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Synopsis
Staphylococcus aureus is the most abundant cause of bacterial infections in the United States. As
such, the pathogen has devised means to circumvent destruction by the innate immune system.
Neutrophils are a critical component of innate immunity and the primary cellular defense against S.
aureus infections. Herein we review human neutrophil function in the context of S. aureus virulence
mechanisms, and provide an overview of community-associated methicillin resistant S. aureus (CA-
MRSA) pathogenicity.
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Staphylococcus aureus has been a leading cause of human infections throughout history.
During 1997–1999, S. aureus was reported as the most abundant cause of bloodstream, skin
and soft tissue, and lower respiratory tract infections in the United States, Canada, Europe,
Latin America, and the Western Pacific [1]. The pathogen is currently the leading cause of
hospital-associated infections in the United States [2], and was associated with a remarkable
economic burden of $14.5 billion in 2003 [3]. A high percentage of hospital infections are
caused by MRSA [4]. Notably, there is a relatively high mortality rate (∼20%) associated with
invasive MRSA infections, the majority of which are healthcare-associated [5]. This finding
may be related in part to the prior health status of the patient, since these infections typically
occur in individuals with predisposing risk factors, such as those who have had surgery, or in
patients who are immunocompromised or have granulocyte defects.
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By comparison, community-associated (CA) S. aureus cause infections in otherwise healthy
individuals. Historically, community S. aureus infections were almost always caused by
methicillin-susceptible S. aureus (MSSA) rather than MRSA [4], but this distribution has
changed dramatically in the United States over the past 10 years [6]. Two reports in the late
1990s marked the beginning of a new era in MRSA epidemiology [7,8]. Isolates classified as
pulsed-field gel electrophoresis type USA400 emerged as the prototype CA-MRSA genotype
[9,10]. A complete genome sequence is available for MW2, a representative USA400 clinical
isolate that caused fatal septicemia in 1998 [10]. Although USA400 remained a significant
cause of CA-MRSA infections through 2005 [11,12], it has been replaced almost completely
by a genotype known as USA300 [6,13], which is now epidemic in the United States. The
current CA-MRSA epidemic is due to clonal emergence of USA300 isolates that have enhanced
virulence or a “hypervirulence” phenotype [14,15]. Hypervirulence, defined here as the ability
of CA-MRSA to cause widespread infections in otherwise healthy individuals, is likely related
in part to the ability of USA300 and USA400 to circumvent killing by human
polymorphonuclear leukocytes (PMNs) and cause rapid destruction of these host cells [16,
17].

In general, the ability of bacteria to cause disease in humans is due to evasion of innate host
defense, which includes resistance to antimicrobial peptides (AMPs) and killing by phagocytic
leukocytes. Inasmuch as PMNs (also called neutrophils or granulocytes) constitute the greatest
number of leukocytes in humans, they are the primary cellular defense against S. aureus
infections. Here we review critical components of neutrophil function as they relate to S.
aureus infection as well as staphylococcal virulence factors that contribute to immune evasion,
including those produced by prominent CA-MRSA strains.

PMNs in the innate immune response
Neutrophil recruitment, chemotaxis, and priming

A first step in the eradication of invading microorganisms is active recruitment of PMNs to
the site of infection by chemotaxis (reviewed by Cicchetti et al. [18]). This is a multistep process
whereby neutrophils are mobilized from peripheral blood and/or bone marrow in response to
host- and pathogen-derived chemotactic factors. Host molecules, such as interleukin-8 (IL-8,
CXCL8), GROα (CXCL1), granulocyte chemotactic protein 2 (GCP2, CXCL6), and
complement component C5a, recruit neutrophils to the site of infection.

S. aureus has been shown to elicit production of numerous chemotactic factors in vitro and in
vivo. For example, S. aureus lipoteichoic acid (LTA) and capsular polysaccharide induce
production of IL-8 by peripheral blood monocytes [19] and epithelial and endothelial cells
[20], respectively. S. aureus-activated endothelial cells produce IL-8 that promotes
transmigration of neutrophils [21]. Freely secreted virulence molecules of S. aureus, including
toxic shock syndrome toxin-1 (TSST1), enterotoxin A (SEA), or enterotoxin B (SEB), also
elicit production of IL-8 by human monocytic cells [22]. Recent studies have demonstrated
that stimulation of CD4+ T-cells by S. aureus capsular polysaccharide leads to production of
chemokines that recruit neutrophils to the site of infection [23,24]. Further, S. aureus cell
surface components, primarily peptidoglycan (PGN), have long been known to elicit
production of C5a [25], a potent chemotactic molecule for PMNs. S. aureus also produces
molecules that directly recruit PMNs (e.g., phenol soluble modulin-like peptides, PSMs; see
below) [26]. Although the pathogen elicits a robust proinflammatory response, it generates a
number of molecules that block chemotaxis and these are discussed below (also see Table 1).

