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Abstract
Many biomedical problems relate to mutant functional properties across a sequence space of interest,
e.g., flu, cancer, and HIV. Detailed knowledge of mutant properties and function improves medical
treatment and prevention. A functional census of p53 cancer rescue mutants would aid the search for
cancer treatments from p53 rescue. We devised a general methodology for conducting a functional
census of a mutation sequence space, and conducted a double-blind predictive test on the functional
rescue property of 71 novel putative p53 cancer rescue mutants iteratively predicted in sets of 3.

1 Corresponding authors: R.H.L. for computation and R.K.B. for biology. Visit the Institute for Genomics and Bioinformatics at the
University of California, Irvine website (http://www.igb.uci.edu/research/research.html) for downloads..
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Double-blind predictive accuracy (15-point moving window) rose from 47% to 86% over the trial (r
= 0.74). Code and data are available upon request1.
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Biology and genetics; Feature extraction or construction; Machine learning; Medicine and science

1 Introduction
Mutations and their functional effects drive evolution, drug resistance, genetic disorders, viral
evasion of the immune system, and other important biomedical processes. In
pharmacogenomics [1] and drug resistant HIV [2],[3],[4], detailed knowledge of functionally
important mutations leads directly to better patient treatment. In flu [5], knowledge of important
mutations leads directly to better disease prevention, by way of better vaccine design. In cancer,
the concern of this paper, the effect of functionally important mutations causes the disease.

Medical practice is often advanced by knowing mutant functional properties across a mutation
sequence space of specific interest. One difficulty is that mutation spaces grow to be
combinatorially large, while experimental time and resources remain bounded. Computational
analysis is challenging because subtle effects on structure and function result in broad and
diverse changes.

1.1 p53 overview
Cancer is caused by the accumulation of genetic mutations in two critical regulatory pathways:
normal cell growth, and programmed cell death (apoptosis). Defects in the cell growth pathway
can result in uncontrolled cellular proliferation. Tumor suppressor proteins such as p53
normally trigger apoptosis in affected cells and destroy the tumor.

p53 exerts its tumor suppressor activity mainly as a transcription factor that induces cell cycle
arrest, apoptosis, DNA repair, and/or senescence. It is stabilized and activated in response to
cell stress by a complicated series of post-translational modifications [6],[7],[8],[9]. Activated
p53 suppresses tumors through one of the following mechanisms:

1. Induction – p53 directly targets and induces genes with tumor supressor functions
[10],[11]. There are approximately 100 known genes with p53 binding sites [12], and
several hundred genes are directly or indirectly upregulated by activated p53 [13] ,
[14].

2. Repression – p53 also represses the expression of genes. As most of the repressed
genes lack a distinct p53 binding site the mechanism is currently unknown [15].

3. Non-transcriptional Mechanisms – p53 translocates to the mitochondria in response
to DNA damage and causes cytochrome c release [16],[17].

p53 mutations that disrupt these mechanisms are complicit in human cancers. The International
Agency for Research on Cancer (IARC) TP53 Mutation Database2 (R10) lists 21,588 p53
mutations found in human cancer patients [18]. 71% of the entries (15,387) result in full-length
protein with a single amino acid change in the DNA binding p53 core domain. The top eight
mutants account for 30% and the top 50 account for 54% of these single amino acid change
mutants [19].

2http://www-p53.iarc.fr/index.html
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The structure of full-length wild-type p53 is unknown, but the crystal structure of the core
domain [20], in conjunction with biophysical and NMR studies [21],[22],[23], has made it
possible to construct homology models. p53 has 393 amino acids and three important domains:
an amino-terminal transactivation domain, a core domain consisting of amino acids 96−292
which recognizes p53 DNA binding sites, and a carboxy-terminal tetramerization domain
[24],[25],[26],[27],[28].

1.2 Novel cancer treatments and p53 functional rescue
A long-held medical goal for anti-cancer therapy is achieving functional rescue of p53 cancer
mutants by stabilizing the wild-type conformation, thereby activating apoptosis in cancerous
cells and shrinking or killing the tumor. Several promising drug-like small molecules have
been identified [29],[30], but their mechanisms of action and their spectra of activity are not
known. This has led to intense scientific interest in the basic mechanisms of p53 functional
rescue.

1.2.1 p53 cancer rescue mutants—We established the existence of global functional
rescue mechanisms for p53 cancer mutants [31] through studies of intragenic second-site
suppressor mutations that restore native p53 function (“cancer rescue,” “cancer suppressor,”
among other names). Surprisingly, a second-site p53 suppressor mutation can co-occur with a
p53 cancer mutation such that functional effects cancel and the double mutant protein has
normal p53 function.

