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Abstract. The Agouti-Related Protein (AgRP) is a
powerful orexigenic peptide that increases food intake
when ubiquitously overexpressed or when adminis-
tered centrally. AgRP-deficiency, on the other hand,
leads to increased metabolic rate and a longer lifespan
when mice consume a high fat diet. In humans, AgRP
polymorphisms have been consistently associated
with resistance to fatness in Blacks and Whites and
resistance to the development of type-2 diabetes in
African Blacks. Systemically administered AgRP

accumulates in the liver, the adrenal gland and fat
tissue while recent findings suggest that AgRP may
also have inverse agonist effects, both centrally and
peripherally. AgRP could thus modulate energy
balance via different actions. Its absence or reduced
functionality may offer a benefit both in terms of
bringing about negative energy balance in obesigenic
environments, as well as leading to an increased
lifespan.
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Introduction

Since its discovery in 1997 [1, 2], the Agouti-Related
Protein (AgRP) has come a long way in being
considered an important modulator of energy balance
[3]. In 1997, Ollmann and co-workers [1], in parallel
with Shutter and coworkers [2], identified a hypo-
thalamic protein with high sequence homology to
Agouti and termed it Agouti-Related Transcript and
subsequently Agouti-Related Protein (AgRP). AgRP
was suggested to play a significant role in the
regulation of energy homeostasis because of its
pattern of expression and physiological effects [4 –
7]. Indeed, hypothalamic AgRP is elevated in obese
and diabetic mice [2] while transgenic mice over-

expressing AgRP ubiquitously are hyperphagic and
obese [8]. The main mode of AgRP action involves its
antagonistic binding to melanocortin receptors 3 and 4
(MC3R & MC4R) which are normally targeted by
alpha Melanocyte Stimulating Hormone (aMSH).
Later studies (discussed in detail later) have shown
that neurons in the hypothalamus that express AgRP
are essential for controlling energy homeostasis [9 –
11]. AgRP is therefore a significant modulator of
energy balance and has been considered a candidate
gene for human obesity. The present review describes
recent advances in our understanding of AgRP action
in mouse models and humans.
The human AgRP gene is a relatively short gene
spanning 1.1kb on chromosome 16q22. It consists of 4
exons (one 5’ non-coding and three coding) and
encodes a 132 amino acid (aa) protein, with the rodent
ortholog encoding a 131 aa protein [2, 12, 13]. The* Corresponding author.
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AgRP protein contains 9 cysteine residues at con-
served positions that form disulfide bridges and are
important for its function [2]. Human and murine
AgRP expression profiles exhibit a predominant
transcript in the hypothalamus, the subthalamic
nucleus, and a shorter transcript lacking the 5’’ non-
coding exon in the adrenal gland, testis, lung, and
dorsal root ganglia [2, 14]. Although at present it is
unclear whether these transcripts arise from differ-
ential splicing or from two independently regulated
promoters, the 5’ untranslated exon has significant
promoter activity in periphery-derived cell lines [13].
This finding suggests that this exon may play a role in
the peripheral expression of AgRP, and supports the
existence of two active promoters, each responsible
for either brain or periphery-specific (the adrenal
gland, testis, and lung) expression [13]. AgRP ortho-
logs have also been found in pig [15], sheep [16], fugu
fish [17], zebrafish [18], goldfish [19], Japanese quail
[20, 21] and ring doves [22, 23]. In many of these
species, AgRP levels are upregulated by fasting [16,
24], which is suggestive of a conserved role for AgRP
in energy homeostasis.

Physiological properties of AgRP
Most studies focusing on AgRP function have used
carboxyl-terminus peptides that mimic the effect of
the full-length protein. This approach appears legit-
imate, as synthetic peptides of the amino-terminus,
AgRP(aa25– 51), and the mid-portion, AgRP(aa54 –
82), of the human AgRP protein were devoid of
antagonistic action for a-MSH [25, 26], whereas a
synthetic variant containing the 46 C-terminal resi-
dues, AgRP(aa87– 132), was active and equipotent to
the mature mouse homolog [27 – 30]. Moreover, the
AgRP(aa87– 132) peptide was able to bind antago-
nistically to the melanocortin receptors MC3R,
MC4R, and MC5R, thus inhibiting binding of a-
MSH [31– 33].
NMR structure analysis of this AgRP domain (aa87 –
132) revealed an inhibitor cysteine-knot structure [34]
which makes contact with melanocortin receptors 3
and 4 with two loops present in this structure [35].
Recently, elongation of the minimum core decapep-
tide Yc[CRFFNAFC]Y of AgRP, which acts as an
antagonist at the MC4R but not the MC3R, by two
amino acids at either the C- or the N-terminus
conferred antagonistic function also on the MC3R,
resembling the profile of full length AgRP [36]. The
utility of these peptides is underscored by the fact that
recent studies have shown that physiological AgRP
undergoes post-translational cleavage by proprotein
convertase 1 to generate the carboxyl-terminus
[83�132]AgRP peptide [37] and amino-terminus
[25�51]AgRP, and mid-section [54�82]AgRP peptides [38].

