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INTRODUCTION
Separate chapters in this series of  minireviews are 
devoted to cover various aspects of  bile acids (BAs) 
chemistry, physiology and pathophysiology, including 
the hepatic synthesis and handling of  BAs and their 
implications in health and disease. Here we will deal 
with the normal and pathological roles of  BAs in one 
of  the traditionally known natural sites of  action, i.e. 
the intestine. It is well known that BAs are secreted 
into the duodenal lumen after meals in order to act 
as tensioactives and facilitate fat digestion. This is 
possible because of  the amphipathic characteristics of  
BAs, which are molecules with a highly hydrophobic 
core and a number of  hydroxyl groups attached. 
Because these groups may extend to one of  the two 
sides of  the basically planar structure formed by the 
hydrocarbon rings of  the BA molecule, its polarity is 
maximal when all hydroxyl groups are set out in the 
same side. Thus cholic acid (CA), deoxycholic acid 
(DCA) and chenodeoxycholic acid (CDCA), all of  
which have alpha hydroxyl groups, are more efficient 
tensioactives than ursodeoxycholic acid (UDCA), which 
has hydroxyls with both alpha and beta conformation. In 
order to act efficiently as tensioactives BAs must work 
in coordination with other amphipathic compounds, 
namely phospholipids, which are another essential 
component of  bile.

Once their physiological function is accomplished, 
most BA molecules are efficiently reabsorbed in the 
distal part of  the small intestine and reach the liver 
via portal blood, where they are avidly taken up by 
hepatocytes. Thus BAs are not wasted but recycled 
with an almost perfect yield (approximately 95%). The 
molecular details of  this enterohepatic cycle have been 
elucidated (Figure 1). The type and amount of  BAs thus 
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Abstract
Bile acids (BAs) have a long established role in fat 
digestion in the intestine by acting as tensioactives, 
due to their amphipathic characteristics. BAs are reab-
sorbed very efficiently by the intestinal epithelium and 
recycled back to the liver via transport mechanisms 
that have been largely elucidated. The transport and 
synthesis of BAs are tightly regulated in part by spe-
cific plasma membrane receptors and nuclear recep-
tors. In addition to their primary effect, BAs have been 
claimed to play a role in gastrointestinal cancer, intes-
tinal inflammation and intestinal ionic transport. BAs 
are not equivalent in any of these biological activities, 
and structural requirements have been generally iden-
tified. In particular, some BAs may be useful for cancer 
chemoprevention and perhaps in inflammatory bowel 
disease, although further research is necessary in this 
field. This review covers the most recent developments 
in these aspects of BA intestinal biology.
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reabsorbed, as well as of  those that pass into the colon, 
are not constant but subject to variation as a result of  
diet, transit time, drugs, disease, etc. This in turn has 
an impact on the effects of  BAs because they are not 
equivalent in terms of  bioactivity. Certain BAs have been 
involved in colon cancer, but also in other conditions 
such as intestinal inflammation, diarrhea, etc.

The dynamics of  BAs transport and metabolism is 
tightly regulated. This is necessary because intracellular 
accumulation of  BAs, as happens in cholestasis, may result 
in cytotoxicity. Because BAs are synthesized in the liver, 
an important part of  the control of  their homeostasis 
takes place in hepatocytes, the details of  these processes 
are covered in other chapters of  this series. However, in 
part of  the regulatory system the intestine plays important 
direct (transport/metabolism) and indirect (endocrine 
response of  intestinal epithelium to BAs) roles.

BA IN THE INTESTINE
As mentioned above, the liver synthesizes BAs at the 
expense of  cholesterol and also retrieves reabsorbed 
BAs from the blood. From hepatocytes they are secreted 
against steep concentration gradients into bile, together 
with cholesterol and phospholipids. Thus, between 
meals, most of  the pool of  BAs resides in the gallblad-
der ready to be used at short notice. The mechanisms 
whereby hepatocytes take up BAs from the bloodstream 
and synthetize and secrete them into bile have been re-
viewed in other chapters of  this series. When food is in-
gested (more precisely if  the meal is rich in fat) the gall-
bladder contracts in response to cholecystokinin. It has 
been proposed that intraduodenal BAs exert a negative 
feedback control on postprandial cholecystokinin release 
and the resulting gallbladder contraction. Thus the acute 
(but not chronic) intraduodenal bile salt depletion with 
cholestyramine affects gallbladder and also antroduode-
nal motility, possibly by enhanced motilin release[1].

