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Summary
Joint modeling of a primary response and a longitudinal process via shared random effects is widely
used in many areas of application. Likelihood-based inference on joint models requires model
specification of the random effects. Inappropriate model specification of random effects can
compromise inference. We present methods to diagnose random effect model misspecification of
the type that leads to biased inference on joint models. The methods are illustrated via application
to simulated data, and by application to data from a study of bone mineral density in perimenopausal
women and data from an HIV clinical trial.
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1. Introduction
It is often of interest to characterize the association between a primary endpoint and a
longitudinal process and to also understand the inherent features of the longitudinal process.
One popular approach is to link a regression model for the primary endpoint and a mixed effects
model for the longitudinal process through joint dependence on latent random effects. It has
been demonstrated (e.g., Hsieh, Tseng, and Wang, 2006) that appropriate parametric modeling
of the random effects in joint models yields more effcient inference procedures and can also
shed light on the underlying features of the longitudinal process. One concern in this approach
is the sensitivity of inference to the model assumptions on random effects. In this article, we
address the issue of robustness of estimators for the primary regression parameters to such
assumptions. We call this aspect of robustness latent-model robustness.

The primary endpoint in the joint model setting can be a simple response such as a binary
indicator of the presence of a disease, or more complex such as a possibly censored time-to-
event. The Study of Women’s Health Across the Nation (SWAN) (Sowers et al., 2003) provides
an example of the former. Two objectives of SWAN are to characterize the association between
an indicator of the evidence of osteopenia, a binary endpoint, and the underlying hormone
patterns over the menstrual cycle in perimenopausal women, and to understand the underlying
hormone patterns in this population. The hormone patterns cannot be observed directly but are
observed through longitudinal progesterone levels derived from urine (PDG). AIDS Clinical
Trials Group (ACTG) Protocol 175 (Hammer et al., 1996) is a setting where a joint model with
time-to-event endpoint is a relevant framework. In this study, more than 2000 HIV-1-infected
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subjects were followed for their CD4 counts from week 8 post baseline and every 12 weeks
thereafter, and the “event” is defined as a composite of ≥50% decline in CD4, progression to
AIDS, or death. It is of interest to study the prognostic value of CD4 counts and their inherent
trajectories over time in this population. In both studies, the longitudinal measurements, PDG
and CD4 counts, are subject to assay error and intra-subject variation.

Assuming multivariate normal random effects, Wulfsohn and Tsiatis (1997) obtained
maximum likelihood estimators (MLEs) for the regression parameters in joint models with
time-to-event endpoint. Wang, Wang, and Wang (2000) proposed three methods to estimate
the primary regression parameters in joint models with simple endpoint. Their methods rely
on the assumption that the random effects follow a multivariate normal distribution, and they
noted the concern about the sensitivity of inference to the normality assumption. Song,
Davidian, and Tsiatis (2002) modeled the random effects using a flexible seminonparametric
(SNP) model to avoid the restrictive normal assumption. Li, Zhang, and Davidian (2004)
proposed conditional score estimators (CSEs) for the primary regression parameters in joint
models with simple endpoint. Tsiatis and Davidian (2001) also derived the CSEs for the
regression parameters in joint models with time-to-event endpoint. The CSEs require no
assumption on the random effects. However, the latent-model robustness of the CSEs is
achieved at the expense of loss of effciency. The effects of model misspecification on random
effects in joint models have been investigated by several authors. Through extensive simulation
studies, Hsieh et al. (2006) demonstrated robustness of the MLEs against departure from the
normal random effect assumption in joint models with time-to-event endpoint. Hsieh et al.
(2006) concluded that the MLE is robust to random effect model misspecification when there
is rich enough information from the longitudinal data. Also focusing on joint models with time-
to-event endpoint, Rizopoulos, Verbeke, and Molenberghs (2008) investigated the effect of
misspecifying the random effect model on the parameter estimators and their standard errors.
They showed that the difference between the MLE obtained from the joint model with a
misspecified random effect model and the MLE based on the correct model converges to zero
as the number of repeated measurements per subject increases.

