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Abstract
Alterations in mitochondrial biology have long been implicated in neurotoxin, and more recently,
genetic models of parkinsonian neurodegeneration. In particular, kinase regulation of mitochondrial
dynamics and turnover are emerging as central mechanisms at the convergence of neurotoxin,
environmental and genetic approaches to studying Parkinson's disease (PD). Kinases that localize to
mitochondria during neuronal injury include mitogen activated protein kinases (MAPK) such as
extracellular signal regulated protein kinases (ERK) and c-Jun N-terminal kinases (JNK), protein
kinase B/Akt, and PTEN-induced kinase 1 (PINK1). Although site(s) of action within mitochondria
and specific kinase targets are still unclear, these signaling pathways regulate mitochondrial
respiration, transport, fission-fusion, calcium buffering, reactive oxygen species (ROS) production,
mitochondrial autophagy and apoptotic cell death. In this review, we summarize accelerating
experimental evidence gathered over the last decade that implicate a central role for kinase signaling
at the mitochondrion in Parkinson's and related neurodegenerative disorders. Interactions involving
α-synuclein, leucine rich repeat kinase 2 (LRRK2), DJ-1 and parkin are discussed. Converging
mechanisms from different model systems support the concept of common pathways in parkinsonian
neurodegeneration that may be amenable to future therapeutic interventions.
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1. Introduction
The mitochondrion plays a central role in most eukaryotic metabolic processes. In addition to
serving as “powerhouses” to produce the majority of cellular ATP, mitochondria buffer
intracellular calcium levels, regulate lipid metabolism, integrate metabolic and apoptotic
signaling pathways and represent the major source of intracellular reactive oxygen species
(ROS). Mitochondria are dynamic organelles that exhibit bidirectional motility within neurons
and plasticity to undergo extensive shape changes mediated by GTPases of the mitochondrial
fission/fusion machinery (MFF) (Karbowski & Youle 2003). In neurons, MFF-dependent
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transport of mitochondria to dendrites promotes synaptogenesis, while axonal transport of
mitochondria to pre-synaptic sites regulates the refilling of neurotransmitter pools (Li et al.
2004, Verstreken et al. 2005). Given the key role of mitochondria in neuronal function
(Mandemakerset al. 2007), it is not surprising that disturbances in mitochondrial function,
transport, dynamics and turnover have emerged as central mechanisms at the convergence of
neurotoxin, environmental and genetic approaches to Parkinson's disease.

2. Mitochondrial dysregulation in Parkinson's and related parkinsonian
disorders (PD)

Parkinson's disease is a debilitating, progressive movement disorder that affects ∼1 million
people in North America. The major motor symptoms can be attributed to degeneration of
endogenously pigmented midbrain neurons of the nigrostriatal projection, while involvement
of other neuronal populations result in olfactory, autonomic and cognitive dysfunction. While
most cases have no known cause, oxidative stress, disordered protein handling/degradation,
and mitochondrial dysfunction are mechanistically implicated in sporadic PD, in parkinsonism
due to toxin/pesticide exposures, and in several models of familial PD (Giasson et al. 2000,
Munch et al. 2000, Betarbet et al. 2002, Dawson & Dawson 2003).

Decreased mitochondrial complex I function has been observed in post-mortem PD midbrain
tissues (Schapira et al. 1990) and in cybrid cells containing PD patient mitochondria (Swerdlow
et al. 1996). These data suggest a role for mitochondrial DNA (mtDNA) alterations (Gu et
al. 2002), although distinguishing potential causative changes remains elusive given the
frequency of similar mutations in elderly controls (Simon et al. 2004). Cybrid PD lines exhibit
rounded, swollen mitochondria with rarefied cristae (Trimmer et al. 2000) similar to
autophagocytosed mitochondria observed in association with phosphorylated mitogen
activated protein kinases (MAPK) in PD/Lewy body disease substantia nigra neurons (Zhu et
al. 2003). Since substantia nigra DA neurons exhibit decreased basal mitochondrial content
compared to other midbrain neurons, it has been proposed that diminished mitochondrial
reserves may render them more susceptible to compromise of mitochondrial homeostasis
during PD pathogenesis (Liang et al. 2007).

2.1 Mitochondria in toxin models of PD
Mitochondria are central to the actions of diverse neurotoxins that preferentially injure
dopaminergic neurons. The heroin contaminant 1-methyl-4-phenyl-1,2,3,6-
tetrahydroxypyridine (MPTP) causes acute parkinsonian intoxication, and represents one of
the earlier models of parkinsonian neuronal injury (Przedborski & Jackson-Lewis 1998). The
active metabolite MPP+ is a mitochondrial complex I inhibitor (Sherer et al. 2002, Brill &
Bennett 2003), as is the pesticide rotenone used to model environmental contributions to PD
(Betarbet et al. 2002). 6-OHDA is a redox-active dopamine analog used widely to lesion the
DA nigrostriatal system (Zigmond & Keefe 1997). While there are differences in cell death
mechanisms elicited by MPP+ and 6-OHDA (Choi et al. 1999, Chu et al. 2005), mitochondrial
oxidative stress (Klivenyi et al. 1998, Callio et al. 2005), mitogen activated protein kinases
(Kulich & Chu 2001, Kuan & Burke 2005, Zhu et al. 2007), endoplasmic reticulum stress
(Ryu et al. 2002), and mitochondrial autophagy (Zhu et al. 2007, Dagda et al. 2008) have
emerged as common factors.