The mix of  BAs contained in bile represents a bal-
ance of  primary and secondary compounds. Primary BAs 
are those synthesized as such by the liver, and comprise 
predominantly CA and CDCA. These are secreted to bile 
mainly conjugated with glycine and taurine, thus having 
enhanced water solubility. Secondary BAs are derived 
from primary BAs by modifications carried out by intes-
tinal bacteria. The main modifications are deconjugation, 
oxidation of  hydroxyl groups in 3, 7 and 12 positions, 
and 7-dehydroxylation[2]. The main secondary BAs are 
lithocholic acid (LCA) and DCA. The overall result is an 
increase in the hydrophobicity of  BA pool. The transfor-
mation of  BAs by bacterial enzymes has several important 
consequences. First, it favors passive absorption in the 
colon of  those BAs escaping the active uptake that takes 
place in the ileum. If  both mechanisms operate normally, 
only 1%-3% of  the amount of  BA that is secreted by the 
liver is ultimately excreted in faeces (deconjugated and 
otherwise transformed). Second, it increases the potenti-
ality of  BAs to cause noxious effect, like carcinogenicity 
and cholesterol gallstone disease[3]. Third, the composition 

of  the BA pool will vary when the conditions of  biotrans-
formation are altered, for instance by changes in transit 
time or alterations in the microbiota brought about by 
drugs, diet, etc.[3,4]. For instance, a high fat diet and a long 
(slowed) transit time favor DCA generation from CA and 
absorption, which in turn is associated with higher risk of  
cholesterol gallstones and cancer (see below). In addition, 
diets rich in fat and poor in fiber can increase more than 
10-fold the amount of  taurine conjugated BAs reach-
ing the colon, due to higher conjugation and production 
(higher conjugation reduces ileal absorption)[5,6]. Taurine 
dietary intake (meat, seafood) also contributes to this re-
sult. Overweight and accelerated intestinal transit reduce 
BA absorption and may cause idiopathic BA malabsorp-
tion[7]. Drugs such as cholestiramine bind BAs and reduce 
absorption. 

Owing to the fact that 7-dehydroxylation cannot be 
reversed by the host enzymatic machinery, LCA and DCA 
tend to accumulate in the BA pool. However, LCA is 
3-sulfated and conjugated at C-24 by the liver, resulting in 
a derivative that is poorly absorbed from the colonic mu-
cosa, and consequently LCA is not present in significant 
amounts in the bile[8]. Thus major BAs in human bile are 
CA, CDCA and DCA, which are accompanied by minor 
amounts of  UDCA, LCA and other BAs, whereas faeces 
contain mainly DCA, LCA, minor amounts of  CDCA, 
CA and UDCA and a variety of  bacteria transformed de-
rivatives[2]. Concentrations of  BAs in the intestinal lumen 
are variable but usually high, estimated in the medium 
millimolar range. This is consistent with their critical mi-
cellar concentration (e.g. 6-10 mmol/L for TCA), i.e. the 
concentration corresponding to spontaneous formation 
of  micelles[9].

Figure 1  Diagram showing the mechanisms of BA transport and regulation at 
the intestinal and hepatic level.
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BA TRANSPORT BY EPITHELIAL CELLS
As mentioned above, BAs are efficiently taken up from 
the lumen of  the ileal segment, leaving only approxi-
mately 5% (or approximately 0.5 g/d) in the lumen[10]. 
This fraction is in part passively absorbed in the colon, a 
process facilitated by bacterial deconjugation, and in part 
transformed and extruded with faeces. In contrast, ileal 
uptake is predominantly an active process carried out by 
the apical sodium-dependent BA transporter (ASBT, gene 
symbol SLC10A2), which imports BAs coupled to Na+ 
absorption (1:2 stoichiometry)[11]. ASBT is highly homolo-
gous to the hepatocyte Na+/taurocholate cotransporting 
polypeptide transporter (NTCP, gene symbol SLC10A1), 
which plays a pivotal role in BA uptake by the liver from 
the portal bloodstream. BAs species are not equally trans-
ported by ASBT. Thus, conjugated (more hydrophilic) 
BAs are transported more efficiently than unconjugated 
forms[12,13]. This is physiologically consistent with the fact 
that deconjugation normally takes place in the colon. The 
affinity of  ASBT is also higher for dihydroxy BAs (CDCA 
and DCA) than for trihydroxy BAs (CA, taurocholic acid-
TCA-, glycocholic acid-GCA-)[12].