Many chemoattractants are priming agents (rather than activating agents) for neutrophils.
Neutrophil “priming” was first described as the ability of a primary agonist, typically at sub-
stimulatory concentration, to enhance superoxide production elicited by a second stimulus
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[27]. Neutrophils can be primed for enhanced adhesion, phagocytosis, production of reactive
oxygen species (ROS), cytokine secretion, leukotriene synthesis, degranulation, and
bactericidal activity (see ref. [28] for a comprehensive list of priming agents). Many neutrophil
priming agents are host-derived molecules such as cytokines, chemokines, and growth factors
[28]. Cell-cell contact and adhesion also prime PMNs for enhanced function. Some bacteria-
derived priming agents, such as S. aureus LTA, are Toll-like receptor (TLR) agonists and TLRs
are components important to the pathogen-mediated priming process (see below). There is a
distinction between primed neutrophils and those that are fully activated. Priming includes
mobilization of secretory vesicles (and thus up-regulation of specific cell surface receptors,
e.g., CD11b/CD18) and secretion of cytokines, but fails to trigger release of azurophilic
granules or elicit production of superoxide [29]. Importantly, chemotactic/priming agents
ultimately promote efficient clearance of invading microorganisms.

Pathogen recognition and phagocytosis
Phagocytosis is a process whereby neutrophils bind and ingest invading microorganisms (Fig.
1). It is a critical step in the removal of bacteria during infection. Also, opsonophagocytosis is
the means by which vaccines prevent bacterial disease. PMNs recognize many surface-bound
or freely secreted molecules produced by bacteria, including PGN, lipoproteins, LTA,
lipopolysaccharide (LPS), CpG-containing DNA, and flagellin. These conserved molecules,
known as pathogen-associated molecular patterns (PAMPs), interact with pattern recognition
receptors expressed on the neutrophil cell surface, including TLRs (reviewed in [30]).
Neutrophil TLRs activate signal transduction pathways that prolong cell survival [31], promote
and/or enhance adhesion, phagocytosis, release of cytokines, chemokines and ROS [31,32],
and trigger granule exocytosis [33], thereby contributing to microbicidal activity. As an
example of the importance of the TLRs in host defense, mice deficient in TLR2 are more
susceptible to S. aureus infection compared with wild-type mice [34].

Peptidoglycan recognition protein (PGRP) is a secreted host protein that contributes to
intracellular killing of Gram-positive bacteria by neutrophils [35]. There are four reported
isoforms of PGRP in mammals, and neutrophils express PGRP-short (PGRP-S) [36]. In
contrast to TLRs, which promote recognition of bacteria, PGRP-S contributes directly to
bactericidal activity [35].

NOD-like receptors (NLRs) are cytoplasmic proteins that detect intracellular microbial
components (reviewed by Nunez and colleagues [37]). NOD2 senses muramyl dipeptide
derived from S. aureus PGN and ultimately promotes transcription of NF-κB target genes in
the nucleus [37]. Phagocytosis is also facilitated by host pattern recognition molecules known
as collectins, such as mannose-binding lectin, and these molecules are reviewed elsewhere
[38].