2.2 Mitochondria in genetic models of PD
The discovery of α-synuclein mutations and later, gene multiplication (Polymeropoulos et
al. 1997, Singleton et al. 2003), as causes of autosomal dominant forms of PD triggered a
decade of additional gene discoveries and new efforts to model parkinsonian
neurodegeneration. α-Synuclein aggregation and Lewy bodies are observed in both sporadic
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and dominant forms of PD. The leucine rich repeat kinase 2 (LRRK2) is the most commonly
mutated gene in both familial and sporadic settings (Kachergus et al. 2005), accounting for up
to a third of cases in some populations. Proteins involved in autosomal recessive parkinsonism
include parkin, ATP13A2, DJ-1, and PTEN-induced kinase 1 (PINK1) (Kitada et al. 1999,
Bonifati et al. 2003, Valente et al. 2004b, Ramirez et al. 2006). PINK1 is the first kinase
discovered to be regulated by a canonical N-terminal mitochondrial targeting sequence. The
discovery of PINK1 mutations in recessive PD (Valente et al. 2004a), combined with
observations that DJ-1 localizes to mitochondria during oxidative stress (Dekker et al. 2003),
presaged the current renaissance of interest in the role of mitochondria in PD. Growing
evidence implicates PINK1 and parkin in the regulation of mitochondrial morphology (Exner
et al. 2007, Yang et al. 2008, Dagda et al. 2009) and turnover (Narendra et al. 2008, Dagda et
al. 2009). Both α-synuclein and LRRK2 show at least partial localization to mitochondria
(Biskup et al. 2006, Devi et al. 2008). Thus, as discussed in more detail below, toxin and genetic
studies converge on cytoplasmic–mitochondrial signaling and protein trafficking in PD
pathogenesis.

3. Overview of mitochondrial transport, dynamics and turnover
Mitochondrial fission is mediated by cytosolic and outer membrane proteins including
dynamin-related protein (Drp1) and hFis1, which induce mechanical constriction powered by
GTP hydrolysis (Karbowski & Youle 2003). Mitochondrial fission or fragmentation is often
associated with cell death, playing an important role in the execution of apoptosis (Youle &
Karbowski 2005, Yuan et al. 2007), including that elicited by the PD-neurotoxin 6-
hydroxydopamine (Gomez-Lazaro et al. 2008). Little is known about the posttranslational
regulation of mitochondrial dynamics, although sumoylation and phosphorylation of Drp1
have been recently reported (Cribbs & Strack 2007, Wasiak et al. 2007). Mitochondrial fusion
results in an interconnected network of elongated mitochondria. It is mediated by the inner
membrane protein optic atrophy 1 (Opa1) and two outer membrane GTPases termed
mitofusion1 and mitofusion2 (Mfn1/2), which facilitate tethering and fusion of outer and inner
membranes (Gazaryan & Brown 2007). Enhanced mitochondrial fusion and connectivity is
associated with resistance to many forms of cellular injury (Cheung et al. 2007, Cribbs & Strack
2007). On the other hand, Drp-1 dependent mitochondrial fission can limit neuronal injury
associated with propagating calcium waves (Szabadkai et al. 2004) and in models of PINK1
deficiency (Dagda et al. 2009).

Changes in mitochondrial dynamics are integrally linked to trafficking of these organelles to
the most distant reaches of neuritic processes where they function to provide critical energy
and calcium buffering at synapses (Fig. 1, upper left). In addition to kinesin adapter proteins
such as Milton and Miro (Wang & Schwarz 2009), an intact MFF machinery is required for
successful trafficking of mitochondria along axons. Disruption of either fission (Li et al.
2004,Verstreken et al. 2005) or fusion (Baloh et al. 2007) proteins impair this important
process. Alterations in mitochondrial movement are linked to physiologic processes, such as
those mediating synaptic plasticity (Li et al. 2004), and to pathologic processes (Chang et al.
2006,Orret al. 2008). Interestingly, calcium itself regulates cessation of mitochondrial
movement along axons (Wang & Schwarz 2009).

In addition to dynamic changes in mitochondrial fission/fusion and trafficking, autophagic
degradation plays a major role in regulating mitochondrial quality and content (Kiselyov et
al. 2007, Zhang et al. 2007). Macroautophagy involves the regulated, membranous engulfment
of cytoplasmic cargo destined for lysosomal degradation (Mizushima et al. 2002, Cherra &
Chu 2008), and represents the only major degradative pathway for organelles and insoluble
proteins (Rubinsztein et al. 2005). Dysregulation of macroautophagy (Zhu et al. 2003, Alemi
et al. 2007, Zhu et al. 2007, Dagda et al. 2008) and of chaperone-mediated autophagy (Cuervo
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et al. 2004, Martinez-Vicente et al. 2008, Yang et al. 2009) have been implicated in toxin and
genetic models of PD. The autophagy machinery includes conjugating enzymes required for
covalent attachment of ubiquitin-fold proteins Atg12 and Atg8/microtubule-associated protein
light chain 3 (LC3) to nascent autophagic membranes (Mizushima et al. 2002). RNAi
knockdown of Atg conjugation components are effective at inhibiting induction of autophagy
and mitophagy (Chu et al. 2009). Depolarization, fission and mitochondrial ERK signaling
have each been reported to trigger mitochondrial autophagy (Dagda et al. 2008, Gomes &
Scorrano 2008, Narendra et al. 2008), with failure of depolarized fragments to re-fuse with the
mitochondrial reticulum representing an alternative mechanism governing selective mitophagy
(Twig et al. 2008). While well-regulated autophagic recycling of damaged mitochondria is
beneficial, the outcome most likely also depends upon the degree of damage-induced
autophagy and other factors that pre-dispose neurons to autophagic stress (Cherra & Chu
2008) (Fig. 1).