BAs are believed to be transferred directly from 
ASBT to an intracellular 14 kDa protein called ileal BA 
binding protein (IBABP/FABP6) through the forma-
tion of  a 2:1 stoichiometric complex[14]. IBABP is sup-
posed to facilitate transport of  BAs within the cell to 
the basolateral membrane. This is suggested by data 
showing coordinated expression of  both ASBT and IB-
ABP in the postnatal development in the intestine and 
in cholangyocytes, as well as by the fact that IBABP and 
ASBT form complexes with a defined stoichiometry[15]. 
It should be noted however that ASBT is expressed in 
the kidney without being accompanied by IBABP[16], and 
also that FXR knockout mice, which do not express IB-
ABP, show enhanced rather than inhibited intestinal BA 
absorption, suggesting that IBABP may function as a 
negative regulator of  intestinal BA reabsorption, at least 
in the mouse[17]. Interestingly, low IBABP expression has 
been linked to the risk of  necrotizing enterocolitis in an 
animal model, suggesting that inefficient transfer of  BA 
to the basolateral membrane may ultimately result in epi-
thelial damage and inflammation[18].

Finally, BAs exit the enterocyte via the recently char-
acterized OSTα/β transporter[19], an obligate heterodi-
mer which functions in a Na+-independent manner and 
also transports prostaglandin E2, estrone-3-sulfate, dehy-
droepiandrosterone sulfate[13].

Developmentally ileal transport has been described 
to be preceded by active colonic absorption in rabbits[20]. 
This differs markedly from adult animals, which show 
net colonic secretion. The expression of  IBABP and 
ABST is known to be subjected to distinct changes early 
in life, which are dependent on the species and pro-
tein considered. Thus, in rats and mice, ASBT is highly 
expressed in the ileum of  the fetus before birth but is 
downregulated or entirely absent in the newborn and lat-
er upregulated again. IBABP shows a similar ontogenic 
profile in mice, while in rats it first appears postnatally[20]. 

The induction of  ABST after birth is stimulated by thy-
roxine in rats[21].

It is interesting to examine the effects of  interfer-
ence with normal transporter function in the intestine. 
Genetic disruption of  ASBT activity or pharmacological 
inhibition with SC-435 results in BA malabsorption and 
diarrhea[22-24]. Conversely, Ostα -/- mice show reduced 
intestinal capacity to take up BAs but unaffected fecal 
BA output, which is secondary to a marked shrinkage of  
the BA pool[19]. On the other hand, there are significant 
numbers of  patients with idiopathic ileal BA malabso-
prtion who suffer of  unexplained chronic diarrhea[25].

The exact role of  other transporters is controversial. 
They may play a minor role in BA handling by the intes-
tine. These include MRP3 and an alternatively spliced 
form of  ASBT, t-ASBT[13].

REGULATION OF INTESTINAL BA 
TRANSPORT
The intestinal (ileal) absorption of  BAs is tightly 
regulated to meet physiological demands. In addition, 
intestinal BA uptake has direct and indirect impact on 
hepatic BA homeostasis. The main factor involved 
in both functions is the farnesoid X receptor (FXR/
NR1H4), which was originally identified as an orphan 
nuclear receptor that was activated by farnesol, an 
intermediate in the mevalonate biosynthetic pathway[26]. 
FXR is expressed in ileal enterocytes and also in the 
liver, as well as in other tissues, such as the adrenal gland 
and the kidney[27]. Interestingly, the intestine seems to 
have the most intense FXR expression in the body[28]. 
Agonists of  the FXR include BAs, particularly CDCA, 
followed by DCA, LCA and many other BAs with 
minor efficacy (conjugation does not affect binding)[29]. 
The α-position of  OH groups in BA molecule is very 
important for interaction with FXR[30]. Upon activation, 
FXR modulates gene transcription acting in concert with 
another nuclear receptor, the retinoid X receptor alpha 
(RXRα), by recognizing a specific promoter sequence 
called the FXR responsive element. FXR is pivotal in 
the BA regulation both in the liver and in the intestine. 
In hepatocytes FXR increases expression of  the bile salt 
export pump (BSEP) and downregulates the expression 
of  NTCP and CYP7A. Since NTCP and BSEP mediate 
BA uptake from blood and export to bile in hepatocytes 
and CYP7A catalyzes the limiting-rate step in the 
classical BA biosynthetic pathway, this leads to reduced 
BA uptake, decreased synthesis and enhanced export to 
bile. Thus BA accumulation in hepatocytes tends to be 
self-limiting. In enterocytes, FXR is coupled to reduced 
ASBT and increased IBABP and OSTα/β expression, 
resulting in inhibition of  intestinal absorption of  BAs 
and prevention of  intracellular BA accumulation. 