A search for such suppressor mutations resulted in identification of a “global suppressor motif”
involving core domain amino acids 235, 239 and 240 [32]. Specific amino acid changes of one
or more of these restored p53 function to 16 of 30 of the most common p53 cancer mutants
tested.

1.2.2 Terminology—In this paper, the terms active and inactive are used to describe mutant
functionality. In other literature an active mutant may be referred to as a “functional,”
“positive,” or “rescued” mutant and an inactive mutant may be referred to as a “non-functional,”
“negative,” or “cancer” mutant.

1.3 Computational approaches to p53
The p53 mutant classification problem is to predict whether a given set of amino acid changes
to the p53 core domain results in an active p53 protein or not. It is a difficult problem because
the p53 protein is marginally stable at physiological temperature (37°C). p53 cancer mutants
can be destabilized by only a few kcal/mole [33]. Some p53 mutants are inactive at human
physiological temperature (37°C), but regain activity at 30°C. It is a substantial challenge to
predict mutant functional activity from sequence when it depends crucially upon such subtle
nuances.

The first, and previously the only, systematic integrated computational analysis of p53 mutation
data and structural effects was made by Martin and colleagues [34] . They correlated mutations
in the IARC database [18] with structural and evolutionary features, but did not make
predictions or consider mutant phenotypic function. In 34% of distinct cancer mutations their
analysis was able to find identifiable underlying structural changes that might be expected to
affect protein folding or protein-DNA contacts, based on secondary structure, hydrogen
bonding, backbone torsion angles, and solvent accessibility. Possibly explainable changes rose
to 56% by including substitutions of amino acids that are 100% conserved across many species.
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While their results are impressive, they highlight the difficult case of p53. Two-thirds of all
distinct p53 cancer mutants lack even a single putative explanation in terms of identifiable
underlying structural changes; and nearly half have no putative explanation whatsoever.

2 A theory of computation assisting experimentalists to pursue function
A functional census of p53 cancer and suppressor mutations means a catalog of the functional
effect of each mutation. The census assigns active or inactive labels to every mutant, by
experimental determination or computational prediction.

Initially, experimental work would focus on selective screens in relevant regions of the p53
core domain, where most mutations that inactivate p53 occur. Hits from the screens would
provide an initial training set for computational predictors of mutant p53 activity. The result
of tested computational predictions would be a larger pool of known mutants with experimental
activities. The larger training set would yield more accurate computational predictors, leading
to a repeating cycle of improving predictions and experiments. Once the computational
predictor was sufficiently accurate, it would be used to guide experimental work by identifying
interesting regions in the p53 sequence.

2.1 Functional census of mutation sequence space
This section defines procedures for 1) iterated predictions; 2) informative mutant selection; 3)
cross-validation; and 4) periodic methodology updates.

2.1.1 Iterated predictions—Let set Ki be the mutants known to be active or inactive at step
i. Predict Ki with cross-validation using Ki as a training set. Select a set Xi of unknown mutants
as described below in section 2.1.2. Predict Xi blindly using Ki as a training set, and record
the predictions. Determine functions for Xi experimentally and score the recorded predictions.
Predict Ki, Xi, and Ki+Xi with cross-validation using Ki+Xi as a training set. Finally, let K{i
+1} equal Ki+Xi and advance to step i+13.

2.1.2 Informative mutant selection—Active learning is a technique for selecting the most
informative unlabeled examples, and was previously used successfully for drug discovery and
cancer classification [35],[36],[37]. Here, the most informative mutant is determined by
estimating its impact on classifier accuracy. First, suppose the unknown mutant is active,
rebuild the classifier, and determine the new cross-validated accuracy on the training set. Then
suppose the mutant is inactive and repeat. The maximum increase in the cross-validated
correlation coefficient (CC), for an unknown mutant (m), across both assumed classes is called
here “curiosity” (1),(2).

(1)

(2)

3This abuse of notation, + as set union instead of U, was found to be more intuitive to a wider audience.
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The CCc,t for a given classifier (c) in the set of all component classifiers with training set (t)
is calculated using the true positive (tpc,t), false positive (fpc,t), false negative (fnc,t), and true
negative (tnc,t) receiver operator characteristic (ROC) statistics.