Assuming the two component models in a joint model correct, the MLE is consistent and
effcient when the random effect model is correctly specified. Even with the robustness property
of the MLE revealed by the aforementioned authors, a relevant question is whether or not the
available longitudinal information in a particular data set is rich enough to yield an MLE
insensitive to model misspecification. Diagnostic tools that can reveal adverse effects of model
misspecification when they do exist are thus desired. Huang, Stefanski, and Davidian (2006)
applied a remeasurement method to structural measurement error models to diagnose model
misspecification on the unobservable true predictor. In this article, we use an improved
remeasurement method to develop diagnostic tools for joint models. In Section 2, we formulate
joint models generically. From a viewpoint different from that of Rizopoulos et al. (2008), we
provide an explanation in Section 3 for the asymptotic latent-model robustness of the MLE
when longitudinal data information is extensive enough. In Section 4, we describe the improved
remeasurement method and apply it to joint models to diagnose random effect model
misspecification; test statistics are also proposed to assess quantitatively the robustness of
parameter estimators. The diagnostic methods are illustrated via simulation in Section 5. In
Section 6, the proposed methods are applied to the SWAN and ACTG 175 data sets.

2. Joint Models
For subject i, i = 1,…, n, denote by Yi the primary endpoint, which is a scalar in joint models
with simple endpoint, and is defined as a vector in joint models with time-to-event endpoint.
Denote by Wi = (Wi1,…,Wimi)

T the set of longitudinal measurements recorded at times ti =
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(ti1,…,timi)
T and by Hi the vector of observed covariates, for i = 1,…, n. Finally, define

 as all the observed data from subject i, for i = 1,…, n.

The two component models in a joint model are the model for the primary response Yi and the
model for the longitudinal process Wi. Define fYi|XiHi(yi|xi, hi; θ, ζ) as the density function
associated with the first component model, where θ is the vector of primary regression
parameters that relate Yi to (Xi, Hi), ζ is a vector of nuisance parameters, and Xi is the p×1

vector of latent variables. Denote by  the assumed density of Xi conditional on
Hi, where τ(a)is a vector of model parameters. The second component model is derived from
the linear mixed effects model,

(1)

where Di is an mi × p (mi > p) design matrix of rank p, Ui = (Ui1,…, Uimi)
T is the vector of

intra-subject errors distributed according to Nmi(0, σ2Imi), and Imi is the mi × mi identity matrix.
The density of Wi given Xi, fWi|Xi(wi|xi; σ2), is thus Nmi(DiXi, σ2Imi). It is assumed that Yi and
Wi are independent given Xi and Hi (Carroll et al., 2006, Section 2.5).

Let Ω = (θT, τ(a)T, σ2, ζT)T be the d × 1 vector of all unknown parameters in the joint model.
Inference on θ is of central interest. The MLE for Ω maximizes the observed data likelihood,
to which the contribution from subject i is given by, for i = 1,…, n,

(2)

For the SWAN data, the primary response is binary with Yi = 1 indicating absence of osteopenia
(bone mineral density above the 33rd percentile), and Yi = 0 indicating presence, for i = 1,…,
632. Li et al. (2004) analyzed these data and assumed a logistic model for Yi,

(3)

where Hi includes covariates such as age and ethnicity indicator, and Xi = (X1i, X2i)T is a
bivariate latent variable. The observed longitudinal process Wi is the recorded natural log of
PDG over one menstrual cycle, the length of which is standardized to a reference of 28 days.
Li et al. posited a piecewise linear mixed effects model for Wi given by Wij =
X1i+X2i(tij−1.4)+−2X2j(tij−2.1)++Uij, i = 1,…, 632, j = 1,…, mi, where u+ = uI(u > 0), I(·) is the
indicator function, tij is in units of 10 days, and 6 ≤ mi ≤ 14. Here, then, X1i denotes the subject-
specific natural log PDG up to day 14, and X2i is the subject-specific “slope” of the symmetric
rise (days 14–21) and fall (days 21–28) of natural log PDG over a standardized cycle. In this

example, , and there is no ζ in model (3).