The repressing effects of  FXR are mediated by the 
transcription factor SHP (Small Heterodimer Partner), 
which is induced by FXR but lacks a DNA binding 
domain[31,32]. Instead, SHP binds to other nuclear 
receptors such as RXR/RAR (retinoic acid receptor), 
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LRH1 (liver receptor homolog 1) and LXR (liver X 
receptor), inhibiting their transcriptional effects[11,33]. 
IBABP seems to interact with ASBT and FXR to 
promote FXR transcription[34].

An important feature of  FXR role in regulation of  
BA homeostasis is that it is not limited to local effects. 
Rather, sensing of  the enterocyte BA pool by FXR af-
fects the liver by way of  the endocrine factor FGF19 
(Fgf15 in mice)[32,33]. FGF19 is released to the portal 
circulation and activates fibroblast growth factor recep-
tor 4 (FGFR4) in hepatocytes, which results in down-
regulation of  CYP7A1 and therefore inhibition of  the 
classical BA synthetic pathway, both by SHP induction 
and possibly other pathways[33]. Thus BAs modulate 
their own synthesis both by local hepatic and remote 
intestinal negative feedback. Tissue specific FXR gene 
knockdown experiments suggest that both pathways 
are similarly important[27]. The importance of  the latter 
pathway is exemplified by the fact that administration of  
TCA downregulates CYP7A1 in the liver only when ad-
ministered intraduodenally, but not after intravenous or 
portal instillation[35]. However, alternative pathways for 
feedback control have been proposed[33].

Physiologically, lack of  BA uptake by ASBT inhi-
bition leads to increased fecal BA (and diarrhea) and 
reduced FXR stimulation, lower FGF19 synthesis, and 
consequently enhanced BA synthesis, expanding the BA 
pool and lowering plasma cholesterol[24]. In contrast, 
Ostα -/- mice do not exhibit increased fecal BA out-
put and have downregulated Cyp7a1 expression and a 
reduced BA pool[19]. This is due to increased Fgf15, sec-
ondary to FXR activation by “trapped” BAs.

In addition, FXR activation has been claimed to 
participate in the regulation of  bacterial growth within 
the intestine. This hypothesis is supported by the 
findings that cholestasis results in bacterial overgrowth in 
the small intestine and increased translocation, which are 
counteracted in experimental models by oral BAs[36,37]. 
The FXR mediated induction by BAs of  antibacterial 
genes such as angiogenin, carbonic anhydrase 12 and 
inducible nitric oxide synthase may account for this 
effect[38].

Other nuclear factors are regulated by BAs, including 
the pregnane X receptor (PXR/NR1I2), the Vitamin D 
receptor (VDR/NR1I1) and the androstane constitutive 
receptor (CAR)[33]. Thus LCA binds and activates intes-
tinal and systemic VDR[39]. It has been proposed that 
the effects brought about by LCA are essentially local, 
directed to induce CYP3A genes and to aid in detoxifi-
cation[40], but at any rate it can substitute for Vitamin D 
systemically. PXR and CAR activation leads to the up-
regulation of  secondary BA transporters such as MRP2, 
MRP3 and MDR1. For instance, CA induces MRP2 and 
MRP3 in the intestine[41]. In addition, BAs have been re-
ported to activate a G-protein associate receptor, named 
after the fact G protein-coupled BA receptor 1 (also 
known as TGR5), which is expressed in many tissues in-
cluding the gastrointestinal tract[42].