Although pattern recognition receptors are important for detection of microbes by phagocytes,
the efficiency of phagocytosis (i.e., uptake or ingestion) is enhanced if bacteria are opsonized
with serum host proteins, such as complement and/or antibody. Complement-opsonized
microbes are bound by complement surface receptors on PMNs, including ClqR, CD35 (CR1),
CD11b/CD18 (CR3) and CD11c/CD18 (CR4). Antibody-coated microbes are recognized by
PMN antibody-Fc receptors, namely CD16 (FcγRIIIb, IgG receptor), CD23 (FcεRI, IgE
receptor), CD32 (FcγRIIa, IgG receptor), CD64 (FcγRI, IgG receptor), and CD89 (FcαR, IgA
receptor). The concerted action of pattern recognition receptors/molecules and antibody and
complement receptors promotes efficient phagocytosis of microbes (Fig. 1).
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Neutrophil microbicidal activity
NADPH oxidase and the production of ROS

Human neutrophils employ oxygen-dependent and oxygen-independent mechanisms to kill
ingested microorganisms. Phagocytosis of microorganisms activates a membrane-bound
NADPH-dependent oxidase that generates high levels of superoxide, a process traditionally
called “respiratory burst” (reviewed by Quinn et al. [39]). Superoxide anion is short-lived and
dismutates rapidly to hydrogen peroxide and forms other secondary reactive products. These
secondarily-derived products, including hypochlorous acid, hydroxyl radical, chloramines, and
singlet oxygen, are effective microbicidal compounds [40-43]. The importance of NADPH
oxidase and ROS for host defense is exemplified by a hereditary disorder known as chronic
granulomatous disease (CGD) [44], in which there is a defect in NADPH oxidase. Individuals
with CGD have recurrent bacterial and fungal infections, especially infections caused by S.
aureus [44].

Degranulation and neutrophil antimicrobial peptides (AMPs) and proteins
Concomitant with the production of ROS, neutrophil cytoplasmic granules fuse with bacteria-
containing phagosomes, a process called degranulation [45]. Fusion of azurophilic granules
(also called primary granules) with phagosomes enriches the vacuole lumen with numerous
antimicrobial peptides (AMPs) and antimicrobial proteins, including α-defensins, cathepsins,
proteinase-3, elastase, and azurocidin [45,46] (Fig. 1). Neutrophil α-defensins comprise up to
50% of the protein in azurophilic granules and have potent antimicrobial activity [47].
Defensins are cationic polypeptides of 3-5 kDa that interact with negatively-charged molecules
at the pathogen surface and permeabilize bacterial membranes. Degranulation also enriches
phagosomes with components of the specific granules, such as lactoferrin, further augmenting
antimicrobial potential [48].

Although killing of bacteria by neutrophils occurs primarily after phagocytosis, the process
can be enhanced by extracellular molecules. For instance, group IIA phospholipase A2 (gIIA-
PLA2), a small (∼14 kDa) cationic antimicrobial protein found in extracellular fluids,
synergizes with the neutrophil NADPH oxidase to promote digestion of S. aureus
phospholipids [49]. More recently, studies by Corbin et al. found that neutrophil calprotectin
(S100A8/A9) inhibits S. aureus growth by sequestering nutrient Mn2+ and Zn2+ within
abscesses [50].

Neutrophil extracellular traps (NETs)
Work by Zychlinsky and colleagues identified structures called neutrophil extracellular traps
(NETs), composed of chromatin, histones, and azurophilic granule proteins, which have the
capacity to kill bacteria, including S. aureus [51]. Whether these structures are produced by
live cells or simply represent a byproduct of host cell lysis remains unclear. Uncontrolled
release of granule proteins and other cytotoxic molecules into host tissues would likely be
problematic for the resolution of the inflammatory response (see below and Fig. 2). It is possible
that formation of NETs is a relatively infrequent process, thus limiting host tissue damage. In
any case, NETs have significant microbicidal activity toward a number of organisms and
further research is needed to better understand these interesting structures.

Neutrophil apoptosis and the resolution of inflammation
Bacterial infections are typically accompanied by tremendous influx of neutrophils to the
affected tissues. Although neutrophils kill most ingested microorganisms efficiently, host
tissues can be damaged by the inadvertent release of cytotoxic components from PMNs. Thus,
neutrophil turnover must be highly regulated during infection. To that end, normal turnover of
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aging neutrophils occurs by spontaneous apoptosis and in the absence of an activating agent
[52]. On the other hand, neutrophil apoptosis is accelerated significantly following
phagocytosis [53,54] and this phenomenon appears critical to the resolution of the
inflammatory response (Fig. 2). Therefore, one might predict that bacterial pathogens have
evolved mechanisms to exploit normal neutrophil turnover and apoptosis.