2.1.3 Overlap Exclusion Cross-Validation (OECV)—The usual cross-validation
strategies may not be sufficiently stringent for mutation sequence spaces because the training
set may contain mutants that differ in only trivial ways (irrelevant mutations) from mutants in
the test set. In OECV, mutants are removed from the training set if they share more than one
mutation with the mutant being predicted. Thus, no cancer / rescue pair ever occurs in both
training and test sets. Even so, cross-validation can be a misleading estimator. A major strength
of this paper and methodology is that all predictions are made blindly and are verified
experimentally.

2.1.4 Periodically Update Methodology—During the course of the iterated mutant
predictions, new information will become available about mutant behavior. This will lead to
better theories to describe behavior and better classifiers to predict founction. New information
about mutant behavior is used periodically to update the classifier and framework (see Fig. 1).

2.2 Molecular models and statistical learning
If molecular models and dynamics (MD) simulations could predict protein function correctly
from one or a few amino acid changes, then computation would face an easy task. However,
atomic models are not strictly accurate in atomic-level detail due to structure prediction
limitations with current tools. Current computer simulations cannot accurately predict the
functional effects, nor definitively predict the protein structure, resulting from even one single
key amino acid change. This is especially so for marginally stable proteins like p53.

Our hypothesis is that: 1) atomic models and MD simulations encode useful information, in
the form of weak trends and tendencies that are partially correlated with molecular function,
even when the molecular models themselves fail to achieve consistent, reliable, detailed
atomic-level accuracy; and 2) statistical machine learning methods can extract that information
in a useful way.

2.3 This paper
The goals of this paper are: 1) To demonstrate machine learning and statistical predictions in
synergy with molecular modeling (see section 2.2). 2) To perform a double-blind test of the
functional census methodology on p53 cancer rescue mutants (see section 2.1).

To accomplish the first goal, we constructed molecular models of all mutants considered in
this paper. We extracted predictive features as described below in section 3.4 and used the
features to make the predictions described in the second goal. As a control, we constructed and
optimized two purely string-based classifiers. They were used to make the same test
predictions, based on the same training mutants, as for the molecular model-based predictions.

To accomplish the second goal, we began with a training set of 123 known p53 putative cancer
rescue mutants experimentally determined to contain 52 active and 71 inactive mutants. These
constituted K1, the initial known set. The test set consisted of 71 novel p53 mutants, selected
and assayed by the Brachmann laboratory. These constituted X1 to X24, and were predicted
by 24 iterations of section 2.1.1 in groups of three mutants (the last group had two mutants).
The experimentalists first released mutant identities but sequestered all other information,
including summary statistics. After each double-blind computational prediction was made, the
corresponding experimental result was released.
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2.3.1 Biological advance—This paper will demonstrate a general methodology for the
computer-aided functional census of protein mutation sequence spaces, together with its
instantiation on a central cancer protein. Other groups can use the methodology to create a
functional census for other proteins. For example, Karchin et al. [38] provide a practical system
that automates the model-building described below. Thus, the techniques in this paper can be
implemented on a large scale using tools available now. After a functional census has been
achieved for several dozen cancer proteins, we will know a great deal more about cancer
systems biology than we know now.

2.3.2 Computational advance—This paper will demonstrate that machine learning and
statistical methods extend the utility of modeling techniques, while atomic modeling methods
improve the power and predictive accuracy of machine learning. This will advance molecular
computation by extending both molecular modeling and machine learning/statistical methods
into useful but poorly understood applications to molecular function.

3 Methods
A multi-dimensional view of p53 mutant data is sketched schematically in Fig. 2.

3.1 A yeast p53 functional assay
The basic yeast p53 functional assay expresses human wild-type p53 from a CEN plasmid
(maintained at one copy per cell) under the control of the constitutive yeast ADH1 promoter.
Wild-type p53 binds to an artificial consensus p53 DNA binding site and transactivates the
URA3 reporter gene, thus allowing yeast cells to grow on plates lacking uracil (Ura+

phenotype). The phenotype (active, inactive) is scored after two to three days at 37°C [31].

Intragenic suppressor mutations were initially screened for by PCR mutagenesis, followed by
gap repair in yeast [32]. Once codons 239 and 240 were identified as suppressor codons, a
saturation mutagenesis was performed for these two codons using oligonucleotides. A
background mutagenesis was included for the remaining codons of the oligonucleotides (225
to 241). Annealed oligonucleotides were cloned into yeast expression plasmids for common
p53 cancer mutants. The resultant libraries were transformed into the yeast reporter strain and
Ura+ colonies were analyzed [32]. The results of these studies served as the basis for the training
set.