IBABP is also regulated by PPARα/β in humans but 
not mice[43], and can also be indirectly up-regulated by 

cholesterol through the activation of  sterol-responsive 
element-binding protein 1c (SREBP1c) by LXR[44]. 
ASBT is also regulated by PPARα[45]. These changes 
are expected to increase BA uptake and possibly reduce 
cholesterol absorption, a putative mechanism of  action 
of  the hypolipemic drugs fibrates[43]. Corticoids are also 
known to upregulate ASBT expression[46]. Because BA 
ileal uptake is inhibited in intestinal inflammation and 
probably contributes to diarrhea, corticoid treatment 
may be specifically useful in this setting.

Among the pathological conditions affecting BA 
homeostasis, cholestasis downregulates ASBT expres-
sion[47,48]. The mechanism is unclear, but it may be re-
lated to PPARα inhibition by BAs (possibly because of  
high blood levels), given that PPARα has been reported 
to transactivate ASBT transcription, as mentioned 
above[45,49]. Intestinal MRP2 but not MRP3 is decreased 
by cholestasis in rats[50] and in humans[48,51], although the 
significance of  these findings is uncertain. In contrast, 
increased absorption has been reported in primary bili-
ary cirrhosis, thus contributing to cholestasis in this 
condition[52]. Hypertriglicerydemia also reduces ASBT 
expression and inhibits BA absorption[53], an effect 
which in turn might exacerbate hypertriglyceridemia[54]. 
Interestingly, gallstones have been associated with lower 
intestinal ASBT and IBABP expression in normal weight 
but not overweight women[55]. These changes are ac-
counted for by lower hepatic FXR and thereby increased 
BA synthesis.

BA AND COLORECTAL CANCER
There is wide epidemiological evidence linking BA ex-
posure (for instance due to high fat diet) and gastroin-
testinal (specially colorectal) cancer[56-58]. Patients with 
colorectal adenomas and carcinomas exhibit high blood 
and fecal levels of  secondary BAs[59,60]. Diets rich in fat 
are powerful stimulants of  BA secretion, as mentioned 
above. Thus many investigators have studied the effects 
of  BAs, particularly secondary BAs (DCA and LCA) 
on intestinal epithelial cell proliferation, apoptosis and 
mutagenesis in vitro, as well as on cancer promotion in 
vivo. Paradoxically DCA, but not CA or UDCA, exhibit 
proapoptotic effects on cell lines, which appear to de-
pend on a variety of  mechanisms[61,62]. The ability of  
BAs to induce apoptosis has been linked to their hydro-
phobicity, so that unconjugated DCA and CDCA are the 
most powerful inducers[63]. This makes sense, since only 
hydrophobic BAs can gain access to colonic cells via pas-
sive diffusion.

Different mechanisms have been involved in the pro-
apoptotic effect of  BAs. Direct increase in mitochon-
drial membrane permeability has been suggested, leading 
to mitochondrial swelling, release of  cytochrome c and 
apoptosis[64]. Alterations in plasma membrane com-
position with subsequent up-regulation of  caveolin-1 
may underlie also the activation of  protein kinase C by 
BAs[65]. DCA and UDCA have opposing effects on PKC 
translocation, affecting a number of  isoenzymes includ-
ing PKC alpha, epsilon and beta1[66,67]. DCA also acti-
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vates NF-κB and AP-1 in colonic epithelial cells, down-
stream of  PKC stimulation[68]. As expected, UDCA has 
the opposite effect. ERK activation has been involved 
in DCA proapoptotic effects, inasmuch as genetic or 
pharmacological inhibition blocks them[69]. In addition, 
DCA (and CDCA) induce c-Fos and COX2 in intestinal 
epithelial cells[70]. 

Despite these observations, it is important to note 
that epithelial cells may develop resistance to DCA in-
duced apoptosis, which is achieved partly via the NO 
pathway[71] and is correlated with shifted expression of  
multiple proteins, as assessed by proteomic analysis[72]. 
Alternatively, additional factors may protect against DCA 
induced apoptosis, such as glutathione-S-transferase 
P1-1[73]. The expected result would be the selection of  
transformed cells, favoring the formation of  adenomas 
and predisposing to subsequent development of  cancer.

