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Abstract
The use of molecular markers and gene expression profiling provides a promising approach for
improving the predictive accuracy of current prognostic indices for predicting which patients with
non-muscle-invasive bladder cancer will progress to muscle-invasive disease. There are many
statistical pitfalls in establishing the benefit of a multigene expression classifier during its
development. First, there are issues related to the identification of the individual genes and the false
discovery rate, the instability of the genes identified and their combination into a classifier. Secondly,
the classifier should be validated, preferably on an independent data set, to show its reproducibility.
Next, it is necessary to show that adding the classifier to an existing model based on the most
important clinical and pathological factors improves the predictive accuracy of the model. This
cannot be determined based on the classifier's hazard ratio or p-value in a multivariate model, but
should be assessed based on an improvement in statistics such as the area under the curve and the
concordance index. Finally, nomograms are superior to stage and risk group classifications for
predicting outcome, but the model predicting the outcome must be well calibrated. It is important
for investigators to be aware of these pitfalls in order to develop statistically valid classifiers that will
truly improve our ability to predict a patient's risk of progression.
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Introduction
Non-muscle-invasive (superficial) bladder cancer (NMIBC) encompasses a heterogeneous
group of patients, going from low-grade Ta tumors to high-grade T1 tumors with concomitant
carcinoma in situ. Previous publications have identified a number of clinical and pathological
factors related to recurrence and/or progression to muscle-invasive disease [1]. Based on an
analysis of some 2500 NMIBC patients included in seven European Organization for Research
and Treatment of Cancer (EORTC) trials, the EORTC developed a simple scoring system based
on six routinely assessed clinical and pathological factors [prior recurrence rate, number of
tumors, tumour size, stage (T category), grade and concomitant carcinoma in situ] which allows
clinicians to calculate a patient's short-term and long-term risks of recurrence and progression
to muscle-invasive disease [2].
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Progression to muscle-invasive disease after intravesical treatment is associated with a greatly
increased risk of death due to bladder cancer [3]. It is thus important to be able to identify
accurately those patients who will progress on intravesical treatment in order to offer them an
upfront cystectomy.

Although the EORTC risk tables clearly separate patients into four groups with an increasing
risk of progression, their use in identifying exactly which patients will progress is somewhat
limited. Among the 272 patients who progressed, 173 (63.6%) had a progression score of 7 or
more, while among the 2228 patients who did not progress, 1570 (70.5%) had a progression
score less than 7. Thus, using a cut-off score for progression of 7, the sensitivity (true-positive
rate) was 63.6% and the false-positive rate (1 – specificity) was 29.5%. Future work needs to
focus on improving the sensitivity and specificity of these tables.

Increasing attention has been paid over the past several years to the role of molecular markers
and especially gene and protein expression profiling in predicting both a patient's prognosis
(prognostic factor) and their response to treatment (predictive factor) [4,5]. The use of
molecular markers and expression profiling provides a promising approach for improving the
predictive accuracy of currently existing scoring systems such as that developed by the
EORTC. The goal of this paper is to review the biostatistical aspects that must be taken into
account when adding a patient's molecular profile to an existing prognostic index based on the
patient's clinical and pathological characteristics. This will be illustrated for multigene
expression classifiers.

Development of a multigene expression classifier
A multigene expression classifier is a function that provides the classification of a tumour based
on the expression levels of the component genes [6]. Although the function could yield a
continuous risk score, for validation purposes cut-off thresholds which divide patients into two
or more classes, for example good risk and poor risk groups, are generally defined.

The construction of a multigene expression classifier is a multistep process: first the
identification of individual genes related to the endpoint of interest and second the definition
of a function used to combine the genes together into a classification rule.

Identification of individual genes
The first step in building a multigene classifier is to identify those genes that are the most
differentially expressed between two or more different groups of patients, for example between
those patients who progress to muscle-invasive disease and those who do not. A statistic
measuring the difference in gene expression between the two groups is used to rank the genes
and a cut-off is selected to produce a list of the most differentially expressed genes.