Indeed, bacterial pathogens have devised mechanisms to alter apoptosis and promote
pathogenesis [55,56]. For example, USA300 and USA400 cause rapid PMN lysis and/or
accelerate bacteria-induced apoptosis to the point of secondary lysis [16,17]. Although these
strains produce cytolytic leukotoxins known to cause destruction of human neutrophils, the
contribution (if any) of these toxins to PMN lysis after phagocytosis remains to be determined
[16]. A model schematic based upon much of the published data suggests that there are two
possible outcomes for neutrophil-bacteria interactions (Fig. 2). On one hand, phagocytosis and
killing of bacteria culminate with induction of neutrophil apoptosis (also called phagocytosis-
induced cell death) and subsequent removal by macrophages, ultimately resulting in the
resolution of infection. Alternatively, pathogens such as CA-MRSA alter the normal
progression to apoptosis–in this case by causing PMN lysis–to survive, and thereby disseminate
and cause disease.

Staphylococcus aureus immune evasion
Inhibition of phagocyte function

S. aureus has an astounding repertoire of immune evasion factors that frequently show
functional redundancy in subverting the same host defense mechanism. The particularly crucial
role of innate host defense in eliminating invading S. aureus is reflected by the abundance of
mechanisms that the bacterium uses to evade killing by phagocytes [57] (Table 1).

Phagocyte function may be subverted at many different stages. S. aureus may simply hide from
recognition by producing protective coats, such as capsular polysaccharide or biofilm. Further,
they produce or secrete specific molecules to block phagocyte receptor function. After
ingestion, the bacteria use mechanisms to decrease the efficiency of antimicrobial mechanisms,
which likely account for noted post-phagocytosis survival [17,58]. Finally, they often produce
toxins that lyse phagocytes, thus using the same kind of weapon that neutrophils use to kill
bacteria.

S. aureus strains have the capacity to produce several exopolymers, which together make up
the “camouflage coat” that protects from recognition by the immune system. Many strains are
encapsulated by a polysaccharide capsule that has strain-specific chemical composition and
protects from phagocytosis [59]. Polysaccharide intercellular adhesion (PIA) is a biofilm-
related extracellular matrix substance [60], predominantly characterized in S. epidermidis but
produced by most S. aureus strains, whose most important and unique feature is a positive net
charge [61]. It has been shown to protect from neutrophil phagocytosis and AMPs [62].

As described above, receptors on the surface of neutrophils and other phagocytes play a key
role in recognizing bacteria and secreted bacterial molecules, promoting phagocyte chemotaxis
and activation. S. aureus produces a molecule called CHIPS (chemotaxis inhibitory protein of
S. aureus) that blocks receptor-mediated recognition of formylated peptides [63], a PAMP
secreted by bacteria and central for phagocyte detection of bacterial invaders. Other secreted
S. aureus molecules block the complement system, thereby reducing phagocytosis after
opsonization. The C3 convertase blocker SCIN (staphylococcal complement inhibitor) is but
one of a series of S. aureus factors with the task of inhibiting complement function [64]. In
fact, complement inhibition is an excellent example of the functional redundancy of S.
aureus molecules interfering with the same immune defense mechanism [65] (Table 1).
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After being ingested, S. aureus uses even more manifold weaponry of immune evasion
molecules. Catalase and superoxide dismutase eliminate harmful ROS (Table 1). ROS also
trigger a broad response of S. aureus to circumvent innate host defense mechanisms, which
includes production of many toxins and mechanisms involved in the uptake of iron [66]. In
addition, the characteristic yellow pigment of S. aureus, a carotenoid pigment called
staphyloxanthin, has recently been shown to play an additional, crucial role in protecting from
ROS [67]. Moreover, S. aureus secretes a series of proteins aimed at moderating the oxygen-
independent killing mechanisms of the innate immune system, which include AMPs. First,
relatively non-specific proteases are released to digest any protein-based antimicrobial effector
[68]. In addition, S. aureus senses the presence of AMPs and reacts by an up-regulation of
mechanisms to interfere specifically with the activity of cationic AMPs, using a dedicated 3-
component AMP sensing system [69,70]. The regulated resistance mechanisms include D-
alanylation of teichoic acids and incorporation of cationic phospholipid lysyl-phosphatidyl
glycerol in the cytoplasmic membrane. These two mechanisms are aimed to reduce the negative
net charge of the bacterial surface, thereby decreasing binding of cationic AMPs, and are
encoded by the dlt operon and the mprF locus, respectively [71,72]. Furthermore, expression
of the VraFG transporter is increased upon AMP exposure [70]. VraFG has a demonstrated
role in AMP resistance [69] and the putative task of removing AMPs from the cell or
cytoplasmic membrane.