In addition to the C-terminus, the N-terminal parts of
AgRP, which are unable to bind to melanocortin
receptors, could also have significant effects on energy
balance regulation [39]. A single, i.c.v. injection of
AgRP (aa83– 132) increased cumulative food intake,
whereas N-terminal parts AgRP (aa25 – 51) and
AgRP (aa54 – 82) did not affect the amount of food
consumption. However, injection of any of the three
portions of AgRP resulted in decreased oxygen
consumption and colonic temperature, both of which
are readouts for energy expenditure, while the two
non-C-terminus parts of AgRP increased body weight
and epididymal/mesenteric fat weight, despite the
absence of hyperphagia and cross-reactivity with
MC4R [39]. Additional experiments are necessary
to confirm and elucidate these interesting data. One
possible explanation for this melanocortin independ-
ent effect is a potential interaction with co-receptors.
One such example could be syndecan-3 [40, 41], which
can only bind to N-terminal AgRP. A repeat of the
study, e.g. in syndecan-3 knockout mice or by altering
the availability of membrane-bound syndecan-3, to-
gether with further mutagenesis and in vitro binding
experiments would be helpful to understand further
the function of all AgRP protein concatamers.
Multiple hormonal signals influence AgRP expres-
sion. Long acting satiety signals such as leptin or
insulin act to decrease AgRP, while maintaining
physiological levels of these hormones blocks fast-
ing-induced increases of AgRP [42 – 44]. Loss of leptin
or insulin receptors within the brain leads to increased
AgRP expression, while AgRP can also be up-
regulated in leptin-deficient (ob/ob) obese mice
irrespective of fasting [1, 2]. These observations
suggest that these hormones reduce appetite in part
by inhibiting AgRP expression [2, 45]. Recent work
indicates that these hormones can acutely alter
membrane potential and reduce neuronal firing from
neurons containing NPY, suggesting that leptin and
insulin rapidly inhibit the activity of AgRP/NPY
neurons [46]. In leptin deficient mice, however, leptin
plays a neurotrophic role during neonatal develop-
ment of the hypothalamus by promoting neurite
outgrowth from arcuate nucleus neurons in vitro
[47]. Although progress has been made in identifying
factors downstream of leptin signaling on AgRP [42 –
44], it remains unclear which exact mechanism leptin
uses to regulate AgRP. Potential pathways include
AMP-kinase [48, 49], PI3K [50, 51], and the JAK-
STAT [52 –55] pathway but perhaps in a STAT3-
independent fashion [56].
The gut-derived protein, ghrelin, has also been
implicated in the regulation of AgRP neurons. Unlike
leptin and insulin, ghrelin principally acts to stimulate
feeding and body weight gain [57, 58] by activating