For the ACTG 175 data, the response of interest is a time-to-event Ti, for i = 1,…, 2279. Define
Yi = (Vi, Δi)T, where Vi = min(Ti, Ci), Ci is the censoring time, and Δi = I(Ti ≤ Ci). Song et al.
(2002), who analyzed these data, assumed that censoring, intra-subject errors, and timing of
measurements are noninformative, and specified the first component model as the proportional
hazards model (PHM)
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(4)

where λ0(u) is an unspecified baseline hazard function, Hi is a treatment indicator, and Xi =
(X1i, X2i)T is a bivariate latent variable, with (X1i + X2iu) representing the true post-12-week
log10 CD4 count of subject i at time u. The observed post-12-week log10 CD4 count is given
by, for i = 1,…, 2279, j = 1,…, mi,

(5)

The density of Yi given Xi and Hi is

In this example, θ = (γ, α)T, and λ0(u) can be viewed as the nuisance parameter ζ in the first
component model.

Throughout the article we assume both component models in the joint models are correctly

specified, and we focus on the assumed latent variable model, .

3. Expected Robustness
Consistency of the MLE is guaranteed when either σ2 = 0 or the assumed random effect model
is correct. Neither are likely to hold in practice, and thus the relevant issues are sensitivity of
the MLE to the random effect model assumption and how to study the effects of model
misspecification if they exist. Several authors (Song et al., 2002; Hsieh et al., 2006; and
Rizopoulos et al., 2008) reported intriguing latent-model robustness under joint model setting.
Hsieh et al. (2006) provided a heuristic explanation for this phenomenon. Rizopoulos et al.
(2008) showed for survival models with finite dimensional parameter space that the score
vector under the misspecified model is close to the correct score vector when mi is large enough.
In this section, we provide a new explanation for the robustness property of the MLE through
the following result.

Theorem 1

Denote the ordinary least squares estimator for Xi by X ̂mi, i.e., . The ratio
of the density in (2) and the following expression,

(6)

approaches one as the longitudinal information increases without bound.

The proof is given in Web Appendix A. The intuition of this result is that, when the longitudinal
data information is rich enough, Xi can be well estimated by X ̂mi so that it is as if Xi were
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observed like fixed effects instead of being latent quantities, and thus the dependence of
likelihood inference on the assumed model for Xi weakens. Note in (6) that θ appears only in
fYi|X ̂mi,Hi (·). Consequently, the MLE derived from the likelihood based on (6) does not depend

on  and thus neither will the MLE based on (2) as the longitudinal information increases.
The key issue in practice is knowing when the longitudinal information is great enough for the
MLE to achieve a desired degree of robustness. We next describe an improved remeasurement
method for assessing robustness of the MLE in a particular data set.

4. Diagnostic methods
4.1 Remeasurement Method (SIMEX)

The remeasurement method in Huang et al. (2006) is derived from the SIMEX method
developed by Cook and Stefanski (1994) and Stefanski and Cook (1995), also described in
Carroll et al. (2006, Chapter 5). To motivate our improved remeasurement method, we first
review the remeasurement method of Huang et al. (2006) in the joint model context.

The remeasurement method involves further contaminating Wi and reestimating Ω based on
the contaminated-enhanced data. Specifically, for each prespecified positive constant λ:

• Step 1. For b = 1,…, B, generate the bth λ-remeasured data set, denoted by

, where , by taking

(7)

where Zb,i are independent mi-dimensional standard normal random errors, for i = 1,
…, n and b = 1,…, B.

• Step 2. Estimate the parameters based on . Denote by θ ̂b(λ) the estimate for
θ, and by Ω̂b(λ) the entire estimated parameter vector, for b = 1,…, B.

•
Step 3. Compute . Similarly define .

• Step 4. Plot θ ̂B(λ) versus λ ≥ 0, where θ ̂B(0) = θ ̂(0) is the estimate based on .
This plot is referred to as SIMEX plot.

A SIMEX plot where θ ̂B(λ) remains relatively constant across λ indicates robustness.