The immune evasion mechanisms described so far are rather “passive”, enabling the bacteria
to hide from recognition or blocking receptors or effectors involved in the elimination of the
bacteria. However, S. aureus also produces toxins that directly attack human white and red
blood cells. These toxins include the large family of leukocidins and α-toxin (also known as
α-hemolysin), recently discovered phenol-soluble modulins (PSMs), and other hemolysins.
The β-barrel structured leukocidins form pores almost exclusively in leukocytes, via a
mechanism similar to that used by α-toxin [73]. Although the biochemical function of
leukocidins–that is, lysis of leukocytes–has clearly been established, their role in S. aureus
virulence and the biological reason for the presence of many similar toxins is not understood.
This is also true for Panton-Valentine leukocidin (PVL), in which there has been recent renewed
interest due to its epidemiological correlation with community-associated MRSA (see below).
Finally, PSMs are short, α-helical and amphipathic peptides that have the capacity to lyse
human neutrophils [26].

Moderating the acquired immune response
Protein A is probably the best known S. aureus protein due to its use in the laboratory for
antibody purification, which is based on the interaction of protein A with the Fc part of IgG
molecules [74]. During pathogenesis, this feature enables S. aureus to sequester non-specific
antibodies on its surface, which protects efficiently from attacks by the innate and acquired
immune systems [75]. Protein A also has a more specific role in the pathogenesis of airway
infections by interacting with the tumor-necrosis-factor-alpha receptor on airway epithelia
[76].

Potentiation of the immune response by superantigenic toxins
Potentiation or over-stimulation of the immune response represents a way of interfering with
the human immune system clearly opposite to the mechanisms described so far, but equally as
effective. S. aureus produces many superantigenic toxins, a class of secreted toxins that activate
T-cells without the need for the presence of an antigen on an antigen-presenting cell [77] (Table
1). Activation of T-cells by superantigenic toxins is accomplished by cross-linking the T-cell
receptor with the major histocompatibility complex (MHC) class II [77]. These toxins include
the toxic shock syndrome toxin (TSST), exfoliative toxins involved in staphylococcal scalded
skin syndrome, and the staphylococcal enterotoxins (SEs) [78]. Toxic shock syndrome (TSS)

DeLeo et al. Page 6

Infect Dis Clin North Am. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is a severe acute disease and may be of menstrual or non-menstrual origin. Menstrual TSS is
caused by S. aureus colonization of tampons [79]. Non-menstrual TSS may also be caused by
enterotoxins, which however have a more notorious role as the cause for S. aureus food
poisoning [80].

Community-associated MRSA virulence
Hospital-associated (HA) versus community-associated (CA) MRSA

Epidemiologically unassociated outbreaks of CA-MRSA have been reported throughout the
world, but the epidemic caused by the clonally related USA300 strains in the United States
appears to be the most serious. Notably, CA-MRSA lineages differ markedly in genotypic and
phenotypic characters from traditional hospital-associated MRSA lineages [10,13,81].

Antibiotic resistance per se does not contribute to virulence
The frequent reporting in the lay press of MRSA strains as “superbugs” reflects recognition of
the unusually severe and potentially fatal infections caused by CA-MRSA strains.
Experimental infections in mice indicate that CA-MRSA strains indeed cause more rapidly
lethal infections when compared to traditional hospital-associated MRSA strains [17]. The
attenuated virulence of hospital-associated MRSA strains is due in part to the fitness cost
associated with resistance to β–lactams and other antibiotics encoded by type I-III
staphylococcal chromosomal cassette mec (SCCmec). A unique attribute of CA-MRSA strains
is carriage of the type IV SCCmec, which is smaller in size and encodes resistance to only β-
lactam class antibiotics. Notably, precise deletion of the entire resistance cassette does not
impact virulence in a rabbit infection model [82]. This indicates that type IV SCCmec does not
contribute to virulence and, more importantly, does not impose a biological fitness cost to CA-
MRSA strains.