The libraries for the p53 cancer mutants R158L, V173L, Y205C, Y220C, G245S and R273H
were used to generate a new test set for computational analysis. Yeast transformants were
generated for each p53 cancer mutant and replica-plated to plates lacking uracil to determine
the Ura-phenotype. Ura− and Ura+ colonies were selected for each p53 cancer mutant, single-
colony purified and retested for phenotype. The plasmids were rescued from yeast, sequenced,
and transformed again into the yeast reporter strain for phenotype confirmation. This resulted
in the isolation of 49 Ura− and 22 Ura+ p53 mutants that were unique (see Table 4). 39 Ura+

p53 mutants were excluded because they had been previously reported.

All plasmids for Y205C contained the spurious mutation D207V introduced during the library
construction. For a previous study [32], we separated Y205C from D207V and found that this
did not change the observed rescue effects of suppressor mutations, such as N235K or N239Y.
For the purpose of the current study, we therefore considered D207V to be a neutral amino
acid substitution unlikely to impact on rescue effects of the 235−239−240 rescue region.
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3.2 Training and test data
Functional assays by the Brachmann laboratory characterized sets of p53 mutants for
suppressor (rescue) properties. Because 1) all data was generated by one laboratory using the
same assay, and 2) results were reconfirmed by replicate testing, the dataset is considered to
be reliable and internally consistent. These data were described in section 2.3.

3.3 Molecular Models
Machine learning and statistical techniques made the predictions using features derived from
homology-based atomic models and molecular dynamics simulations.

3.3.1 Molecular modeling and dynamics—All simulations were performed in the
AMBER package [39] using the wildtype p53 core domain crystal structure [20] as a
template4. All hydrogen atoms were added by the AMBER Leap module. The ff99 force field
with a recent revision of the main chain torsion terms5 was used. The Zn-binding interface in
p53 was calibrated in a previous study (Lu and Luo, unpublished data). The generalized Born
model [40] was used for solvation. The protein dielectric constant was set to 1.0. The water
dielectric constant was set to 80.0. All nonbonded interactions were cut off at 12 Angstroms.
The nonbonded list was updated every 20 steps. All bonds involving hydrogen atoms were
constrained by the SHAKE algorithm [41]. Initial homology models of p53 mutants were
constructed in the AMBER Leap module. Side chain rotamers of the mutated residue and
closest neighboring residues were optimized by SCWRL6 [42] to avoid clash. The models were
then subjected to 1,000-step steepest descent minimization [43] in vacuum.

Unfolding simulations for p53 mutants were performed with linearly increasing temperature
from 40K to 1,000K over 100 picoseconds. Radius of gyration in an unfolding trajectory was
monitored to correlate with thermodynamic stability. Three molecular dynamics runs were
performed to reduce uncertainty in the trajectories.

3.4 Features
Computational analyses used molecular model-based representations to create the component
classifiers: (1D) genomic sequence, (2D) surface property maps, (3D) protein structure distance
maps, and (4D) unfolding trajectories over time. Feature selection was done inside the cross-
validation loop. As a control, two string-based classifiers also were constructed.

3.4.1 Sequence (1D)—Information about the location of the mutation and the residue change
was used to construct the set of 1D structure features. Secondary structure information of the
mutation (alpha helix, beta sandwich, etc.) was recorded with its general location in the p53
core domain (S1, S2, H1, H2). The residue property change was recorded: polarity, amino acid
substitution, size, charge, aromaticity, hydrophobicity, and if in a DNA-binding region.
Stability predictions from MUpro7 Error! Reference source not found. were also included,
resulting in 247 features per mutant.

3.4.2 Surface property maps (2D)—In its role as “guardian of the genome,” p53 interacts
with many molecules. The 2D surface maps the p53 surface that is available for molecular
interactions and drug binding (see Fig. 3).

4PDB ID: 1tsr. Chain B
5frcmod.mod_phipsi.2 in the AMBER 8 distribution
6http://dunbrack.fccc.edu/SCWRL3.php
7http://www.igb.uci.edu/servers/psss.html
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The 2D surface property maps were annotated with surface properties, such as electrostatics
or h-bond donor/acceptor status provided by the electrostatic add-ons to AMBER 6 by
coauthors Lu and Luo [39]. The molecular surface was mapped to a sphere, steric and depth
information was recorded and the sphere was mapped to a plane.

The resulting surface map was subtracted from the wild-type map, and a raw set of 4,883 steric
surface map features and 4,895 electrostatic surface map features were extracted. A cross-
validated mutual information algorithm selecting the 3,000 most relevant features (selected
inside the cross-validation loop) resulted in the best classifier.