The above procedure has two drawbacks. First, the remeasured Wb,i(λ) defined in (7) depends
on the unknown σ. Second, Ω is estimated B times in step 2 in order to obtain Ω̂B(λ), which is
computationally burdensome. The improved remeasurement method we now propose
overcomes both drawbacks.

First, to generate remeasured data free of parameters, we define

(8)

where
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(9)

(10)

, and the elements in the mi ×
p matrix Zb,i are independent standard normal random variables. It can be shown that

 is positive definite almost surely when mi ≥ 2p so that

 exists almost surely. The construction of the new Wb,i(λ) in (8) is in
the spirit of the empirical SIMEX discussed in Section 5.3.1.3 in Carroll et al. (2006). As
elaborated in Section 4.2, W1,bi(λ) is a suboptimal, normally distributed, unbiased estimator
for DiXi, and W2,i(λ) is a normal unbiased estimator for zero, with the combined variance-
covariance matrix of W1,bi(λ) and W2,i(λ) equal to (1 + λ)σ2Imi, which coincides with the
variance-covariance matrix of the old Wb,i(λ) defined in (7).

Second, to avoid repeated estimation of Ω using the remeasured data, we construct a new
system of estimating equations at λ > 0. Assume that Ω̂(0) solves the vector estimating equation
evaluated at the observed data given by

(11)

for some d × 1 vector-valued function ψ(·; Ω). The functional form of ψ (·; Ω) depends on
estimation procedure. We defer specification of ψ (·; Ω) until Section 5 where specific joint
models and target estimators are considered in simulation. Based on the remeasured data, we
solve the following vector estimating equation evaluated at all B sets of λ-remeasured data for
an estimator of Ω,

(12)

where , and , for i = 1,…, n. Denote
by Ω̃B(λ) the solution to (12) and by θ̃B(λ) the corresponding estimator for θ. Using Ω̃B(λ) in
place of Ω̂B(λ) in the remeasurement method is appealing for two reasons. First, while Ω̃B(λ)
is obtained by solving only one vector estimating (12), Ω̂B(λ) requires solving B vector
estimating equations,

(13)
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Second, the summand in (12) is usually “smoother” than that in (13), thus solving (12) is often
easier than solving (13). To be consistent in notation, we define Ω̃(0) as the estimator based
on , which is the same as Ω̂(0).

4.2 Equivalence Between Two Versions of the Remeasurement Method
The improved remeasurement method is more efficient computationally, and it still retains the
key features necessary for diagnosing model misspecification. First, note that, for the old
Wb,i(λ) defined in (7), one has Wb,i(λ)|Xi ~ Nmi {DiXi, (1 + λ)σ2Imi}, just like Wi|Xi ~ Nmi
{DiXi, σ2Imi} except for the inflated variance, (1 + λ)σ2. This feature is important because it
implies that the density of Qb,i(λ) is identical to that of Qi except for the measurement error
variance. Therefore, if the observed data density given in (2) is correct, then replacing σ2 with
(1 + λ)σ2 in (2) gives the correct density of the λ-remeasured data. With the correct likelihood,
consistent MLE for all sizes of λ is achieved, resulting in a constant SIMEX plot asymptotically.
Conversely, a nonconstant SIMEX plot indicates model misspecification.

We show now that the new Wb,i(λ) defined in (8) has the same feature as that of the old
Wb,i(λ). Because Wi|Xi ~ Nmi (DiXi, σ2Imi), it is obvious by (10) that

(14)

To derive the distribution of W1,bi(λ) given Xi, we first consider the distribution of W1,bi(λ)
given Tb,i. By (9), W1,bi(λ)|Tb,i ~ Nmi[E {W1,bi(λ)|Tb,i}, var {W1,bi(λ)|Tb,i}], where, by noting
that ,

in which  such that . Then by realizing that , and
, we have

That is, W1,bi(λ)|Tb,i ~ Nmi {DiXi(1 + λ) σ2PDi}, and thus

(15)

Lastly, straightforward algebra reveals that, given Xi, cov {W1,bi(λ), W2,i(λ)} = 0. Combining
(14) and (15), we have Wb,i(λ)|Xi ~ Nmi {DiXi, (1 + λ) σ2Imi}, as desired. The new definition
of Wb,i(λ) given in (8) is assumed in the sequel.

