, a composite
indicator of subject risk behavior, and a composite indicator of partner risk5; we denote
these variables by V1, V2, V3, V4, V5, respectively. Traditional subgroup analyses, which
would test for an effect within subgroups defined by each such variable, would require
adjustment for multiple testing. A single hypothesis test can have more power. We show
next how to use the regression-based method of this paper to carry out such a single test. We
note that since we are testing this hypothesis post-hoc (after having seen the data), we must
interpret any results with much caution; the goal here is to illustrate the application of the
regression-based method of this paper in a real data example. In general, one should pre-
specify such an analysis as a secondary analysis in the study protocol.

We now describe how a hypothesis test of type (*) from Section 4 can be applied to test the
null hypothesis of no mean treatment effect within strata of the above baseline indicators of
HIV risk. To carry out hypothesis test (*), we first need to specify a regression model for the
probability of HIV infection by the end of the trial, given treatment arm A and baseline
variables V1, V2, V3, V4, V5. We used the logistic regression model

(8)

We also need to pre-specify a set of coefficients corresponding to terms containing the
treatment variable, to use in the test. We used all such coefficients (i.e. β1, β7, β8, β9, β10,
β11), but in general the question of which set of coefficients to choose in order to have the
most power is an open problem and area for future research that we discuss in Web
Appendix A. This logistic model was fit using standard software (see R code in Web
Appendix E), yielding coefficient estimates and robust standard errors as given in Table 7 in
Web Appendix E. Based on these estimated values, we constructed a Wald statistic, as
described in Web Appendix B. This resulted in p-value 0.97. We note that the p-value is
quite similar when using link functions other than the logit link; for the probit link, the p-
value is 0.98, and for the complementary log-log link, the p-value is 0.97. The p-value when
using a logistic regression model containing only main terms is 0.67.

The hypothesis test just described has asymptotically correct Type I error, even if the
logistic regression model (8) is misspecified, under the assumptions given in Sections 3 and

5The indicators of subject risk behavior and partner risk are defined in Table 3 on page 7 of (Padian et al., 2007).
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4. Had this test rejected the null hypothesis, this would have been evidence that within some
stratum of the variables V1, V2, V3, V4, V5 (which are thought to indicate HIV risk), the
diaphragm intervention has an effect. This information could be useful in assessing whether
the diaphragm and gel provide protection against HIV in at least some circumstances, which
would be an important result (for example, suggesting the potential role of the cervix, which
a latex diaphragm is designed to block, in HIV transmission).

We now consider applying the alternative methods M1-M5 given in Section 6 to this data
example. Given that the intention-to-treat analysis effectively rules out there being a strong
overall mean effect of the intervention, it does not make sense to apply methods M2, M4, or
M5; this follows since these methods have low power at alternatives for which the overall
risk difference is close to 0 and the overall odds ratio is close to 1, which is the case in this
data set. It does make sense to apply method M3 (the permutation-based test of Rosenbaum
(2002)), since this method can have adequate power at alternatives where there is no overall
mean effect, as long as there is a strong effect within some stratum of baseline variables. We
applied method M3 (see Web Appendix E for R code), resulting in p-value 0.88.

8. Discussion
Regression models are often used to analyze randomized trials. However, in medical studies,
due to the complexity of relationships between variables, simple regression models may fail
to accurately represent the true relationships between these variables. Thus, it is important to
know whether hypothesis tests based on regression models will be robust to misspecification
of these models. Our contribution in this paper is showing that for many commonly used
regression models, hypothesis tests based on these models are guaranteed to have
asymptotically correct Type I error, even when the model is incorrect, in certain types of
randomized trials. We showed in Section 5 how to augment linear models so that they will
have this robustness property. Our results provide a strong motivation for using robust
variance estimates whenever model-based hypothesis tests are used.

A limitation of our results is that they are asymptotic, guaranteeing correct Type I error only
in the limit as sample size goes to infinity. We examine Type I error of the methods
considered in this paper (M0-M5 from Section 6), for sample sizes ranging from 200 to 400
subjects, in Web Appendix A; for all the methods, and for all the data generating
distributions and working models we considered, the Type I error at nominal level α = 0.05
was always at most 0.06, and most often was at most 0.05.