3.4.3 Protein structure distance maps (3D)—A structural mutation perturbs the
molecular structure. The 3D distance map is an NxN matrix giving the Cartesian distance
between N residue alpha carbons. It reflects structural shifts induced by the mutation. The wild-
type distance map is subtracted, leaving a difference map.

The p53 core domain has 197 residues resulting in a 197×197 matrix that may be collapsed to
a distance vector giving the magnitudes of the distance changes (Fig. 4). The resulting 197
length vector map had 3 features for each residue, the directional i, j, and k vectors. This resulted
in 591 features per mutant.

3.4.4 Heating Simulation (4D)—The thermodynamic stability of a p53 mutant is an
important determinant of cancer. The unfolding of a molecular model in a simulated heat bath
is related to thermodynamic stability. The 4D data tracks the 3D structure of the molecule over
time. For each ps time step, the radius of gyration averaged across three runs produced a vector
with 99 features per mutant (see Fig. 5).

3.4.5 String-based control—A Support Vector Machine (SVM) was used for the string-
based classifiers because SVMs have been found to perform well on diverse biological data
[45]. Two string based classifier methods were selected. One, hereafter called string-match
based, used just k-mer match scores between sequences [46] and was optimized extensively
and used in the composite classifier as an alternative 1D classifier. The other, hereafter called
string-mismatch based, used slightly different k-mer match scores with a mismatch tolerance
parameter [47]. Both were tested with k from 2−5 and the mismatch tolerance m was tested
from 0−1 to see which produced the highest cross-validated accuracy on the known data set.
Ultimately a kernel with k=4 was selected for the string-match based method and k=5 with
m=0 was selected for the string-mismatch based method.

3.5 Machine learning
The WEKA machine learning software8 Support Vector Machine algorithm [48][49] was used
for 1−4D component classifiers. The composite classifier was constructed using an in-house
implementation of the Naive Bayes algorithm [50]. In this implementation, statistics for each
of the 1−4D component classifiers and all combinations thereof are used to determine the
probability of each classifier correctly predicting a mutant. Specifically, let A be the event that
mutant m is active, c[i] be the i th component classifier trained on set t , Ci = c[i](m) be the
prediction of c[i] on m , and Di = (C1 & C2... & Ci) with D0 = () . Then P(A | DN) , the Bayesian
probability that m is active given the predictions of the N component classifiers, is estimated
as follows (3),(4),(5),(6)9:

8www.cs.waikato.ac.nz/~ml
9http://araw.mede.uic.edu/~alansz/courses/mhpe494/week3.html
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(3)

(4)

(5)

P(Ci | A) estimates the probability of an active or inactive prediction given an active mutant.

(6)

P(Ci | Di 1) estimates the probability that a given component classifier makes an active or
inactive prediction given all previous component classifiers. Ultimately, a mutant with P(A |
DN) greater than 0.5 was predicted to be active.

4 Results
This section gives results from 1) the preparatory analysis, 2) the double-blind trials, and 3)
the post-mortem analysis.

4.1 Preparatory Analysis
Table 1 summarizes the composite classifier on K1, the initial training set of 123 mutants.

Table 2 shows each component classifier in cross-validated predictions, also on K1.

Table 3 quantifies the correlation between predictions produced by the component classifiers.

4.2 Double-Blind Trials
Table 4 presents the raw results achieved during the 24 iterations from section 2.1. Fig. 6 shows
accuracies derived from Table 4. Accuracy is shown for both the predictions made in each
iteration (predicting one group of three mutants) and for a moving window of 5-iteration
moving average. As expected, prediction accuracy begins low (47% for the initial 15-point
moving average) and climbs throughout the course of the experiment as the most informative
mutants are identified and added to the training set (86% for the final 14-point moving average).

Table 5 summarizes the predictive accuracy of the classifier on the double-blind test set. Fig.
7 shows a ROC curve, and Table 6 shows a 2×2 confusion matrix, for the predictions shown
in Table 4. Fig. 8 shows the curiosity outlined in section 2.1.2. As expected, the mutants selected
initially were more informative than those deferred until later in the process.
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4.3 Post-Mortem Analysis
Table 7 shows the cross-validated accuracy of the final mutant set (K25) predicting the behavior
of different mutant subsets.

4.3.1 String-based Control—We repeated the predictions using the same training and test
sets in the same order as shown in Table 5 and Fig. 6 using two string-based controls (section
3.4.5) as a direct comparison to the model-based classifiers (sections 3.4.1−3.4.4). Fig. 9 shows
the composite prediction accuracy versus string-match based and string-mismatch based
prediction accuracy. While predictive accuracy of the string-match based k-mer predicter did
increase over time it was substantially lower than for model-based features. The string-
mismatch based classifier accuracy demonstrated no clear pattern.