It is important to note that an increase in autophagosomes in degenerating neurons does not
necessarily imply increased autophagic activity. The most robust accumulations of
autophagosomes are observed experimentally when lysosomal fusion and degradation are
inhibited. In human PD brain tissues, increased oxidative damage to mitochondria (Zhang et
al. 1999) is correlated with a modest increase in autophagosomes containing ERK-labeled
mitochondria (Zhu et al. 2002, Zhu et al. 2003). Experimental studies demonstrate intact
autophagic flux and degradation in several PD models (Zhu et al. 2007, Dagda et al. 2008,
Plowey et al. 2008, Dagda et al. 2009). In contrast, evidence of mitochondrial autophagy
(Moreira et al. 2007) is readily identified in AD with robust accumulation of early and
intermediate autophagic vacuoles (Nixon et al. 2005), potentially attributable to reduced
autophagic clearance (Boland et al. 2008). Thus, both post-mortem and experimental studies
suggest multiple mechanisms by which perturbations in mitochondrial dynamics and turnover
could contribute to synaptic dysfunction and neurodegeneration.

4. Kinase signaling to the mitochondrion
Given that only a small fraction of mitochondrial proteins are encoded in the mitochondrial
genome and mitochondria rely heavily on synthesis and import of nuclear encoded proteins,
mitochondria have undoubtedly evolved complex mechanisms to communicate with the rest
of the cell. Despite this central role in cellular metabolism, mitochondria were once though to
be unlikely central sites for reversible protein phosphorylation due to compartmentalization
from the rest of the cell by multiple membrane layers, and the absence of mitochondrial
targeting leader sequences in most signaling proteins (reviewed by (Pagliarini & Dixon
2006)). In yeast, only about seven protein kinases out of 136 (5%) have been identified in
mitochondria (Tomaska 2000). However, experimental evidence garnered over the past two
decades have demonstrated a clear role for kinases in regulating electron transport chain
function, and cytoplasmic kinases can reach not only the outer surface of mitochondria, but
also distribute in intermembrane and matrix compartments (Reviewed in (Horbinski & Chu
2005). The discoveries of signaling scaffold proteins that function to target specific kinases to
the mitochondrion and of a functional N-terminal mitochondrial targeting sequence in the
serine/threonine kinase PINK1 (Feliciello et al. 2005) further confirm an important role for
kinases in mitochondrial communication with the rest of the cell to include the nucleus (Butow
& Avadhani 2004).

As general features of kinase/phosphatase signaling to the mitochondrion have been the subject
of several recent reviews (Horbinski & Chu 2005, McBride et al. 2006, Pagliarini & Dixon
2006), the subsequent sections will focus upon the role of kinases implicated in PD. In
particular, converging roles for specific mitochondrially targeted kinases derived from
neurotoxin and genetic models will be emphasized. Regardless of etiology in this multifactorial
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disease, these data suggest common pathways of parkinsonian neurodegeneration that are
potentially amenable to therapeutic intervention.

5. Extracellular signal regulated protein kinases (ERK1/2)
The extracellular signal-regulated kinases (ERK1/2) are conserved serine/threonine protein
kinases that have emerged as important regulators of neuronal responses to both functional and
pathologic stimuli (Chu et al. 2004). Although ERK1/2 typically translocates between the
cytosol and nucleus to mediate well-characterized pro-survival and trophic functions (Yoon &
Seger 2006), it is also found in mitochondria of neurons and non-neuronal cells such as in
mouse heart (Baines et al. 2002); renal epithelial cells (Nowak et al. 2006, Zhuang et al.
2008); mitochondrial outer membrane and the intermembrane space of rat brain cells (Alonso
et al. 2004); mouse hippocampus (Rumora et al. 2007), B65 cells (Kulich et al. 2007), SH-
SY5Y cells (Dagda et al. 2008); Leydig cells (Poderoso et al. 2008), and human alveolar
macrophages (Monick et al. 2008). The function of mitochondrial ERK1/2 is still not clear,
but it appears to play a central role in regulating mitochondrial function (Nowak et al. 2006,
Monick et al. 2008) and survival-death decisions (Kulich et al. 2007, Dagda et al. 2008, Lin
et al. 2008, Zhuang et al. 2008). In human PD brain and diffuse Lewy body diseases, there are
significant increases of phospho-ERK (p-ERK) in the cytoplasm and mitochondria of midbrain
dopaminergic neurons (Zhu et al. 2002, Zhu et al. 2003). The punctate mitochondrial
distribution of p-ERK in PD is distinct from the diffuse staining pattern observed after cerebral
ischemia (Namura et al. 2001). Moreover, p-ERK is not elevated in substantia nigra
degeneration due to progressive supranuclear palsy (author's unpublished data), indicating that
this type of dysregulated ERK1/2 signaling may be relatively specific to PD.