This technique suffers from a number of problems [7]. First, many false-positive genes may
be identified. The false-discovery rate (FDR), the number of false positives divided the total
number of positives, should be controlled; however, the false-negative rate (FNR) must also
be taken into account. One proposal is to rank genes according to their p-value and to compare
the ith p-value, pi, to 0.05×i/n, where i is the rank in the list and n is the total number of genes.
Unfortunately, the FDR depends on a number of factors, many of which are not under the
investigator's control, including the unknown true proportion of non-differentially expressed
genes [7-9].

Secondly, gene lists may change dramatically when different patient sets are used. When
patients are randomly sampled from the original patient population, a high instability in the
genes included in the gene lists has been found. One technique to overcome this problem is to
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validate the gene list by using repeated random sampling, retaining for example only those
genes that are identified in more than 50% of the resampling data sets [10].

In choosing the number of genes to be included in a classifier, a balance must be made between
the risk of omitting informative genes and thus reducing classification accuracy, and including
non-informative genes which may dilute the influence of the informative genes and likewise
reduce prediction accuracy.

Combination of genes to develop a multigene expression classifier
The next step is to combine together the expression of the previously identified genes to develop
a classifier predicting a patient's outcome. Various classification algorithms exist such as linear
discriminant analysis, nearest neighbour classification, classification trees and support vector
machines [6,11]. Linear discriminant analysis uses a weighted sum of the individual gene
expression measurements and a threshold(s) which separates patients into one of two (or more)
groups according to whether the sum is less than or greater than the threshold(s).

The method employed to define the number of genes to be included and the type of equation
to be used should be defined a priori and not be based on retrospectively picking the best looking
result after trying several different methods [12].

Validation of the multigene expression classifier
As the number of candidate genes that can be included in a classifier is greater than the number
of patients analysed, one can always find classifiers that “accurately” classify the data on which
they have been developed (training set) even if there is no relationship between the expression
of any of the genes and the outcome [6].

The performance of the classifier is generally assessed based on the proportion of misclassified
patients as quantified by its sensitivity and specificity. As the evaluation of the performance
of the classifier on the training data set used to define it yields overly optimistic results, the
classifier should be validated on data not used in developing the classifier.

External validation on an independent data set
A given classifier is optimal for the patients in the training set used to construct it. The only
really correct way to validate a classifier based on the entire sample is to apply it to an external
“validation” data set [13]. The conditions for the validation should be the same as those used
to generate the classifier: same inclusion criteria, same endpoint, same treatment and the same
definition of the classifier (list of selected genes, expression measurement, equation and cut-
off value). The validation set must not include any patients used to generate the prediction rule.
The performance of the classifier in the test set can be assessed in the usual way, including the
calculation of the overall misclassification rate, sensitivity and specificity.

Alternatively, a split-sample validation might be carried out whereby the original sample is
split into two parts, one used for developing the classifier (training set) and one used for testing
or validating the classifier (test set). The adequacy of the size of the test set can be assessed by
computing a confidence interval for the test set error rate.

Internal validation using resampling
Although validation on an external data set is to be preferred, when an external data set is not
available, an internal validation based on resampling should be carried out. This technique
involves some form of cross-validation based on repeated model development and testing on
random data subsets drawn from the original sample of patients. Two popular resampling
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techniques using the original sample of patients are the leave-one-out cross-validation method
(LOOCV) [6,14] and the leave-many-out method, where multiple training and test sets are used
[10]. Each time patients are left out, the whole procedure of selecting genes and constructing
the classification rule is repeated from the beginning, otherwise the percentage of misclassified
patients may be greatly underestimated.

Although the classification rule to be validated may be different at each iteration of the
resampling process, the model to be used for future predictions is still the one based on the
entire sample. This procedure provides cross-validated estimates of the prediction error,
sensitivity and specificity when using this model in future samples.