BAs also exert direct actions that can lead to tu-
morigenesis. Thus, DCA has genotoxic effects, which 
are believed to be secondary to induction of  oxidative 
stress in the cell[74], and suppresses the p53 response to 
DNA damage, an action that is at least partly dependent 
on ERK signaling[75]. Moreover, inhibition of  BRCA-1 
by relatively high DCA concentrations contributes to 
defective DNA repair[76]. Recently DCA and LCA (in 
conjugated form) were shown to elicit transactivation of  
the epidermal growth factor receptor via interaction with 
muscarinic receptors and phosphorylation of  ERK[77]. 
Another gene target of  DCA via ERK is the tumor 
marker EphA2 receptor protein tyrosine kinase[78]. In 
general, these actions are not shared by UDCA and may 
be opposed by it[61,79,80]. Taken together, these data indi-
cate that DCA may behave as a co-carcinogenic and/or 
cancer promoter agent, which may potentiate the activity 
of  any primary carcinogen or cancer initiator. In addi-
tion, DCA may increase tumor invasiveness by activation 
of  beta-catenin signaling[81]. An interesting observation 
is that FXR expression is diminished in colon cancer[82]. 
Under these circumstances, FXR-mediated mechanisms 
involved in the prevention of  BA accumulation in these 
cells could be expected to be completely or partly inac-
tive, thus exacerbating BA-induced effects.

We also count on substantial in vivo evidence about the 
effects of  BAs on colorectal cancer. Thus colonic grafts 
from mice with an APC gene mutation do not develop 
adenomas if  they are removed from the fecal stream[83]. 
In the standard Min mouse model UDCA produces a 
dose dependent decrease in the number of  intestinal 
tumors, showing synergism with the cycloxygenase 2 
inhibitor sulindac[84]. In the azoxymethane model of  
cancer associated to chronic colitis, UDCA lowered the 
multiplicity of  colonic adenocarcinoma, while sulfasalazine 
had no significant effect[85]. Similar results were obtained 
in the regular (without colitis) azoxymethane model[86]. 
The chemopreventive effect of  UDCA is associated with 
decreased Ras activation and COX2 expression[87]. 

This type of  observations can be extended to human 
disease. Thus, a study carried out in patients with prima-
ry biliary cirrhosis undergoing surveillance by colonos-
copy revealed a non-significant reduction in the preva-

lence of  colorectal adenomas and, more importantly, a 
lower probability of  recurrence (7% vs 28% at 3 years, P 
= 0.04)[88]. UDCA lowers cancer mortality (but not inci-
dence) in ulcerative colitis patients with sclerosing chol-
angitis[89]. In a clinical trial on the secondary prevention 
of  colorectal cancer, UDCA caused a non-significant 
12% decrease in recurrence rate but a significant reduc-
tion (39%) in the subgroup with high-grade dysplasia[90]. 
In clinical trials of  cancer associated to inflammatory 
bowel disease, a condition which increases the risk of  
developing cancer, UDCA has been shown to be benefi-
cial, ranging from a mild chemoprotective effect[91] to a 
clear decrease in the relative risk of  developing colorectal 
dysplasia or cancer[92]. Mechanistically, UDCA has been 
reported to reduce mucosal proliferation in cancer naive 
patients[88] but to have no effect in adenoma patients[93]. 
From a pharmacokinetic point of  view, the main effect 
of  UDCA administration in humans is an increase of  lu-
minal (fecal) UDCA/DCA ratio, although DCA absolute 
levels remain unaltered[94]. 

An intriguing possibility is that taurine, which is 
bound to a substantial fraction of  the BA pool, con-
tributes to cancer risk. Taurine, which can be released 
in the intestinal lumen from conjugated BAs due to the 
metabolic activity of  several bacterial strains, is metabo-
lized by the intestinal flora yielding hydrogen sulfite, 
which increases colonocyte turnover and inhibits butyr-
ate metabolism. Although these cells oxidize efficiently 
this compound to thiosulfate, taurine derived hydrogen 
sulfite may be involved in carcinogenesis. In fact, defects 
in the hydrogen sulfite detoxification pathway may in-
crease the risk of  UC, a significant risk factor for colon 
cancer[95,96]. It is interesting to note that taurine conjuga-
tion and sulfite production are increased in meat con-
sumers, thus providing another link to colon cancer[2]. In 
addition, sulfite promotes DCA generation by bacteria 
through stimulation of  7α-dehydroxylation.