5.1 ERK in parkinsonian neurotoxin models
Alterations in ERK signaling is observed during dopaminergic cell injury elicited by MPTP/
MPP, 6-OHDA, rotenone, and toxic doses of dopamine (Kulich & Chu 2001, Gomez-Santos
et al. 2002, Zhu et al. 2002, Chuenkova & Pereira 2003, Kulich et al. 2007, Zhu et al. 2007,
Chen et al. 2008, Ren et al. 2009). ERK signaling is generally considered a pro-survival
pathway (Baines et al. 2002), but increasing evidence suggests that activation of ERK also
contributes to cell death (Chu et al. 2004, Zhuang & Schnellmann 2006, Ren et al. 2009). The
level of ERK activation or its kinetics may play a role, as inhibiting basal ERK signaling has
different effects than inhibiting toxin-induced ERK activation (Gomez-Santos et al. 2002). In
the 6-OHDA model, we found that the time course of ERK activation is tightly correlated with
mitochondrial ROS production; antioxidants inhibit ERK phosphorylation and rescue from
neuronal injury (Kulich et al. 2007). Mitochondrially localized ERK induces autophagy/
mitophagy even in the absence of toxin injury, suggesting that mitochondrially localized ERK
could act as a sensor downstream of mitochondrial injury induced by toxins.

Factors that could determine the outcome of ERK activation include cell or organ type, nature
of the treatments, and the temporal and/or spatial pattern of signaling within the cell (Colucci-
D'Amato et al. 2003, Chu et al. 2004, Subramaniam & Unsicker 2006, Lin et al. 2008). A rapid
and transient activation of ERK in mouse brain and MN9D cells promotes neuronal survival
(Weng et al. 2007, Lin et al. 2008), while sustained or delayed ERK activation by 6-OHDA,
MPP+ or dopamine promote cell death in neuronal cells (Kulich & Chu 2001, Gomez-Santos
et al. 2002, Zhu et al. 2007). Detrimental effects of ERK activation are correlated with changes
in the nuclear-cytoplasmic ratios of activated signaling phosphoproteins in the ERKRsk-CREB
axis (Chen et al. 2004, Chalovich et al. 2006, Glotin et al. 2006, Poderoso et al. 2008). In both
the 6-OHDA model and a dopamine toxicity model, only a small amount of p-ERK1/2 activated
during injury translocates to the nucleus, with the majority located in the cytoplasm and
mitochondria (Zhu et al. 2002, Chen et al. 2004, Dagda et al. 2008). This pattern of p-ERK
trafficking causes a decline in neurotrophic transcription accompanied by an increase in
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pathologic mitophagy (Fig. 1, right side). While lower levels of mitophagy can confer
neuroprotection, prolonged or excessive ERK2-driven mitophagy appears harmful in neuronal
cells as MAPK inhibitors or expression of a dominant negative ERK2 reduces cell death (Zhu
et al. 2007, Dagda et al. 2008). Thus, addressing the mechanisms underlying altered trafficking
of p-ERK may offer insights into potential therapies.

5.2 ERK in parkinsonian genetic models
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) cause late-onset Parkinson's
disease. The mechanisms by which missense alterations in the LRRK2 gene initiate
neurodegeneration remain unknown. LRRK2 has putative Ras/GTPase-like, a protein kinase
domain, leucine rich domain, and WD40 domains, all suggesting a major role in signaling
(Ross & Farrer 2005, Greggio et al. 2006). Several mutations in the GTPase and kinase domains
have been described. The kinase domain has a catalytic core common to tyrosine and serine/
threonine kinases, and is homologous to mitogen activated protein kinase kinase kinases
(MAPKKK) or mixed lineage kinases (West et al. 2005). The G2019S has been consistently
shown to exhibit increased kinase activity. Interestingly, LRRK2 appears to activate ERK1/2
signaling in SH-SY5Y cells (Liou et al. 2008). However, in another study, ERK activity was
not found to differ significantly in extracts of leukocytes from patients with PD carrying the
G2019S mutation, healthy mutation carriers, patients with idiopathic PD, and healthy controls
(White et al. 2007). We found that G2019S LRRK2, but not wild type LRRK2 or kinase-dead
K1906M LRRK2, stimulated neuritic autophagy and neurite retraction by a pathway dependent
upon ERK signaling in retinoic acid differentiated SH-SY5Y cells (Plowey et al. 2008). As
with the toxin models, it is likely that the potential effects of ERK1/2 signaling will ultimately
depend upon timing and compartmentalization of activation, which will determine which
downstream pathways predominate in a given pathologic context.

6. c-Jun N-terminal kinases (JNK)
The c-Jun N-terminal kinases (JNK) represent another branch of the MAPK family that is
activated by exposure of cells to environmental stress. Phospho-activation of JNK is mediated
by MKK4 and MKK7. JNKs phosphorylate a variety of nuclear factors such as c-Jun, ATF2
and Elk1, and also cytoplasmic substrates such as cytoskeletal proteins and mitochondrial
proteins including Bcl-2 and Bcl-xl. The spatial-temporal regulation of JNK is differently
regulated in multiple intracellular compartments (Bonny et al. 2005, Borsello & Forloni
2007). Many studies indicate that JNK could be activated in or translocate to mitochondria,
including work in ischemia-injured hippocampus, mouse cardiac mitochondria, H2O2-treated
rat brain or primary cortical cultures, acetaminophen induced liver injury, HeLa cells treated
with paclitaxel, and multiple myeloma cells treated with anti-cancer drugs (Baines et al.
2002, Chauhan et al. 2003, Zablocka et al. 2003, Brichese et al. 2004, Rumora et al. 2007,
Hanawa et al. 2008, Zhou et al. 2008b). While most studies including those discussed below
implicate JNK in death signaling, JNK shows neuroprotective effects in hypoxia-
reoxygenation studies (Dougherty et al. 2004).