Virulence factors
Panton-Valentine leukocidin (PVL)

Association with CA-MRSA and PVL as a toxin—The epidemiological association
between genetically diverse S. aureus strains carrying the PVL genes (lukS-PV and lukF-PV,
abbreviated as lukS/F-PV) and fatal necrotizing pneumonia renewed and intensified interest in
understanding the biological role of this bi-component cytolytic toxin [83]. Epidemiological
data alone, however, is insufficient to establish whether PVL directly contributes to widespread
dissemination of CA-MRSA clones [84,85]. It is of interest that early studies led A. M. Woodin
to conclude that PVL alone is not a very toxic substance [86], as intravenous injection of PVL
in rabbits resulted in granulocytopenia followed by a marked granulocytosis, and was not lethal.

Lessons learned from isogenic CA-MRSA lukS/F-PV deletion mutants—Isogenic
lukS/F-PV deletion mutants and wild type parental strains of USA300 and USA400 were tested
in mouse abscess and bacteremia models [16] to reproduce the most common clinical
manifestations associated with CA-MRSA disease [5,6]. No significant differences between
PVL-positive and PVL-negative strains were detected using these mouse models [16]. As the
same mouse models have been used successfully to demonstrate the roles of other CA-MRSA
virulence factors [26], the null effect of PVL in these models strongly indicates that this toxin
is not a major virulence factor of USA300 and USA400 strains.

Pneumonia is a rare disease caused by CA-MRSA [5]. Using purified toxin or a laboratory
strain of S. aureus that overproduced PVL, the toxin was shown to impact mouse survival in
a model of pneumonia [87]. In contrast, when comparing isogenic strain pairs with and without
lukS/F-PV in the USA300 and USA400 genotypes, or when over-expressing PVL in S.

DeLeo et al. Page 7

Infect Dis Clin North Am. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



aureus strain Newman, no significant contribution of PVL to lethal pneumonia was found
[88,89]. Additionally, passive immunization with anti-PVL immune sera failed to protect mice
against challenge with USA300 in the murine pneumonia model [90], indicating that PVL is
not necessary for the pathogenesis of pulmonary disease. Although future research on the
biological relevance of PVL may be warranted, attributing enhanced CA-MRSA virulence to
PVL alone ignores the possible contributions of numerous other determinants.

Does PVL have an impact on virulence by a gene regulatory effect?—Recently, a
pronounced global gene regulatory effect was attributed to PVL [87]. In that study, PVL
appeared to up-regulate production of protein A, which was thought to be fundamental in
causing the overwhelming inflammation and necrosis of the mouse lungs [87,91]. However,
the apparent lack of confirmatory experiments by genetic complementation analysis might
have resulted in misinterpretation of the gene expression data and thus led to the model of PVL
as a global regulator of gene expression [87]. Recently, the failure to replicate the regulatory
effects of PVL in USA300 and USA400 indicate that PVL does not contribute to CA-MRSA
virulence via a gene regulatory mechanism (DeLeo et al., 2007, Network on Antimicrobial
Resistance in S. aureus (NARSA), Reston, VA).

Arginine catabolic mobile element (ACME)—The arginine catabolic mobile element
(ACME) is a genetic feature of USA300 [13] found infrequently in other S. aureus strains
(ACME-arcA has been detected in USA100 and multi-locus sequence types (MLST) 1 and 97
in Europe [92,93]). Deletion of ACME in USA300 attenuated pathogenicity in a rabbit
bacteremia model, providing evidence that ACME contributes to pathogenesis [82]. Two gene
clusters identified in ACME, arc and opp-3, may function as virulence determinants. As L-
arginine is a substrate for nitric oxide production, depletion of L-arginine by the arginine
deiminase system (arc) might inhibit nitric oxide production, a molecule used in both the innate
and adaptive immune responses against bacterial infections [94]. L-arginine catabolism could
also be important for ATP production and pH homeostasis on the acidic human skin. opp-3
belongs to the ABC transporter family, members of which have a wide variety of central
physiological functions. Thus, ACME may enhance growth, survival and dissemination of
USA300 during infection.