4.3.2 Random Control—A baseline for active learning is established by control trials
wherein mutants are selected randomly. Fig. 10 shows the prediction progression using active
learning (section 2.1.2) versus the prediction progression using randomly selected mutants.
Their accuracy increased slightly as more training data was added, but much less than the
curiosity-based active learning.

5 Classifier methodology improvements
As discussed in section 2.1.4, the computational models and biological experiments
synergistically evolve while exploring the mutant space.

5.1 Motivation to Improve 2D Component Classifier
As demonstrated in section 4.2, the composite classifier accuracy improved considerably while
performing the iterated predictions. When analyzed in terms of the cross-validated component
classifier accuracy, two trends became apparent (see Fig. 11). The 1D classifier fell slightly in
cross-validated accuracy from approximately 75.8% to 69.1% while the 2D classifier rose in
cross-validated accuracy from 64.2% to 72.2%.

5.1.1 Surface Evolution by Functional Region—DNA and almost all small molecules
bind to p53 around a promiscuous binding domain [51] on the surface of amino acids 94−160
and 264−315. The 2D surface was modified so that regions not in the promiscuous binding
region were sampled at a lower resolution: each amino acid was reduced to one surface position
feature and one surface electrostatic feature. Regions within the promiscuous binding domain
were sampled at the resolution described in section 3.4.2. This resulted in 4,826 features rather
than the 9,778 used during the iterated predictions (see section 3.4.2). Several different feature
set sizes were tested using the Weka8 Mutual Information algorithm [52] and 400 features
yielded the consistently highest cross-validated accuracy across several training sets. The
regions selected by the Mutual Information algorithm on K25 can be represented visually as
shown in Fig. 12 [53]. Most of the relevant residues cluster around the DNA binding region
or around residue Y103.

5.1.2 New 2D Results—Table 8 shows the cross-validated accuracy for the 2D and
composite classifiers using both the old and new 2D feature selection techniques.

5.2 Improved Composite Classifier
As per Table 8, a significant improvement in the 2D component classifier resulted in a small
improvement in the overall composite classifier. To correct this, the composite classifier
outlined in Section 3.5 was modified to weight more heavily component classifiers that did
particularly well. For each component classifier the score of correctly predicting an active (Q
(A | Di)) or inactive (Q(I | Di)) mutant is shown in (6) and (7) respectively.

Danziger et al. Page 10

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(6)

(7)

The final prediction was calculated using (11):

(8)

where α and β are normalization constants over all component classifiers predicting active and
inactive respectively. A mutant is considered active if Q > 0 (8).

6 Discussion
This paper demonstrated a coordinated computational and experimental attack on the
functional genomics of p53 cancer and suppressor mutants. To our knowledge, it is the first
large-scale attempt to predict the phenotypic functional rescue of p53 cancer mutants. It
showed:

1. A double-blind test of the functional census methodology on p53 cancer rescue
mutants (see section 2.1). Predictive accuracy rose over the course of the trial (see
Fig. 6) and the more informative mutants were selected early (see Fig. 8).

2. Machine learning and statistical predictions working in synergy with molecular
modeling (see section 2.2). Model-based classifiers out-performed string-based
classifiers in a control experiment (see Fig. 9). The composite classifier was relatively
accurate (over 80%) when predicting cancer mutants V173L, Y205C, and R273H (see
Table 4). However, it was inaccurate on cancer mutants R158L, Y220C, and G245S.
We believe that more informative rescue mutants can be selected for these cancer
mutants, and additional trials are in progress.

It is surprising that the 4D unfolding trajectories lagged in predictive power, since they bear
information about thermostability and p53 is a thermosensitive molecule. Nonetheless, 1000K
is very high and 100 ps is very short. More biologically realistic unfolding regimes may help.

By analyzing the results of each round of predictions, new information about p53 and a better
way to construct the classifier became available. This information was used to improve the
classifier (see section 5) and may also aid in understanding p53.

6.1 Implications
The biological advance is a general method to catalog mutation sequence spaces across
important proteins of medical interest, which may eventually extend to medical knowledge of
entire pathways and networks. The computational advance is a method whereby robust
statistical methods applied to noisy, biased, imperfect molecular models help experimentalists
to pursue function in areas where previously the techniques were believed not to apply.
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The broad goal is a comprehensive census of the functional rescue of p53 cancer mutants by
second-site suppressor mutations. A functional census of suppressor mutations for p53 cancer
mutants will significantly further our knowledge of p53 rescue mechanisms. Knowledge of all
regions of the p53 core domain that improve stability when altered will provide guidance in
choosing possible docking sites for small molecules.