6.1 JNK in parkinsonian neurotoxin models
JNK represents one of the major signaling pathways implicated in PD pathogenesis. Increased
JNK activity has been reported in MPTP animal models (Saporito et al. 1999, Xia et al.
2001, Hunot et al. 2004, Park et al. 2004), MPP+ cell culture model (Xia et al. 2001, Kim et
al. 2007), rotenone neurotoxicity (Newhouse et al. 2004, Klintworth et al. 2007), and the 6-
OHDA model (Hara et al. 2003, Eminel et al. 2004, Pan et al. 2007). Although the temporal
and spatial patterns of JNK activation are different from model to model, activation of JNK
almost exclusively leads to cell death. JNK2 and JNK3 mutant mice are more resistant to MPTP
as compared with wide type littermates (Hunot et al. 2004). In mice, adenoviral gene transfer
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of the JNK binding domain of the scaffold protein JNK-interacting protein-1 inhibited MPTP-
induced c-Jun and caspase activation and dopaminergic neuron cell death (Xia et al. 2001).
Downstream targets of JNK implicated in MPTP toxicity include cyclooxygenase 2 and the
p53 protein (Trimmer et al. 1996, Teismann et al. 2003, Hunot et al. 2004, Nair 2006). JNK
inhibitors and transfection with dominant negative forms of JNK reduce 6-OHDA induced cell
death in PC12 cells (Eminel et al. 2004) and rotenone toxicity in SH-SY5Y cells (Newhouse
et al. 2004). Similar to pathological ERK activation, antioxidants reduce JNK activation and
cell death in 6-OHDA injured neuronal cells (Tian et al. 2007). All these experiment suggest
JNK plays an important role in mediating parkinsonian cell death.

Exposure of rat primary cortical neurons to H2O2 resulted in increased phosphorylated JNK
associated with the outer mitochondrial membrane, where causes phosphorylation of pyruvate
dehydrogenase (PDH), a key enzyme that links two major metabolic pathways: glycolysis and
the tricarboxylic acid cycle. Given that PDH is a matrix-localized proteins, the mechanisms
involved are unclear, but phosphorylation of PDH causes a decline in its activity and a shift to
anaerobic metabolism and acidosis (Zhou et al. 2008b). Mitochondrial translocation of JNK
also causes release of the Second Mitochondria-derived Activator of Caspase and cytochrome
c from mitochondria (Chauhan et al. 2003, Eminel et al. 2004), promoting apoptosis and
phospho-inactivating Bcl2 and Bcl-x (Kharbanda et al. 2000, Brichese et al. 2004). As with
pathological ERK activation, the potential mechanisms by which JNK translocate to
mitochondria to promote mitochondrial dysfunction and degeneration in PD remains to be fully
determined.

6.2 JNK in parkinsonian genetic models
Parkin is an E3 ubiquitin ligase, encoded by parkin, the most common gene mutated in
autosomal recessive familial parkinsonism. Parkin has been demonstrated to act as a protector
of dopaminergic neurons against multiple PD-related toxicities. Overexpression of parkin in
SHSY5Y cells significantly attenuated dopamine-induced activation of c-Jun N-terminal
kinase (JNK) and caspase-3. It also decreased the level of reactive oxygen species (ROS) and
protein carbonyls in the cell (Jiang et al. 2004). Conversely, JNK is highly activated in
dopaminergic neurons of parkin mutants (Cha et al. 2005). While it was originally thought that
deficits in Parkin biology stimulates aggregation of its substrates to cause cellular stress, Parkin
has also been reported to directly inhibit JNK activation via ubiquitination of JNK pathway
mediators (Cha et al. 2005) (Fig. 1, top). A recent report suggests that Parkin inactivation of
JNK is mediated by multiple mono-ubiquitinations on Hsp70, although the mechanism by
which Hsp70 mono-ubiquitination regulates this is not clear (Liu et al. 2008). Parkin has three
independent microtubule binding domains in addition to its RING domains. Dopaminergic
neurons in culture appear are sensitive to rotenone-induced depolymerization of microtubules
with subsequent activation of ERK and JNK, and Parkin protects against these effects (Ren et
al. 2009). These studies indicate a direct interaction between Parkin and MAPK signaling
pathways. JNK has also been implicated in relation to mutations in LRRK2. Protein assays of
cell extracts from patients with LRRK2 G2019S-associated PD showed significant reductions
in phosphorylation of JNK, Src, and HSP27 compared to healthy controls (White et al.
2007). On the other hand, recent studies indicate that mutant LRRK2 activates pathologic JNK
and p38 signaling through phosphorylation of MAPKKs (Gloeckner et al. 2009)(Fig. 1, top
right). Given dual roles for ERK on survival in different experimental contexts, the role of
mutant LRRK2 in modulating JNK signaling deserves further investigation.