Second, we prove that Ω̂B(λ) and Ω̃B(λ) defined in Section 4.1 are asymptotically equivalent.
Assume that the vector equation
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(16)

uniquely defines Ω(λ), where the expectation is taken with respect to the true density of
Ωb,i(λ). Recall that Ω̂b(λ) is the solution to (13), for b = 1,…, B. A first-order Taylor expansion
of (13) around Ω(λ) and rearrangement of terms gives

(17)

for b = 1,…, B, where A1 {Ω(λ)} is equal to E[− ∂ψ{Qb,i(λ); Ω}/∂ΩT] evaluated at Ω(λ), and
the expectation is taken with respect to the true density of Qb,i(λ). Averaging (17) over b = 1,
…, B for any finite B gives

(18)

Next consider the vector equation that uniquely defines Ω*(λ),

(19)

where the expectation is taken with respect to the true density of . Because

for any b and i, the solution to (16), Ω(λ), also solves (19). By the uniqueness of the solution
to (19), Ω*(λ) = Ω(λ). A first-order Taylor expansion of (12) around Ω*(λ)(= Ω(λ)) gives

(20)

where
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Finally, subtracting (20) from (18) reveals that .

4.3 Test of robustness
The SIMEX plot is a convenient graphical tool to visually assess latent-model robustness.
However, due to the variation in the estimators, (non)robustness is not always evident from
the SIMEX plot. We now define two test statistics to objectively assess robustness.

For a vector (or a square matrix) Π, denote by [Π](k) the kth element (or diagonal element) of
Π. Analogous to the test statistic proposed in Huang et al. (2006), we define a test statistic to
assess latent-model robustness based on the improved remeasurement method as

for 1 ≤ k ≤ d, where ν̂1 is an estimator for the variance-covariance matrix of n1/2{Ω̃B(λ) − Ω̃
(0)}. A second test statistic we propose is defined by

where Ω̃−σ2(0) is Ω̃(0) excluding σ2, and ν̂2 is an estimator for the variance-covariance matrix

of . Note that, unlike , computing  does
not require estimating Ω at λ > 0.

Define by Ω−σ2 the parameter vector Ω excluding σ2. Both test statistics are motivated by the
fact that, if the estimators for Ω−σ2 are robust, then Ω−σ2 (λ) = Ω−σ2 (0) for λ> 0, and both test
statistics should center at zero. The derivations for ν̂1 and ν̂2 are given in Web Appendix B.
We also show in Web Appendix C that  and  are asymptotically equivalent for
assessing robustness.

5. Simulation studies
5.1 Joint models with simple endpoint

We first demonstrate the proposed diagnostic methods applied to joint models with simple
endpoint. A data set of size n = 500 is generated from a joint model with a binary response.
The first component model is a logistic model, Pr(Yi = 1|Xi) = {1 + exp(−β0 − β1Xi)}−1, where
Xi = (X1i, X2i)T, and β1 = (β11, β12)T. The true values of the primary regression parameters

 are (−2, 1, 1)T. The latent variable Xi is generated from a location mixture bivariate
normal (BVN), (1 − p)N2(δ, I2) + pN2(0, I2), where p = 0.4 and δ = (5, 0)T. The longitudinal
measures Wi are generated according to (1), with mi = 5, tij = j for j = 1, …, 5, Di 5 × 2 with
jth row equal to (1, j), and Ui ~ N5(0, 0.6I5), for i = 1, …, 500.

We consider four estimators for θ. One is the CSE derived in Li et al. (2004). The other three
are the MLEs when the assumed models for X are a two-component location mixture BVN; a
non-mixture BVN; and a model specified by the bivariate second-order SNP density (Zhang
and Davidian, 2001) given by , where
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 for z = (z1, z2)T, and the polynomial coefficients
in P2(z) are constrained so that  integrates to one. Among the four estimators, the
CSE is robust by construction (Li et al., 2004), as is the MLE based on a mixture BVN, the
correct model for X. The other two MLEs are suspect, as the assumed random effect models
are incorrect. We use the proposed diagnostic devices to evaluate the robustness of the
estimators. The function ψ (·;Ω) in (11) associated with the CSE is the conditional score defined
in Li et al. (2004); and ψ(·;Ω) associated with the MLE is given by

where fWi(wi; τ(a), σ2) is the marginal density of Wi.