2722 O. Ilnytska and G. Argyropoulos Regulation of energy balance by AgRP



NPY/AgRP neurons. Ghrelin is an endogenous ligand
for the Growth Hormone Secretagogue Receptor
(GHS-R) and has been shown to up-regulate expres-
sion of AgRP [59 – 63]. In addition, administration of
ghrelin acutely induces c-Fos (a marker of neuronal
activation) within neurons containing NPY (and
presumably AgRP). Genetic evidence also supports
a critical role for the NPY/AgRP neurons in mediating
ghrelin�s action, since AgRP/NPY double knockout
mice are resistant to ghrelin-dependant increase of
food intake [64]. However, mice lacking only AgRP or
only NPY do not display this phenotype, whereas
AgRP expression was shown by another group to be
normal in ghrelin-deficient mice [65]. These findings
suggest that ghrelin may not be required for the
upregulation of AgRP but, when ghrelin is adminis-
tered exogenously or when the gene is upregulated it
may also lead to upregulation of AgRP and enhanced
food intake.
In addition to leptin, insulin, and ghrelin, glucocorti-
coids have been implicated in the regulation of energy
homeostasis and removal of glucocorticoid signaling
(for instance, by adrenalectomy) ameliorates obesity
in a number of physiological and genetic models.
Adrenalectomy decreases sensitivity to both AgRP
[66] and NPY [67] while increasing the sensitivity to a-
MSH [66] and leptin [66, 68]. In a different study,
adrenalectomy blocked fasting-induced increases in
AgRP [69]. Exogenous administration of glucocorti-
coids, on the other hand, increased food intake, body
weight, as well as AgRP and NPY expression [70].
Another study supportive of a role by glucocorticoids
on AgRP expression demonstrated that corticoster-
one secretion temporally coincided with the rising
phase of diurnal AgRP expression [69]. Depletion of
corticosterone by adrenalectomy abolished this AgRP
diurnal rhythm, which was restored by exogenous
corticosterone replacement, highlighting its require-
ment to maintain the normal diurnal AgRP expres-
sion cycle [69]. Together, these observations suggest
that glucocorticoids have significant effects on energy
homeostasis potentially mediated by action on hypo-
thalamic AgRP/NPY neurons.
In addition to being upregulated by fasting, AgRP is
also increased in other physiological situations where-
by increased food intake is desirable or necessary. For
example, during pregnancy AgRP levels, but not
POMC, MC4R or NPY, were elevated in Wistar rats,
suggesting that AgRP could play a role in pregnancy-
associated hyperphagia [71]. Similarly, AgRP is up-
regulated in lactating sheep [72] while ring doves
express elevated AgRP levels during the post hatching
stages when parents eat more food to feed their young
[22]. Some diseases that result in insufficient food
intake correlate with reduced levels of AgRP, such as a

mouse model of Prader-Willi syndrome in which
neonates display failure-to-thrive [73]. In a rat exper-
imental model of anorexia nervosa, central infusion of
AgRP prevented self-starvation by counteracting
physical hyperactivity and stimulating food intake
[74]. AgRP treatment in tumor-bearing animals led to
a maintenance of lean body mass and circadian
activity patterns during tumor growth without neg-
atively affecting tumor size [75]. AgRP could there-
fore modulate disease-related changes in food intake
and contribute to maintenance of overall energy
balance in response to stress, and hormonal/substrate
stimuli.
AgRP also influences physiological systems beyond
feeding. In particular, recent evidence suggests that
AgRP influences neuroendocrine function by regu-
lating the hypothalamic pituitary axis I.c.v. injection of
human AgRP into ovariectomized rhesus monkeys
resulted in elevated cortisol, adrenocorticotropin
hormone (ACTH), and prolactin (PRL) release [76].
In addition, i.c.v. injected AgRP enhanced the ability
of IL-1b to increase ACTH, likely by affecting the
function of a-MSH at hypothalamic melanocortin
receptors. This observation supports a modulatory
role of AgRP in the neuroendocrine responses to
inflammation, which itself may possibly promote
obesity and type-2 diabetes [77]. Evidence also
suggests that AgRP has an inhibitory influence over
the hypothalamic-pituitary-thyroid axis, with AgRP
administration suppressing hypothalamic Thyroid
Stimulating Hormone (TSH)-releasing hormone
(TRH) expression and decreasing circulating levels
of thyroid hormones [78].