α-toxin (α-hemolysin, Hla)—α-toxin is a well-characterized pore forming cytolytic toxin
that is similar in sequence and function to the leukocidins [95], albeit it does not lyse neutrophils
[96]. Recently, it was shown to be an essential virulence factor during CA-MRSA pneumonia
[88]. Immunization with inactivated α-toxin or passive transfer of anti-α-toxin antibodies also
protected mice from lethal pneumonia [90]. Taken together, these studies indicated that α-toxin
plays an essential role in pneumonia.

Phenol soluble modulin-like peptides (PSMs)—It has remained obscure which
molecules are responsible for neutrophil lysis in vivo and the pronounced cytolytic activity
associated with CA-MRSA. Recently, novel cytolytic peptides have been found in S. aureus,
the α-type phenol-soluble modulins (PSMs), which are encoded in an operon on the genomes
of all sequenced S. aureus strains [26]. The α-helical and amphipathic α-type PSMs have
pronounced in vitro and in vivo leukocidal activity, in addition to pro-inflammatory and
chemotactic activities [26]. However, whereas hospital-associated MRSA often lack PSM
production or produce PSMs only at reduced levels, PSMs are expressed at considerable levels
in CA-MRSA. Notably, over-expression of α-type PSMs in a prominent hospital-associated
MRSA strain increased leukocidal activity to a level equal to that observed in CA-MRSA
strains, indicating that expression of these peptides is the main cause for the extreme difference
in cytolytic activity between CA-MRSA and hospital-associated MRSA and a possible major
contributor to the pronounced pathogenic potential of CA-MRSA strains. In fact, a dramatic
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influence of the α-type PSMs on the virulence of CA-MRSA was demonstrated using mouse
bacteremia and abscess models of infection [26].

Role of gene expression and regulation in CA-MRSA pathogenesis—The results
obtained with the PSMs indicate that differential gene expression between CA-MRSA and HA-
MRSA strains could explain differences in virulence. For example, as α-toxin and the PSMs,
the only molecules described so far to impact virulence of CA-MRSA in a significant manner
[26,88], are under control of the global regulator agr and there is strong expression of the
agr regulatory molecule RNAIII in CA-MRSA strains, there may be a key role of this virulence
regulator in CA-MRSA disease that remains to be investigated.

Should infection by toxin-producing CA-MRSA strains impact how patients are
treated?—CA-MRSA strains elaborate numerous exotoxins, including PVL, α-toxin, and
PSMs, that could impact disease severity. Intravenous immunoglobulin (IVIg) could improve
outcome of severe staphylococcal infections when used as an adjunct to appropriate antibiotic
therapy due to the presence of neutralizing anti-toxin antibodies. It remains to be determined
whether PVL-specific antibodies in commercial IVIg provide any protective effect. In a mouse
pneumonia model, passive transfer of anti-α-toxin antibodies—but not anti-PVL antibodies—
protected against lethal pneumonia [90], providing proof-of-principle that commercial IVIg
could be effective adjunct therapy. Furthermore, inappropriate treatment of CA-MRSA
infections with β-lactam antibiotics or ciprofloxacin that induce bacterial SOS response in these
toxin-producing strains could result in increased exotoxin production and disease severity. As
such, it is reasonable to propose that clindamycin or linezolid could be beneficial in inhibiting
protein synthesis and thus toxin production in CA-MRSA infections [97]. Nonetheless, the
emergence of multi-drug resistant isolates of USA300 with resistance to clindamycin [13,98],
and the potential to acquire even more antibiotic resistance, present a further complication in
staphylococcal disease management.