We first implement the improved remeasurement method on one simulated data set with B =
50 and λ ∈ [0, 1] to construct SIMEX plots. Denote the four estimators as

, and , where the superscript identifies the estimator: c, CSE; m,
mixture BVN; n, BVN; s, SNP. Figure 1a and b contain the SIMEX plots of the first two

elements in θ for each of the four estimates. As expected,  and  appear to be robust
as reflected by the nearly constant SIMEX plots. The estimate resulting from the flexible SNP

modeling  also has a relatively flat SIMEX plot. However, the SIMEX plot of ,
which is based on the least flexible assumed model for X among all the considered models, is
clearly distinguished from the other three. In order to observe the typical trend in SIMEX plots,
we repeat this experiment 30 times and construct the average SIMEX plots. These appear in
Figure 1c and d. Note the similarity with Figure 1a and b.

To assess the robustness objectively, we present  and  in Table 1 for the four types of
estimators depicted in Figure 1a and b. In Table 1, the pattern of p-values is consistent with
the visual impressions of Figure 1a and b. The operating characteristics of  based on the
improved remeasurement method are similar to those based on the original remeasurement
method of Huang et al. (2006). To examine the operating characteristics of , we compute

 associated with , and , respectively, for 500 replicate data sets
generated from the same joint model as above. The percentages of | | values exceeding

t0.975(n − d) are presented in Table 2. The results of  for  and  indicate

reasonable size of . The results of  associated with  and  suggest promising
power. In combination, these results suggest that  provides power for detecting the effects
of latent model misspecification, while maintaining reasonable size.

5.2 Joint models with time-to-event endpoint
We now study the diagnostic methods on a joint model with possibly censored time-to-event
endpoint. Each simulated data set has n = 500 subjects. The time-to-event is generated
according to a PHM given by λi(u|Xi) = λ0(u) exp{γ(X1i + X2iu)}, with γ = −1 and λ0(u) = I(u
≥ 16). The bivariate latent variable Xi = (X1i, X2i)T is generated from a truncated BVN obtained
by first generating Xi from a BVN with E(Xi) = (4.173, −0.0103)T, and {var(X1i), cov(X1i,
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X2i), var(X1i)} = (4.96, −0.0456, 0.012), then discarding the realizations with negative γX2i.
This causes around 46% truncation of the original BVN. The censoring distribution is
exponential with mean 110, resulting in a censoring rate of around 25%. The longitudinal
measures Wij are generated according to (5) at times tij = (0, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64,
72, 80), with a 10% missingness rate at times u ≥ 16. On average there are around six repeated
measures for each subject under this configuration. The intra-subject error variance is σ2 =
0.15.

Using the superscript convention introduced in Section 5.1, we consider three MLEs in this

simulation, , and , where the assumed SNP model is of first order; and the MLEs
are obtained via the EM algorithm as described in Wulfsohn and Tsiatis (1997) and Song et
al. (2002). The function ψ(·; Ω) in (11) is the likelihood score in this case. Because it is often
very time-consuming to estimate the parameters in the setting of joint models with time-to-
event endpoint, we only compute  to assess robustness. For a data set generated from the
current joint model, the values of , with the associated p-values in the following

parentheses, are found to be: , −1.56 (0.12); , −1.81 (0.07); and , −1.15 (0.25). As in

the previous simulation,  exhibits the greatest evidence of non-robustness, although falling
short of 0.05 level of significance. These results agree with the observations in Song et al.
(2002) and Hsieh et al. (2006) under similar simulation settings. This is an example where the
longitudinal information is great enough to yield the MLEs relatively insensitive to random
effect model assumptions. Among 100 Monte Carlo (MC) replicates, the proportions of data

sets that yield significant  are, 0.08, 0.12, and 0.06 for , and , respectively,
which suggests some gain in robustness from flexible modeling on X when the true model
deviates from normal.