7.0 Akt/Protein kinase B
Protein kinase B (PKB) or c-Akt is the downstream kinase that regulates class III
phosphoinositide-3-kinase (PI3K) dependent signaling in neurons. Recruitment of cytosolic
Akt to the cell membrane via a pleckstrin homology domain (PH) by phosphatidylinositol 1,3,5
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triphosphate (PIP3) facilitates its phosphorylation and activation by protein dependent kinase-1
(PDK1), leading to enhanced survival of motor neurons, PC12 cells and in cerebellar granule
cells (Namikawa et al. 2000, Alvarez-Tejado et al. 2001, Bijur & Jope 2003, Leeds et al.
2005, Zhong et al. 2005, Li et al. 2008). Akt also promotes sequestration of Bad and suppresses
the pro-apoptotic activity of GSK-3β (Datta et al. 1997, del Peso et al. 1997). Although mostly
cytosolic, a fraction of Akt is recruited to mitochondria upon stimulation of SH-SY5Y cells
with growth factors such as insulin (Bijur & Jope 2003). Transient expression of
mitochondrially targeted constitutively active Akt protects against staurosporine induced
apoptosis (Mookherjee et al. 2007). A recent study describes a role for heat shock protein 90
in mediating neuroprotective mitochondrial translocation of Akt (Barksdale & Bijur 2009).

7.1 Akt in parkinsonian toxin models
Several studies demonstrate that upregulation of the Akt pathway is neuroprotective. 6-OHDA
treatment of SH-SY5Y cells significantly promotes a decrease in Akt phosphorylation (Li et
al. 2008). Likewise, stereotactic injection of adenovirus expressing constitutively active m-
Akt into the substantia nigra and striatum is strongly neuroprotective against 6-OHDA in
vivo (Ries et al. 2006) (Fig. 1, top). Akt also showed striking trophic effects with increased
sprouting of dopaminergic projections and increased substantia nigra neuron sizes. While this
study elegantly highlights a potential application of gene therapy for PD, the potential for long-
term constitutive Akt activation to promote neoplasia would need to be investigated.

7.2 Akt in parkinsonian genetic models
Stable knockdown of DJ-1 in Drosophila is associated with mitochondrial dysfunction and
decreased Akt signaling (Yang et al. 2005). Furthermore, oxidative stress induces aggregation
of α-synuclein, which modulates Akt signaling in neurons (Hashimoto et al. 2001, Seo et al.
2002). Increased levels of β-synuclein, which seems to antagonize the toxic and aggregating
effects of α-synuclein, protected against rotenone toxicity via upregulation of the Akt signaling
pathway. (Hashimoto et al. 2001, Uversky et al. 2002, Hashimoto et al. 2004). Moreover,
human genetic studies also support a role for Akt in protecting against PD-type degeneration,
as a particular Akt1 haplotype is associated with a decreased risk of developing PD in a Greek
cohort of PD cases (Xiromerisiou et al. 2008).

8. PTEN-induced kinase 1 (PINK1)
While mitochondrial kinases have been implicated in PD through human tissue studies and
parkinsonian toxin models for nearly a decade, the seminal discovery that the PARK6 locus
of autosomal recessive, early-onset PD encodes PTEN-induced kinase 1 (PINK1) launched an
ongoing period of intensive interest in the regulation of mitochondrial pathobiology by kinases.
PINK1 is a serine/threonine kinase with homology to calcium/calmodulin regulated kinases
(Valente et al. 2004a). Notably, the primary sequence for PINK1 includes a canonical N-
terminal mitochondrial leader sequence (Silvestri et al. 2005) and reviewed by (Mills et al.
2008), and has been shown to distribute to mitochondria in numerous cell types including
human brain (Gandhi et al. 2006), where it is predicted to be cleaved by matrix proteases.
PINK1 also appears to have cytoplasmic functions, and even cleaved forms can be found in
the cytoplasm, suggesting mitochondrial export of the protein for signaling or clearance
purposes. There is a putative transmembrane domain thought to arrest import of PINK1 in a
manner that allows it to insert in the outer mitochondrial membrane (Zhou et al. 2008a). The
C-terminal domain of PINK1 regulates its autophosphorylation activity [reviewed in (Mills et
al. 2008)].

Multiple point mutations and truncations have been mapped throughout the transmembrane,
kinase and C-terminal domains of PINK1. These mutations serve to reduce or impair kinase
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activity, promote accelerated degradation, or induce misfolding of PINK1 [reviewed by (Mills
et al. 2008)]. The TNF receptor associated protein 1 (TRAP1) was identified as a potential
substrate for PINK1, and the serine protease Omi/Htra2 and heat shock proteins, Hsp75
(TRAP1), Hsp90/Cdc37 are potential mitochondrial PINK1 binding partners (Plun-Favreau
et al. 2007, Pridgeon et al. 2007, Moriwaki et al. 2008). Given that PINK1 loss of function
leads to younger onset ages for parkinsonian neurodegeneration, a better understanding of the
normal role(s) of PINK1 may offer important insight applicable to preventing or delaying onset
of PD in general.