The methodology generalizes to other mutational systems where mutants can be classified as
active or inactive. Computational classifiers that predict mutant function will allow
experimentalists to map structure/function relationships for proteins in other mutation-related
diseases.

6.2 Conclusion
Central to the goal of cancer treatment by p53 functional rescue is better knowledge of p53
rescue mechanisms. Intragenic suppressor mutations pinpoint key regions of the p53 core
domain that may be modified to increase stability of or restore binding domains in the p53
protein. This gives a validated point of control that restores native p53 function, and identifies
the cancer mutants that are amenable to functional rescue and thus the most likely drug targets.
Our long-term goal is to exploit these findings for the design of drug compounds that can restore
p53 function, and preliminary small molecule studies are underway with our collaborators.
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Fig. 1.
The Overall Prediction Strategy. The in silico predictions drive the in vitro experiments, which
in turn improve the in silico models.
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Fig. 2.
A multi-dimensional view of p53 mutant data shows the mutant/rescue mutant paradigm and
the component classifiers used for different perspectives describing mutant p53.
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Fig. 3.
An example of a 2D surface property map. The peaks and valleys show physical topographies
on the surface of the p53. The colors indicate electrostatic charge at those positions. Red
indicates a negative charge and blue indicates a positive charge.
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Fig. 4.
A visualization of a 3D distance map. Each square represents a residue in the p53 core domain.
Squares lighten as a residue moves further from its wild-type position. In this example
mutations at residues 273 and 239 result in steric changes near residues 275, 281 and 240.
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Fig. 5.
A 4D unfolding trajectory showing two mutants with obviously different unfolding patterns.
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Fig. 6.
Prediction Accuracy. The diamonds show the prediction accuracy for each iteration. The
triangle marked line shows a 5-iteration moving window with a linear regression line.
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Fig. 7.
A ROC curve from the composite classifier predicting X1-X24. A cutoff of 0.5 is used to
determine whether active or inactive is predicted.
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Fig. 8.
This figure shows the sum of curiosity values for all component classifiers (section 2.1.2)
calculated for each of the three mutants chosen during each iteration of the iterated predictor.
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Fig. 9.
A comparison between the composite classifier and the two string-based classifiers.
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Fig. 10.
A comparison between the composite classifier runs using active learning and using randomly
selected mutants. The error bars show one standard deviation across 15 trials.
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Fig. 11.
Cross-validated component classifier accuracy sampled during the iterated predictions. The
3D and especially the 1D accuracy fell while the 2D accuracy improved considerably.
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Fig. 12.
Residues selected by mutual information value. Residues selected for just their electrostatic
components appear in red, steric features appear in blue and both steric and electrostatic
features appear in magenta. The DNA binding region is frequently selectecd and therefore
inferred to be important. Some less frequently selected residues cluster around residue Y103
on the other side of the protein (data not shown).
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Table 1
Cross-validated Composite Classifier Accuracy

Train Test Accuracy Correlation

K1 K1 72.2 0.44
K1 is the initial set of known mutants cross-validated using OECV (section 2.1).
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Table 4
Predictions grouped by cancer mutant.