Assessment of the predictive accuracy of a gene expression classifier
Owing to selective reporting and publication bias, almost all articles on cancer prognostic
markers report statistically significant results [15]. The fact that a variable is statistically
significant in a multivariate model does not necessarily imply that the variable improves the
model's predictive accuracy [16]. It has been shown, for example, that a marker with an odds
ratio of 3 is in fact a very poor classification tool and that an odds ratio of 30 or more is desirable.
More generally, however, a single measure of association such as an odds ratio does not
meaningfully describe a marker's ability to classify patients [17].

Thus, the important question to answer is not (1) whether the gene expression classifier by
itself is significantly related to the outcome, or (2) whether the gene expression classifier is
statistically significant in a multivariate model which also includes the classical clinical and
pathological factors, or even (3) whether the gene expression classifier is more significant than
the classical clinical and pathological factors in a multivariate model, but rather: “Does adding
the gene expression classifier to an existing model which is based on the most important clinical
and pathological factors improve the predictive accuracy of this model?”

Neither the statistical significance (p-value) of the classifier in the model nor the value of its
hazard ratio can be used to assess the gain in predictive accuracy. The value of the hazard ratio
depends on the measurement scale and cut-off used, the other variables that are included in the
model and how they are coded [18].

The following methods can be used to assess whether a gene expression classifier improves
the predictive accuracy of a standard classification or scoring system when applied to an
independent data set.

Assessment of a gene classifier within the levels of a standard risk group classification
system

When a classification system exists which divides patients into different risk groups based on
standard clinical and/or pathological factors, one way to assess whether the gene classifier adds
predictive accuracy to this system is to examine in a separate test set the outcome for the gene
classifier within the risk groups of the standard system. The statistical significance of the
contribution of the new classifier within the risk groups of the standard system can be used to
assess whether it adds prognostic information.

Predictive inaccuracy and proportion of explained variation
The predictive inaccuracy of a model is the average of the absolute difference between the
observed outcome and outcome predicted by the model, i.e. the absolute prediction error
[19-22]. The predictive inaccuracy is assessed for four models:

1. without any covariates (D0)
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2. with only the clinical and pathological factors (DC)

3. with only the genomic classifier (DG)

4. with both the clinical and pathological factors and the genomic classifier (DCG)

The proportion of variation explained by the models is then calculated. Similar to the multiple
R2 for linear regression, the explained variation for a model with only the gene classifier is
(D0–DG)/D0, while the relative gain in explained variation when the gene classifier is added
to the model containing the clinical and pathological factors is (DC–DCG)/D0. Explained
variation ranges from 0% to 100% and predictive inaccuracy is 0 for a perfect prediction.
Standard errors for explained variation and predictive inaccuracy can be obtained via bootstrap
resampling. The value of adding a genomic classifier to a model with clinical and pathological
factors can then be determined based on the values of predictive inaccuracy and explained
variation for models 2 and 4 above.

Several different modelling strategies exist, such as Cox regression, logistic regression,
recursive partitioning and regression trees (CART) and artificial neural networks [23].
Considerable work has been done in defining measures of predictive accuracy and explained
variation for the Cox proportional hazards regression model [20-22].

When patients die of unrelated causes before the endpoint of interest is observed, for example
recurrence or progression to muscle-invasive disease, classical methods based on Kaplan–
Meier estimates and Cox regression will overestimate the probability of the event. When such
competing risks are present, cumulative incidence curves and special competing risk regression
techniques must be used [24].

In prognostic factor studies of survival, the absolute or relative predictive accuracy and the
overall explained variation are often low even when there are prognostic factors that are highly
statistically significant. An explained variation of 20% has been proposed as the minimum
requirement for a gain in predictive accuracy which is worthwhile on an individual patient
level [19].

Area under the curve, concordance index and concordance probability estimate
The most common measures of predictive accuracy for binary and time to event endpoints are,
respectively, the area under the receiver operating characteristic (ROC) curve (AUC)
(sensitivity versus 1 – specificity) and the c-index (concordance index), which are identical for
binary data [16,25]. The c-index, an index of predictive discrimination, provides the probability
that, for two patients chosen at random, the model-predicted outcome and the observed
outcome are in agreement, i.e. the patient with the worse outcome is predicted to have the worse
outcome (c-index = 0.50 is agreement by chance). The c-index is calculated for the models
described in the previous section to assess the amount of improvement when taking the gene
classifier into account. It cannot be interpreted as a proportion of variation explained by a gene
classifier.