One complication arises when computing the proposed test statistics for joint models with time-
to-event endpoint due to the dimensionality of Ω. Strictly speaking, the nuisance parameter
ζ in the first component model is the baseline hazard function, λ0(u), which is infinite
dimensional. Because the observed data likelihood is maximized when λ0(u) = 0 at non-event
time u (Song et al., 2002), we define ζ= {λ0(u1), …, λ 0(uL)}T, where (u1,…, uL) is the set of
observed times-to-event, and L is the number of distinct times-to-event in the data set. This
treatment of ζ yields a finite yet large dimension of Ω, since L is usually large. As shown in
Web Appendix B, computing  and  involves the d × 1 score vector and d × d Hessian
matrix. It is formidable to implement the computation when d is large. Our current solution to
this computational obstacle is to drop ζ from the parameter space when computing the score
or Hessian. The tradeoff is that the variance estimators, ν̂1 and ν̂2, may be biased downward.
The extent of underestimation depends on model configuration. For instance, in the foregoing
simulation with 100 MC replicates, the ratio of the average of  over the empirical standard

deviation of the numerator of  are 0.94, 0.97, and 1.00 associated with , and ,
respectively, with standard error (estimated via the jackknife method) around 0.07 for each
ratio. To compare with the variance estimators when there is no such complication, we
summarize in Table 3 the ratio of the mean of  averaging across 100 MC replicates over
the empirical standard deviation of the numerator of  from the simulation in Section 5.1,
for l = 1, 2. The results in Table 3 indicate that ν̂1 and ν̂2 are reasonably reliable variance
estimator in the setting of joint models with simple endpoint.

Due to the complication in variance estimators in joint models with time-to-event end-point,
even though an insignificant value of  or  still indicates lack of evidence for
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nonrobustness, one should be cautious when interpreting significant values of the test statistics.
In that case, one needs to explore further whether or not the significant results are caused by
overoptimistic variance estimators. For instance, one can use the bootstrap procedure to obtain
a more reliable variance estimator, as outlined in Hsieh et al. (2006).

6. Application to SWAN and ACTG 175
6.1 SWAN

We now apply the diagnostic methods to the SWAN data. For simplicity, we exclude the
observable covariates Hi from the first component model for the simple endpoint in (3) and
posit the logistic model given by Pr(Yi = 1|Xi) = {1 + exp(−β0 − β1Xi)}−1. Three estimators

for the primary regression parameter  are considered, including the CSE, the MLE
when assuming Xi follows a two-component location mixture BVN, and the MLE resulting
from a BVN assumed model for Xi. We compute  and  with B = 100 to assess the
robustness of these three estimators. The resulting test statistics are presented in Table 4. The
SIMEX plots for these three sets of estimates are given in Web Appendix D.

The statistics  indicate little evidence of nonrobustness for any of the three estimators for
θ, which is also reflected by the SIMEX plots in Web Appendix D. The statistics  do not

suggest strong evidence of nonrobustness either, but the values of  associated with  and

 are much closer to being significant than those for the counterpart estimates in  and

. Li et al. (2004) found that the estimated density for Xi “does not deviate considerably from
multivariate normality.” Their finding may explain why our diagnostic tools do not find strong

evidence that  is not robust.

6.2 ACTG 175
We now consider the ACTG 175 data with 2279 subjects and 350 events. This clinical trial
found zidovudine alone to be an inferior treatment compared to the other three therapies,
zidovudine plus didanosine, zidovudine plus zalcitabine, and didanosine alone. We assume the
PHM in (4) where Hi = I(treatment ≠ zidovudine for subject i). There is an average of 8.28
CD4 measurements per subject in this data set.