Mutant Yeast Assay Prediction Iteration

R158L_C229G_H233R_N239L Inactive Active 13

R158L_C229S_H233D_S240E Inactive Active 12

R158L_C238H_N239R Inactive Active 16

R158L_D228E_N239R Active Active 4

R158L_H233L_N239F Active Active 17

R158L_N235D_S240H Inactive Active 11

R158L_N235T_N239R Active Active 9

R158L_N239P Inactive Inactive 21

R158L_N239R Active Inactive 23

R158L_S227F_N239Y Active Active 11

R158L_S227Y_N235Y_N239L Inactive Inactive 18

R158L_S240H Inactive Inactive 13

R158L_T230N_N239E Inactive Active 24

R158L Prediction Accuracy 53.8%

V173L_C229G_I232S_N239Y Inactive Inactive 13

V173L_D228Y_N235T_N239C Inactive Inactive 3

V173L_I232L_N239A Inactive Inactive 24

V173L_N235I_C238R_S240G Inactive Inactive 7

V173L_N239S Inactive Inactive 14

V173L_N239Y_S240T Active Inactive 10

V173L_S227T_N239Y Active Active 11

V173L_T231I_C238S_S240K Inactive Inactive 23

V173L_T231I_N235K_S240N Active Active 14

V173L_Y234S_N239H Inactive Active 4

V173L Prediction Accuracy 80.0%

Y205C_D207V_G226A_C238F_S240V Inactive Inactive 18

Y205C_D207V_H233N_N239W Active Active 20

Y205C_D207V_I232M_S240K Inactive Inactive 22

Y205C_D207V_N239D_S240E Inactive Active 5

Y205C_D207V_N239E Inactive Inactive 16

Y205C_D207V_N239S Inactive Inactive 22

Y205C_D207V_N239W Active Inactive 19

Y205C_D207V_S240W Inactive Inactive 15

Y205C_D207V_T231A_I232S_N239K_S240G Inactive Inactive 19

Y205C_D207V_T231N_S240F Inactive Inactive 6

Y205C Prediction Accuracy 80.0%

Y220C_C229F_Y236S_S240I Inactive Inactive 3

Y220C_C229G_S240R Inactive Inactive 7

Y220C_C238S_N239Y_S240Q Inactive Active 6
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Mutant Yeast Assay Prediction Iteration

Y220C_D228E_N239Y Active Active 1

Y220C_D228H_H233L_N239P Inactive Inactive 9

Y220C_G226V_S240W_S241P Inactive Inactive 23

Y220C_H233N_N239S Inactive Active 10

Y220C_N235K_N239L Active Active 17

Y220C_N239F Active Active 22

Y220C_N239K Inactive Inactive 2

Y220C_S227C_N235Y_N239H Inactive Active 8

Y220C_S240L Inactive Active 2

Y220C_T230C_N239Y Active Inactive 8

Y220C_Y234F_N239L Active Inactive 12

Y220C Prediction Accuracy 57.2%

G245S_C238G_S240L Inactive Active 15

G245S_H233C_N239F Active Active 3

G245S_H233Y_S240H Inactive Active 9

G245S_I232M_N239I_S240K Inactive Active 18

G245S_M237L_S240W_S241A Inactive Active 2

G245S_N239F_S240N Active Active 21

G245S_N239K Inactive Active 16

G245S_S227F_Y234C_N239T Inactive Inactive 17

G245S_S240V Inactive Active 4

G245S_S240Y Active Inactive 5

G245S_Y234F_C238R_S240K Inactive Inactive 21

G245S_Y234F_S240Y Active Active 19

G245S_Y236C_N239S Inactive Active 15

G245S Prediction Accuracy 38.5%

R273H_C229Y_Y234H_S240V Inactive Inactive 8

R273H_C238S_N239K Inactive Active 1

R273H_D228H_S240Q Inactive Inactive 7

R273H_G226D_S240R Active Inactive 5

R273H_I232F_S240G Inactive Inactive 20

R273H_N235K_N239R_S240R_S241T Active Active 6

R273H_N239A Inactive Inactive 12

R273H_N239I_S240L Inactive Inactive 10

R273H_N239R_S240N Active Active 20

R273H_N239S Inactive Inactive 1

R273H_S240K Inactive Inactive 14

R273H Prediction Accuracy 81.8%
Yeast Assay is the activity observed at 37°C in Dr. Brachmann's laboratory. Prediction is made by the composite classifier outlined in this paper. Iteration
is the iteration in which that mutant was predicted.
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Table 5
Double-Blind Composite Classifier Accuracies

Train Test Accuracy Correlation

K1 X1-X24 (Pre) 53.5% −0.09

K1-K5* X1-X5* 46.7% 0.17

K1-K24* X1-X24* 63.4% 0.00

K20-K24* X20-X24* 85.7% 0.69
K1 and X1-X24 are the initial sets of known and unknown mutants (respectively). K1, X1-X24 (Pre) is a double-blind prediction using K1 to predict X1-
X24. Ky-Kz*, Xy-Xz* are iterated predictions using sets Ky-Kz to predict iterations Xy-Xz (respectively).
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Table 6
A confusion matrix for the X1-X24 predictions

Positive Negative

True 15 30

False 19 7

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2009 September 22.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Danziger et al. Page 36

Table 7
Cross-Validated Composite Classifier Accuracies

Train Test Accuracy Correlation

K25 X1-X24 (Post) 71.8% 0.33

K25 K1 69.1% 0.36

K25 K25 69.1% 0.34
Variables as defined in Table 5. K25, X1-X24 (Post) is the cross-validated accuracy predicting X1-X24 using K25 where K25 = (K1 + X1-X24). All trials
were cross-validated using OECV (section 2.1.3).
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