Concluding comment
S. aureus has been a major cause of human infections throughout history and today remains
among the most abundant causes of bacterial infections. The pathogen has evolved numerous
means to avoid destruction by the human innate immune system, including those that block
almost all of the key antimicrobial functions of phagocytic leukocytes. CA-MRSA is especially
adept at circumventing normal neutrophil function, which could explain in part the enhanced
virulence phenotype of the most prominent CA-MRSA lineages. Future studies directed to
better understand the interface between innate immunity, host infection susceptibility, and S.
aureus are critical for a comprehensive understanding of pathogenesis.
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Fig. 1.
PMN phagocytosis and microbicidal activity. Bacteria are destroyed by NADPH oxidase-
derived ROS and antimicrobial proteins released from granules after phagocytosis by
neutrophils. FCR, Fc receptor; CR, complement receptor; MPO, myeloperoxidase.
Reproduced with permission, from M.T. Quinn, M.C.B. Ammons and F.R. DeLeo, 2006,
Clinical Science, 111, 1-20 (ref. [39]). © the Biochemical Society.
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Fig. 2.
Two possible outcomes of bacteria-neutrophil interaction. Phagocytosis of bacteria triggers
production of ROS and degranulation. These processes work collectively to kill ingested
bacteria, after which neutrophils undergo apoptosis and are removed by macrophages. This
process promotes healthy resolution of infection (top panel). Alternatively, bacterial pathogens
cause neutrophil lysis or delay apoptosis, and thereby survive and cause disease (bottom
panel).Reproduced with permission, from M.T. Quinn, M.C.B. Ammons and F.R. DeLeo,
2006, Clinical Science, 111, 1-20 (ref. [39]). © the Biochemical Society.
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Table 1
S. aureus molecules that contribute to immune evasion or alter host immune function

Gene(s) Protein or molecule Function/effect on immune system

ahpC, ahpF Alkyl hydroperoxide reductase subunits C and F, AhpC and
AhpF

Promotes resistance to ROS

aur Zinc metalloproteinase aureolysin, Aur Degrades LL-37

cap5 or cap8 genes Capsular polysaccharide Inhibits phagocytosis

katA Catalase, KatA Detoxifies hydrogen peroxide

chp Chemotaxis inhibitory protein of S. aureus, CHIPS Inhibits chemotaxis

clfA Clumping factor A, ClfA Inhibits phagocytosis, causes platelet activation

crtM, crtN Carotenoid pigment, staphyloxanthin Promotes resistance to ROS

dlt operon Dlt operon, DltABCD Promotes resistance to cationic AMPs and group IIA
phospholipase A2

eap Extracellular adherence protein, Eap Inhibits leukocyte adhesion

ecb Extracellular complement-binding protein, Ecb Inhibits C5a generation

efb Extracellular fibrinogen-binding protein, Efb Inhibits C5a generation

fnbA, fnbB Fibronectin-binding proteins A and B, FnbA and FnbB Cause platelet activation

hla, hly Alpha-hemolysin (α-hemolysin), Hla Causes host cell lysis

hld Delta-hemolysin, Hld Causes host cell lysis

hlgA, hlgB, hlgC Gamma-hemolysin subunits A, B, and C; HlgA, HlgB, HlgC;
two-component leukocidin

Causes leukocyte and erythrocyte lysis

icaA, icaD, icaB, icaC, icaR Polysaccharide intercellular adhesin, PIA Resistance to cationic AMPs

isdA, isdB Iron-regulated surface determinants of S. aureus, IsdA and IsdB Resistance to AMPs, skin fatty acids, and neutrophil
ROS

lukS-PV, lukF-PV Leukocidin S-PV and F-PV subunits; LukS/F-PV; PVL; two-
component leukocidin

Causes phagocyte lysis

lukD, lukE Leukocidin D and E; LukD and LukE; two-component
leukocidin

Causes leukocyte lysis

mprF Multiple peptide resistance factor, MprF Promotes resistance to cationic AMPs

psm Phenol-soluble modulin-like peptides, PSMs Cause leukocyte lysis

sak Staphylokinase Inhibits host α-defensins

sbi IgG-binding protein, Sbi Sequesters host IgG

scn Staphylococcal inhibitor of complement, SCIN Inhibits complement

sea, seb, secn, sed, see, seg, seh, sei,
sej, sek, sel, sep

Staphylococcal enterotoxins; SEA, SEB, SECn, SED, SEE,
SEG, SEH, SEI, SEJ, SEK, SEL, and SEP

Activate T-cells

sodA, sodM Superoxide dismutase, SodA, SodM Promotes resistance to ROS

spa Protein A Sequesters host IgG, inhibits phagocytosis

ssl5 Staphylococcal superantigen-like 5, SSL5 Binds PSGL-1 and inhibits neutrophil rolling

ssl7 Staphylococcal superantigen-like 7, SSL7 Binds to C5a and IgA

tst Toxic shock syndrome toxin-1, TSST1 Activates T-cells

Function of each molecule was determined based upon published studies (available on PubMed, http://www.ncbi.nlm.nih.gov/sites/entrez/). See also the
review by T.J. Foster [57].
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