We compute  with B = 30 associated with three MLEs for θ = (γ,α)T, with assumed models
for Xi as a two-component location mixture BVN, BVN, and the first-order SNP, respectively.
The resulting statistics  are, for γ: γ̃(m), 1.37 (0.17); γ̃(n), 1.73 (0.08); and γ̃(s), 1.77 (0.08);
for α: α̃(m), 0.98 (0.32); α̃(n), 1.32 (0.19); and α̃(s) 0.42 (0.67). Therefore, there is not suficient
evidence to imply nonrobustness of the MLEs for θ under any of the three assumed random
effect models. This reconciles with the findings in Song et al. (2002).

7. Discussion
We have presented a graphical method and two test statistics for diagnosing latent-model
robustness in joint models for a primary endpoint and a longitudinal process. The methods are
designed to reveal sensitivity of the target estimator to model assumptions on the random
effects in joint models. With these diagnostic tools, it is hopeful to find an appropriate and
parsimonious random effect model to implement parametric inference as opposed to semipara-
metric inference as in Li et al. (2004) and Song et al. (2002), which can be less eficient. Our
diagnostic methods are closely related to the SIMEX method. Many authors (e.g., Li and Lin,
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2003;Greene and Cai, 2007; He, Yi, and Xiong, 2007) used SIMEX for estimating regression
parameters when covariates in survival models are measured with error, which is in line with
the initial motivation of SIMEX developed in the framework of structural measurement error
models. Our use of SIMEX is a new application of it as we do not use it for parameter estimation
per se but mainly for assessing latent-model robustness.

As noted in Section 5.2, the variance estimators in the test statistics for joint models with time-
to-event endpoint can be overly optimistic. More refined variance estimators for constructing
the test statistics to assess latent-model robustness in these complicated joint models call for
further investigation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Plots (a) and (b) are SIMEX plots for the MLEs of the first two elements in each of

, and , computed from one simulated data set. Plots (c) and (d) are

the average SIMEX plots from 30 Monte Carlo replicates. The line types are, : long

dashed; : dash-dotted; : solid; and : dotted. The short dashed lines are the
reference lines at the true values, β0 = −2 and β11 = 1. The ranges of the vertical axes in (a)
and (b) are set to be one estimated standard deviation of θ̃(n) (0) below and above the average
of the four types of estimates at λ = 0.
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Table 2
Percentage of  that exceed t0.975(n − d) in absolute value among the 500 replicate data sets from the simulation in
Section 5.1.

Parameter CSE Mixture BVN-MLE BVN-MLE

β0 0.06 0.04 0.06

β11 0.05 0.04 0.95

β12 0.03 0.05 0.56
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Table 3
Ratio of the average of  over the empirical standard deviation of the numerator of  from 100 MC replicates, for

l = 1, 2, associated with , and  from the simulation in Section 5.1. The numbers in parentheses are the jackknife
estimates for the standard errors of the ratios.

Statistic Parameter CSE Mixture BVN-MLE BVN-MLE

ν̂1
β0 1.00 (0.07) 1.02 (0.08) 1.00 (0.09)

β11 0.99 (0.07) 1.04 (0.07) 1.00 (0.09)

β12 0.98 (0.06) 1.00 (0.07) 1.00 (0.07)

ν̂2
β0 1.07 (0.07) 1.03 (0.06) 0.99 (0.06)

β11 1.02 (0.07) 1.05 (0.07) 1.01 (0.06)

β12 1.07 (0.08) 1.04 (0.07) 1.01 (0.07)
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Table 4

Statistics  and  associated with , and  for the SWAN data. The numbers in parentheses are the p-
values associated with the statistics.

Statistic Parameter CSE Mixture BVN-MLE BVN-MLE

t1
∗(1)

β0 −0.18 (0.86) −0.70 (0.48) 0.64 (0.52)

β11 −0.12 (0.90) −0.67 (0.50) 0.57 (0.57)

β12 0.17 (0.87) 0.68 (0.50) −0.82 (0.41)

t2
∗(1)

β0 0.42 (0.67) 0.87 (0.38) 1.64 (0.10)

β11 0.03 (0.98) 0.49 (0.62) −0.83 (0.41)

β12 −0.02 (0.98) −0.35 (0.73) 1.63 (0.10)
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