EFFECT OF BA ON ION TRANSPORT
It is well known that BAs elicit fluid secretion and also 
increased permeability in the gastrointestinal tract[97-101]. 
BAs also affect intestinal motility, although this field 
of  study has received relatively little attention[1,102]. The 
effect of  BAs on permeability is primarily due to their 
detergent action on tight junctions, which is reversible. 
However, at high BA concentrations epithelial lesions 
may occur. This effect is to a large extent indirect, in-
duced by intramural reflexes containing nicotinic re-
ceptors, but probably it does not involve histamine or 
nitric oxide pathways[97,103,104]. However, this question is 
controversial, because in some cases histamine has been 
suggested to be involved[98].

The secretory effect of  BAs has been studied in the 
small and large intestine, and in both cases the mecha-
nism of  secretion appears to be largely indirect[99]. In 
the small intestine BAs elicit serotonin release by en-
terochromaffin cells in the mucosa by a Ca2+-dependent 
mechanism, initiating a neural reflex that stimulates ion 
secretion, as well as inhibited absorption[105]. In ileal 
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perfusion experiments permeability and fluid transport 
were studied in parallel, finding that the effect is depen-
dent on nicotinic receptors in both cases[97,103]. On the 
other hand, in the colon BA-induced secretion has been 
claimed to be prostaglandin dependent[106]. More specifi-
cally, prostaglandins may account for the early response 
to BA stimulation observed in vitro[98]. Mast cells have 
also been involved in this process[98]. Indeed, BAs have 
been shown to induce prostaglandin[107] and histamine 
secretion[108] in vitro. Some of  these actions may be sec-
ondary to direct mucosal injury[100,109]. Considering the 
variety of  mediators proposed to participate in these 
events, it is not surprising that multiple intracellular sig-
naling pathways have also been involved. 

As with other biological activities of  BAs, not all 
molecular species are equivalent. Dihydroxy BAs, and 
in particular DCA and CDCA, exhibit prosecretory/an-
tiabsorptive and mucosal damaging effects in the colon, 
particularly in their unconjugated forms[100,101]. Con-
versely, other important BAs such as CA and UDCA are 
generally considered to have no significant bioactivity 
at this regard. In the small intestine, these differential 
species-dependent effects are not so well characterized, 
but they certainly differ from those in the colon. For 
instance, CDCA is a relatively poor secretagogue in the 
ileum[110-113]. It should be noted that ileal BA absorption 
is electrogenic, even in the absence of  chloride/bicar-
bonate secretion, due to the 2:1 stoichiometry of  ASBT-
mediated Na+:BA symport[111,114,115].

However, BAs also exert direct actions on intestinal 
epithelial cells. Using the prototypic T84 cell line TDCA 
was shown to elicit chloride secretion by a Ca2+ depen-
dent mechanism[116]. This pertains to the actions of  BAs 
in the large intestine, since T84 cells have a colonic epi-
thelium phenotype. More recently, BA were described to 
induce ion secretion via transactivation of  the cystic fi-
brosis transmembrane conductance regulator (CFTR)[113]. 
CFTR is the main chloride/bicarbonate channel in 
intestinal epithelial cells and is pivotal to ion secretion in 
the gastrointestinal tract, among other tissues. Transacti-
vation requires apical colocalization of  both CFTR and 
ASBT, which does occur in the distal ileum but also in 
cholangiocytes. Moreover, CFTR also plays a role in bile 
flow, as suggested the presence of  plugging and dilata-
tion of  bile ducts in cystic fibrosis. Interestingly, BA ileal 
uptake is compromised in this condition, leading to BA 
waste and diarrhea[113,114,117], suggesting that CFTR has a 
reciprocal influence on ASBT. Moreover, this provides 
an additional meaningful link to inhibited BA absorption 
in intestinal inflammation, where CFTR has been shown 
to be downregulated, as is ASBT itself[118,119]. Although 
the relationship between the expression of  CFTR and 
that of  ASBT has been previously demonstrated also for 
other transporters[120], the underlying mechanism has not 
been elucidated yet.

One interesting question arises as to what is the 
physiological role of  BA-induced ileal and colonic se-
cretion. The simplest explanation is that ileal secretion, 
which is evoked in normal conditions, may be useful to 
aid in intestinal propulsion or to prevent the formation 

of  micelles and the consequent epithelial damage during 
the absorptive process[113]. In contrast, colonic secretion 
occurs only in pathologic conditions and may be part of  
a nonspecific mechanism aimed to eliminate invading 
microorganisms. In addition, BA ileal absorption is com-
promised in conditions such as irritable bowel syndrome, 
Crohn’s disease, cystic fibrosis and surgical resection 
(short bowel syndrome)[117], producing diarrhea because 
of  the presence of  high (millimolar) concentrations in 
the colonic lumen. BAs (CDCA, UDCA) can also induce 
diarrhea in their own right when given to gallstone pa-
tients[121,122].