Another limitation of our robustness results is that they are only proved for data obtained
from randomized trials in which, in addition to treatment being randomly assigned to study
subjects, the data on each subject is (approximately) i.i.d. from an unknown distribution.
This is a limitation since the subjects actually recruited in medical randomized trials are
screened for entry criteria, and thus in many cases may best be considered a convenience
sample (Freedman et al., 2007, appendix to chap. 27). We conjecture that our results will
hold in such a setting, under the weaker set of assumptions made in (Freedman, 2007b), but
this is an open problem. We note, however, that our assumption that subject data is
approximately i.i.d. may not be as restrictive as it seems. For example, subject data may be
approximately i.i.d. not from a distribution corresponding to the general population, but
from a distribution corresponding to those in a population who meet the entry criteria of a
trial and who would be willing to participate.

An alternative set of methods that adjust for baseline variables in randomized experiments
and that use regression models as working models, are the exact permutation tests of
Rosenbaum (2002). These methods have been shown to have correct Type I error, even
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when working models are misspecified, but under a different framework (called
randomization inference) than used in this paper. We give a detailed comparison of the
assumptions of this paper and the randomization inference assumptions of Rosenbaum
(2002) in Web Appendix F. Because of this difference in assumptions, it is in general
difficult to devise a fair comparison of our methods and the randomization inference
methods of Rosenbaum (2002). However, in the special case in which the outcome is binary,
the assumptions of this paper simplify (as described near the end of Section 3) and a direct
comparison becomes possible. We were therefore able to include a permutation test of
Rosenbaum (2002) in our simulation study comparing the power of various methods in
Section 6. In our simulation study, the permutation test (M3) sometimes had more power
and sometimes had less power than the regression-based test (M0) of this paper, depending
on the underlying data generating distribution.

We caution that the results in this paper apply to testing the hypothesis of no mean treatment
effect within strata of selected baseline variables, but our results do not apply to estimation
of these treatment effects. The reason is that under the alternative hypothesis, misspecified
models can lead to distorted effect estimates. Such distorted estimates, however, can be
beneficial for power of hypothesis tests when the distortion makes effect estimates more
extreme (Robinson and Jewell, 1991). It is an open question how to decide which models
will provide the most power for specific alternative hypotheses, assuming models may be
misspecified.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1

Power of methods M0-M5. Sample size is 200 subjects. The data generating distributions corresponding to
each column and the working models used are described in Section 6. “C-M-H test” below is an abbreviation
for “Cochran-Mantel-Haenszel test.”

Power When Data Generated by:

Logistic Regression Logistic Regression Logistic Regression

Treatment Main Terms Main + Interaction

Term Only: A Only: A, V Terms: A, V, AV

Hypothesis

Testing Methods

Using Working Model 1 (Correctly Specified)

M0: Regression Based 0.86 0.71 0.93

M1: Intention-to-Treat 0.93 0.76 0.52

M2: C-M-H Test 0.90 0.79 0.49

M3: Permutation Based 0.92 0.79 0.64

M4: Targeted MLE 0.92 0.83 0.54

M5: Aug. Estimating Fn. 0.92 0.83 0.53

Using Working Model 2 (Misspecified Functional Form)

M0: Regression Based 0.85 0.65 0.60

M1: Intention-to-Treat 0.93 0.76 0.52

M2: C-M-H Test 0.91 0.73 0.48

M3: Permutation Based 0.81 0.67 0.48

M4: Targeted MLE 0.93 0.76 0.52

M5: Aug. Estimating Fn. 0.92 0.76 0.52

Using Working Model 3 (Misspecified Due to Measurement Error)

M0: Regression Based 0.85 0.65 0.62

M1: Intention-to-Treat 0.93 0.76 0.52

M2: C-M-H Test 0.90 0.74 0.48

M3: Permutation Based 0.81 0.69 0.52

M4: Targeted MLE 0.92 0.78 0.52

M5: Aug. Estimating Fn. 0.92 0.78 0.52

Biometrics. Author manuscript; available in PMC 2010 September 1.