Although PINK1 is undoubtedly a mitochondrially targeted kinase, the subcellular localization
of PINK1 in neurons has been controversial. Some studies suggest a mixed cytosolic/
mitochondrial localization or localization in peroxisomes, while others indicate PINK1 is
predominantly localized to the mitochondria (Beilina et al. 2005, Petit et al. 2005, Zhou et al.
2008a). Indeed, only some PINK1 functions appear dependent upon the mitochondrial
localization signal, as N-terminal deletions of PINK1 that lead to cytoplasmic localization is
sufficient to protect neurons from the classic mitochondrial toxin MPTP (Haque et al. 2008).
However, a residual pool of mitochondrial leader peptide-truncated PINK1 can associate with
mitochondria, possibly through association with the mitochondrial axonal transport proteins
Miro and Milton (Weihofen et al. 2009). As observed with each of the kinases discussed above,
localized activation and/or differential trafficking of different pools of PINK1 likely serve to
mediate different physiological roles within neuronal cells.

8.1 PINK1 in parkinsonian toxin models
To date, all studies with PINK1 in toxin models have shown a prominent role for wild type
PINK1 in neuroprotection. Transient or stable overexpression of PINK1 protects against a
variety of toxic insults including staurosporine, rotenone, proteasome inhibition, MPP+ and 6-
OHDA (Dagda & Chu, unpublished data), while RNA interference (RNAi) knockdown of
PINK1 has the opposite effect (Deng et al. 2005, Petit et al. 2005, Pridgeon et al. 2007, Haque
et al. 2008). Proposed prosurvival mechanisms include stabilizing the mitochondrial membrane
potential, inhibiting superoxide generation and inhibiting the release of apoptogenic factors
such as cytochrome c (Petit et al. 2005, Clark et al. 2006, Exner et al. 2007, Wang et al.
2007, Wood-Kaczmar et al. 2008) (Fig. 1, center).

On the other hand, the regulation of endogenous PINK1 responses by neurotoxic injuries has
been less studied. Upon mitochondrial depolarization by oxidative stress, PINK1 in SHSY5Y
cells rapidly translocates to mitochondria, is cleaved by matrix proteases and rapidly degraded
by the proteasome pathway within minutes of toxin treatment (Lin & Kang 2008). We have
observed alterations in PINK1 expression in the MPTP model in vivo and in a chronic MPP+
culture model (Zhu, Callio & Chu, unpublished data), which may play into either injury or
compensatory mechanisms.

8.2 PINK1 in parkinsonian genetic models
Most PD-associated mutations in PINK1 result in loss of the ability of overexpressed PINK1
to confer neuroprotection against different forms of toxic insults (Wang et al. 2007). While
some mutations are directly associated with loss of in vitro kinase activity, other mutations
promote decreased protein stability or protein misfolding (Beilina et al. 2005). The possibility
of an elevated risk for heterozygous PINK1 mutant carriers to develop PD (Valente et al.
2004b, Bonifati et al. 2005, Kumazawa et al. 2008), show accelerated disease progression
(Marongiu et al. 2008), or develop neuropsychiatric disorders (Steinlechner et al. 2007, Reetz
et al. 2008), remain controversial. In addition to a growing list of other proteins, PINK1 has
been shown to be localized to Lewy bodies in human brain (Gandhi et al. 2006). While it is
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attractive to speculate that depletion of functional PINK1 through aggregation may be
pathogenic, decreased PINK1 levels in sporadic PD patients has not yet been reported.

Multiple RNAi studies in cultured mammalian cells, Drosophila models, and studies of mutant
PINK1 patient primary fibroblasts reveal strikingly aberrant mitochondrial morphology, with
loss of membrane potential and increased oxidative stress, implicating PINK1 in the regulation
of mitochondrial homeostasis (Clark et al. 2006, Park et al. 2006, Wang et al. 2006, Yang et
al. 2006, Exner et al. 2007, Poole et al. 2008, Wood-Kaczmar et al. 2008). Interestingly, all
these alterations are restored by transient or stable expression of Parkin, leading to the concept
of Parkin as a downstream effector of PINK1 neuroprotection.

Recent data also suggest alternative mechanisms for Parkin-mediated complementation of
PINK1 deficiency (Narendra et al. 2008, Dagda et al. 2009). We observed that PINK1 loss-of-
function resulted in aberrations in mitochondrial morphology, increased mitochondrial ROS,
Drp1-dependent mediated mitochondrial fission, and a protective macroautophagy/
mitochondrial autophagy responses (Fig. 1, lower left). Interestingly, not only did the MFF
machinery mediate mitochondrial fragmentation in stable loss of PINK1 but the autophagic
machinery also cooperated in this process. Morever, instead of simply reversing each cellular
effect of stable PINK1 knockdown, Parkin overexpression resulted in further amplification of
the autophagic/mitophagic response (Dagda et al. 2009), consistent with a recently reported
role for Parkin in autophagic clearance of depolarized mitochondria (Narendra et al. 2008).

In contrast to culture and Drosophila studies, the effects of PINK1 deficiency in mouse models
has been much more subtle. While there is no frank degeneration in PINK1 shRNA mice or
PINK1 knockout mice (Zhou et al. 2007, Gautier et al. 2008), PINK1 appears to regulate
dopamine release, long-term potentiation (Kitada et al. 2007) and potentially metabotropic
glutamate receptors in medium spiny neurons of the striatum supporting a role of PINK1 at
the dendrites and synapse possibly by regulating mitochondrial bioenergetics and dynamics at
those compartments (Martella et al. 2009). Ultimately, our understanding of mechanisms
related to PINK1-associated PD will rely upon a better understanding of the many normal roles
of PINK1 in the central nervous system.