BA AND INTESTINAL INFLAMMATION
Certain BAs have been shown to exert intestinal antiin-
flammatory actions in vivo. Thus UDCA reduces intestinal 
permeability and oxidative stress in the indomethacin 
model of  ileitis in the rat[123]. Similarly, UDCA counteracts 
ibuprofen intestinal ulceration in rats[124]. These effects 
may be related to the actions of  BAs on intestinal epithe-
lial cells. Thus DCA induces IL-8 and activates NF-κB 
in HT29 cells, actions that are opposed by taurine-conju-
gated UDCA[125,126]. The mechanism for IL-8 induction is 
probably via the classical NF-κB pathway for DCA and 
via RelA phosphorylation in the case of  TDCA[126]. The 
stimulatory effect of  DCA is reproduced in other[127,128] 
but not all cell lines[129]. Thus UDCA might exert antiin-
flammatory actions in the intestine by inhibiting epithelial 
stimulation. Conversely, DCA is predicted to aggravate 
inflammation, but this has not been tested. On the other 
hand, BAs have also been described to enhance epithelial 
wound healing, an action dependent on NF-κB activation 
and the release of  transforming growth factor β[130]. This 
effect is shared by TDCA, DCA and TCA. Unfortunately 
UDCA was not investigated[130]. It cannot be ruled out 
that this effect may also form part of  the mechanism of  
action of  this beneficial compound.
 
INTESTINAL APPLICATIONS OF BA
The main clinical application of  BAs is in the manage-
ment of  gallstones and cholestasis (primary biliary 
cirrhosis, cystic fibrosis liver disease, drug induced cho-
lestasis)[88,131,132]. UDCA and to a lesser extent CDCA 
have been used. Cholylsarcosine is an artificial derivative 
that has been proposed as an alternative. However, BAs 
have no current application for intestinal conditions. 
UDCA has been studied in the clinical setting for cancer 
chemoprevention as discussed above. Specific artificial 
BA derivatives have also been studied for chemopreven-
tive application[133]. Interestingly, it may be feasible to 
increase UDCA intestinal exposure by the use of  a spe-
cific type of  probiotic (living bacteria) that epimerizes 
CDCA to UDCA within the intestinal lumen[134]. BAs 
have been used in some cases as a replacement to reduce 
steatorrhea due to short bowel syndrome or secondary 
to metabolic genetic diseases, frequently at the price of  
enhanced diarrhea[135,136]. Conversely, diarrhea without 
steatorrhea benefits from treatment with ion exchange 
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resins such as cholestiramine that bind and act as seques-
trant of  BAs during their intestinal transit[137].

Moreover, BAs are being considered as galenic agents 
to improve intestinal absorption of  drugs compounds 
such as nucleotides, heparin or insulin[138-140].

CONCLUSION
Owing to their tensioactive properties BAs play an im-
portant role in the intestine, facilitating fat digestion 
and the absorption of  lipids and liposoluble vitamins. 
Efficient intestinal uptake, mainly at the ileum, permits 
to recover most of  the secreted BA molecules, which 
are sent back to the liver with the portal blood. The 
existence of  the enterohepatic circulation maintains 
appropriate levels of  BAs ready to be used after meals 
and prevents exposure of  other tissues to high levels of  
these dangerous detergents. In this respect, due to the 
potential toxicity of  BAs and, at the same time, their 
biological relevance the homeostasis of  BAs is tightly 
regulated, in part by specific plasma membrane receptors 
and nuclear receptors. The function, transport and regu-
latory mechanisms regarding BAs and the intestine have 
been elucidated in great detail, although some questions 
remain unanswered, such as the exact physiological role 
of  IBABP. Some BA species have peculiar biological or 
pharmacological effects, which have been characterized 
to a great extent. Nevertheless, their role in colon cancer 
and intestinal inflammation requires further study, which 
is especially interesting considering the potential thera-
peutical applications.
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