One disadvantage of the c-index is that it tends to become more extreme as the amount of
censoring increases. An alternative to the c-index which is not affected by patterns of censoring
is the concordance probability estimate (CPE) based on the Cox model.

More recently, ROC methodology has been extended to time-to-event outcomes to produce
time-dependent sensitivity, specificity and ROC curves along with a global concordance
measure [26].
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Nomograms
A nomogram provides a graphical method to predict the probability of an event, for example
progression to muscle-invasive disease, based on an individual patient's prognostic score.

Nomograms are superior to staging and risk group classifications for identifying patients at
high risk of an event [27]. Grouping patients assumes that all patients in a given risk group
have the same prognosis and that patients on the boundaries of two adjacent risk groups have
completely different prog-noses. Such groupings are likely to reduce the predictive accuracy
of a prognostic model.

Before a nomogram is constructed from a model which incorporates a patient's clinical and
pathological characteristics and the gene classifier, it is necessary to show that (1) the gene
classifier improves the predictive accuracy of the standard model based on clinical and
pathological factors, and (2) there is a good agreement between the observed event rate and
the event rate predicted by the model, i.e. the predicted estimates are not biased (the model is
well calibrated).

If the model with the gene classifier has not been validated on an independent data set, then
an internal validation must be carried out before constructing the nomogram. To correct for
overoptimism, the bootstrap resampling procedure should be used to obtain biased adjusted
estimates of the concordance index and calibration curves [25].

Nomograms in bladder cancer
An overview of the use of nomograms in bladder cancer has recently been published [28]. It
discusses their limitations and the various factors that should be taken into account in their
design and the assessment of their performance. Nomograms have been published in both non-
muscle-invasive [29] and muscle-invasive bladder cancer [30-34].

Non-muscle-invasive disease—For non-muscle-invasive disease, precystoscopy urinary
levels of NMP22 improved the ability of age, gender and cytology to predict stage and grade
stratified tumour recurrence [29].

Muscle-invasive disease—For muscle-invasive disease, nomograms have been developed
using classical clinical and pathological factors to evaluate the precystectomy prediction of pT
and pN stages at cystectomy [30] and to estimate the probabilities of recurrence [31,32] and
all-cause and bladder cancer-specific survival [33] after cystectomy.

More recently, it has been shown that the assessment of multiple biomarkers (p53, pRB, p21,
p27 and cyclin E1) improves the prediction of bladder cancer recurrence and death in
pTa-3N0M0 patients undergoing cystectomy [34]. Internal validation was performed using the
bootstrap resampling technique. This paper provides a good example of the methodology to
be used when assessing whether the addition of a gene expression classifier to an existing
prognostic model improves its predictive accuracy.

Conclusions
Establishing the actual benefit of multigene expression classifiers in predicting prognosis or
treatment outcome presents a particular challenge at each step of the way: the identification of
individual genes that are correlated with the outcome, their combination into a multigene
expression classifier and its validation, and then assessing the gain in predictive accuracy when
adding the classifier to a patient's clinical and pathological profile.
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The statistical methodology in developing a validated classifier that is of actual benefit in day-
to-day practice has received increasing attention during the past several years. The statistical
techniques are only now becoming more widely known and this is an area of fertile research.
In particular, two new ways of assessing improvement in model performance when adding new
markers to a model, the net reclassification improvement (NRI) and the integrated
discrimination improvement (IDI), have recently been proposed as measures which expand
upon the AUC [35].

It is especially important that those involved in the design of studies in this field are aware of
the pitfalls and difficulties involved in order to develop statistically validated classifiers that
will benefit patients and not just overly optimistic publications that will not live up to their
promise.
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