9. Conclusions
Data from neurotoxin, environmental and genetic models of parkinsonian neurodegeneration
have converged upon a key role for kinases in regulating mitochondrial pathobiology in which
disturbances in mitochondrial function, transport, dynamics and turnover are central
converging mechanisms (Fig. 1). Altered subcellular localization of signaling proteins and
transcription factors is frequently observed in post-mortem tissues and models of several major
neurodegenerative diseases [Reviewed in (Chu et al. 2007)], with a tendency towards nuclear
depletion and cytoplasmic/mitochondrial accumulation. Mitochondrial kinase activity can be
mediated by localized ROS-mediated activation at the mitochondria as well as by trafficking
and recruitment of signaling proteins activated elsewhere in the cytoplasm. As mitochondria
serve as central sensors of metabolic alterations, reverse mitochondrial to nuclear signaling
(Dawson & Dawson 2004) may be just as important as traditional pathways mediating
communication between extracellular and intracellular environments. With recent impetus and
momentum offered by PD-related factors, the basic role of bi-directional kinase signaling
involving mitochondrial, as well as nuclear, trafficking represents an important emerging field
of study.

Interestingly, neuroprotective autophagy/mitophagy elicited in response to recessive
deficiencies (e.g. loss of PINK1, amino acid starvation, insufficient trophic stimulation) are
regulated by canonical beclin1-dependent signaling pathway, which serves to prevent
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overactivation of autophagy (Pattingre et al. 2005). In contrast, autophagy associated with
dominant G2019S LRRK2 or MPP+ toxicity occur through beclin1-independent mechanisms
(Zhu et al. 2007, Plowey et al. 2008), implying escape from this physiologic regulatory
pathway. Hypothetically, either excessive mitochondrial damage or excessive mitophagy
induced by neurotoxins, overactive LRRK2, or mitochondrial ERK1/2 (Dagda et al. 2008),
could exceed the regenerative capacity of nigral neurons and prove detrimental (Fig. 1).

Although the mechanism(s) by which altered temporal and spatial dynamics of kinases that
traffic between cytosolic, nuclear and mitochondrial compartments remain to be elucidated,
over-activation and/or mitochondrial translocation of certain serine/threonine kinases (ERK2,
JNK1/2, GSK3β, ?LRRK2), and impaired function of others (PINK1, Akt-1), promote PD-
related pathogenic mechanisms including aberrations in mitochondrial cytoarchitecture,
decreased mitochondrial function, and increased oxidative stress, contributing to protein
aggregation. A compensatory mitochondrial autophagic response may represent a double-
edged sword depending upon the degree of damage and ability of the neuron to successfully
complete autophagic degradation and biogenesis of healthy mitochondria (Cherra & Chu
2008). This exciting new frontier of mitochondrial kinase regulation in PD raises the possibility
that administration of known or yet-to-be discovered agents that inhibit kinase activity and/or
mitochondrial translocation of ERK2, JNK1/2, LRRK2 or α-synuclein may rescue
mitochondrial function, prevent activation of apoptotic or autophagic death pathways and/or
prevent neurite degeneration. At the same time, potential therapies that increase kinase activity
and/or mitochondrial functions of PINK1, Akt-1 or DJ-1 could aid in stabilizing mitochondrial
networks, preventing activation of neurodegenerative and cell death pathways in PD.
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Figure 1. Hypothetical model integrating dominant (genetic or neurotoxin) and recessive (genetic
or deficiency) influences on mitochondrial health and the autophagic/mitophagic injury response
Neuronal homeostasis (green background) is mediated by Akt, PINK1 and nuclear ERK/CREB
signals that promote transcription of genes that support neuronal survival, differentiation and
function (BDNF, Elk1, cJun, Bcl-2). PINK1 promotes maintenance of healthy mitochondrial
networks, potentially facilitating mitochondrial trafficking to synapses via its recently reported
association with the kinesin adaptor proteins Miro and Milton. Parkin, DJ-1 and Akt oppose
the pro-apoptotic effects of JNK, which is activated by neurotoxins and mutant LRRK2
expression. Loss of PINK1 function permits mitochondrial damage involving increased ROS,
calcium dysregulation, and decreased respiratory function/membrane potential, which may
signal fission and autophagic clearance of damaged mitochondria. Physiologic feedback
mechanisms involving beclin 1 interactions and/or parkin-assisted selective clearance of
damaged mitochondria serve as safety mechanisms (green parachute) to regulate and prevent
overactivation of autophagy.
Dominant neuronal injuries (shaded in red) caused by parkinsonian neurotoxins promote large
increases in cytosolic and mitochondrial ROS, activation/translocation of ERK and JNK to
mitochondria and induction of beclin 1-independent autophagy, accompanied by decreased
nuclear trafficking and neuroprotective transcription. Both JNK and ERK have been shown to
contribute directly to mitochondrial dysfunction by suppressing oxidative respiration. An
activating mutation in LRRK2 also results in activation of JNK pathways and ERK-dependent
neurite retraction mediated by beclin1-independent autophagy. Factors that result in autophagic
stress are still incompletely defined, but could hypothetically result from excessive loss of
functioning mitochondria or reduced ability to complete lysosomal degradation, as oxidized
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or mutant forms of α-synuclein may interfere with certain forms of lysosomal degradation. We
propose that excessive autophagy induction relative to the capacity of the neuron to undergo
regenerative biosynthesis leads to a harmful state of imbalance that favors neurite retraction,
neuronal atrophy and eventually cell death.
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