Peripheral actions of AgRP
In addition to the hypothalamic arcuate nucleus,
AgRP is robustly expressed in the adrenal gland
[79]. Within the adrenal cortex, the short isoform of
the rat AgRP is up-regulated during fasting [80],
paralleling the increase that occurs within the hypo-
thalamus [24]. Moreover, plasma levels of AgRP are
increased in obese men [81] and fasted rats [82].
Nevertheless, the function of AgRP in the periphery
remains unresolved. The active isoform of human
AgRP (aa83– 132) crosses the blood-brain barrier,
albeit slowly, [83], raising the possibility for periph-
erally-expressed AgRP to directly access melanocor-
tin receptors within the brain.
Although only a few studies have focused on periph-
eral AgRP action, these studies highlight the potential
for circulating or locally-produced AgRP to influence
peripheral tissues. The obvious question is “what is the
role of AgRP in the periphery?”. In all probability,
AgRP in the periphery does the same as it does in the
hypothalamus: i.e. binds to the melanocortin or
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perhaps other G protein-coupled receptors. Both
AgRP and Agouti have direct effects on adipocytes,
influencing the expression of fatty acid synthase and
leptin [84– 86], and blocking aMSH-dependent ef-
fects on leptin gene expression [87]. In addition to
effects in adipocytes, AgRP may also have a paracrine
role in adrenal gland function, with adrenal-derived
AgRP being regulated by glucocorticoids and block-
ing the induction of corticosterone secretion by a-
MSH [88, 89]. Furthermore, experiments in the
chicken have revealed that AgRP binds to MC3R in
the adrenal gland [90, 91]. The situation is less clear if a
negative feedback loop exists by which AgRP itself
acts as a negative regulator of leptin action, as was first
suggested by Ebihara et al. [86]. In other experiments,
however, central administration of AgRP in rats for
three- and seven-day periods resulted in significant
increases of plasma leptin levels even when AgRP
induced hyperphagia was prevented [92]. In a recent
study involving the obesity-susceptible C57BL/6J
(C57) and the obesity-resistant CAST/Ei mouse
strain, AgRP mRNA was found to be higher in the
fasted state in the hypothalamus and the adrenal
glands of the leaner CAST/Ei strain instead of in the
obesity-susceptible C57 strain. This result has been
recapitulated in another obesity-susceptible mouse
strain, tub/tub, that also had reduced AgRP expression
in the hypothalamus [93]. The CAST/E1 strain,
however, is known to be hyperactive and to consume
higher energy levels per body weight than bigger mice
[94 – 96], thus, AgRP seems to be playing its orexi-
genic role in keeping these mice in energy balance.
These reports present the fresh idea that gene-specific
obesity (i.e. the tub/tub mutation) or generalized
fatness (i.e. the C57 mouse) do not always correlate
positively with AgRP levels. It would therefore appear
that AgRP overexpression alone may not lead to
increased fatness if a compensatory increase in energy
expenditure takes effect.
AgRP also influences neuroendocrine function by
regulating the hypothalamic-pituitary axis. Injection
of human AgRP i.c.v into ovariectomized rhesus
monkeys resulted in elevated cortisol, adrenocortico-
tropin hormone (ACTH), and prolactin (PRL) release
[76]. Evidence also suggests that AgRP has inhibitory
effects over the hypothalamic-pituitary-thyroid axis,
suppressing hypothalamic Thyroid Stimulating Hor-
mone-Releasing Hormone (TRH) expression and
decreasing circulating levels of thyroid hormones
[78]. Several studies [29, 33] indicate that AgRP may
also act as an inverse agonist again at MC4R. Indeed,
it was recently shown that AgRP acts as an inverse
agonist in 293 HEK cells by inducing arrestin-medi-
ated endocytosis of MC3R and MC4R [97] but this
mechanism requires further experimentation. Fur-

thermore, in vivo, a recent study showed that hypo-
thalamic AgRP can modulate energy balance via a
mechanism independent of aMSH and MC3&4R or
by using a distinct receptor [98]. The latter finding
provides an example for a potential action by AgRP
that is different from its documented binding to
MC3&4R in the arcuate nucleus and raises the
possibility for yet-to-be-determined actions, perhaps
as an inverse agonist. We would suggest that the
generation of transgenic mice overexpressing AgRP
specifically in central or peripheral sites (preferably
by inducible means) may provide the appropriate tool
to study the potential functions of AgRP as an inverse
agonist.

Animal models of AgRP
Transgenic mice overexpressing ubiquitously AgRP
are hyperphagic, exhibit severe obesity, and have
reduced corticosterone levels [8]. In other experi-
ments, RNA interference (siRNA) against AgRP in
the ARC resulted in increased metabolic rate and
reduced body weight without affecting food intake
[99]. In contrast, AgRP driven by mouse beta-actin
(pActAgRP) was electroporated into murine leg
muscle leading to a significant increase in food intake
and body weight that lasted for three weeks after
electroporation [100], presenting for the first time an
example of the potent effects of peripheral AgRP on
energy balance regulation (Table 1). Further experi-
ments along the same design and perhaps targeting
other tissues may be performed in the future to study
in detail the mode of AgRP�s peripheral action when
introduced directly into tissues outside of the hypo-
thalamus.
Global AgRP-deficiency, on the other hand, has
produced variable phenotypes (Table 1). When first
reported, AgRP knockout (AgRP�/�) mice displayed
normal feeding behavior without changes in body
weight and cumulative food intake [101]. In a second
report, however, AgRP�/�mice (on a different genetic
background) exhibited reduced body weight at 6
months of age which correlated with increased
metabolic rate, body temperature, and locomotor
activity [102, 103].
In a third report, AgRP-deficient mice were unex-
pectedly found to live significantly longer than their
wild type littermates while consuming a high fat diet
for the majority of their lives. Specifically, there were
no striking metabolic differences between AgRP�/�

and the equally obese wild type littermates, but
AgRP�/� mice displayed a significantly longer life
span [104]. The point estimate of median survival for
the AgRP�/� group was 9.8% greater while the
significantly low hazard ratio (0.494) suggested that
mortality incidence of AgRP�/� mice was less than
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one-half that of the wild type population. It was
concluded that although AgRP�/� mice become
morbidly obese consuming a high fat diet (a landmark
feature for a shortened life span), they were able to
overcome obesity- and age-related patholologies and
live significantly longer than their metabolically
similar wild type littermates [104]. This finding
introduces a novel property for AgRP of potentially
conferring a longer lifespan by virtue of its absence.
Due to lack of an obvious metabolic phenotype in
these long-lived AgRP�/� mice, further detailed
studies would be required to analyze known longevity
biomarkers to determine the exact longevity mecha-
nism(s) that AgRP-deficiency recruits to extend life-
span.
In another study, RNA interference (RNAi) in the
ARC was used to decrease AgRP expression rather
than completely delete the gene, which may be a more
physiologically relevant approach. Indeed, RNAi led
to a 50 % inhibition of AgRP mRNA within the
hypothalamus, which was associated with increased
metabolic rate and reduced body weight but without
changing food intake [99]. This is consistent with
conclusions from pair-fed animals treated with AgRP
which resulted in increased BAT UCP1 and increased
fat mass and leptin levels, potentially regulating
overall energy expenditure [105]. Therefore, an
approach to moderately decrease AgRP expression
levels may provide a means to regulate body weight
and increase energy expenditure.

Even though deletion of AgRP in knockout mice did
not result in an early and robust phenotype, postnatal
neuronal ablation of AgRP did produce more signifi-
cant outcomes. In an elegant design, transgenic mice
were generated using bacterial artificial chromosomes
targeting expression of a neurotoxic CAG expanded
form of ataxin-3 to reach AgRP-expressing neurons.
This approach resulted in 47 % loss of AgRP neurons
by the age of 16 weeks that significantly reduced body
weight [9]. In a parallel study, neuronal ablation of
AgRP-expression neurons using diphtheria toxin
resulted in a minimal effect when performed in
neonates but in significant and rapid starvation in
adults [11]. A similar approach has also determined
that the appetitive and consummatory aspects of
feeding become impaired in a melanocortin-inde-
pendent manner after AgRP-neuron ablation [106].
These experiments demonstrate the significance of
AgRP neurons in the regulation of energy balance in
adult life.
Stress conditions and anorexia have been shown to
result in a decrease of AgRP levels [74] . The anx/anx
and Contactin knockout (k.o.) mouse models of
anorexia may thus be considered as model organisms
to study AgRP expression in pathological conditions
associated with loss of appetite. Both of these types
of mice display accumulation of AgRP (and NPY) in
enlarged arcuate nucleus cell bodies but AgRP is
drastically reduced in the nerve fiber network
extending from these neurons [107, 108], suggesting

Table 1. Phenotypes of AgRP mouse models.

MODEL PHENOTYPE REFERENCE

AgRP transgenic Food intake ›, body weight ›, body length ›, corticosterone levels fl [8]

i.c.v. injection of AgRP (aa87–132) Food intake ›, body weight ›, energy expenditure fl [23, 39, 76,
120–125]

AgRP k.o. Normal weight gain and feeding behavior, slight difference in MCH [64, 101]

AgRP/NPY double k.o. Normal weight gain and feeding behavior, unresponsive to ghrelin
administration

[64, 101]

AgRP k.o. Age-related lean phenotype [103]

AgRP k.o. Increased lifespan under high fat diet [104]

AgRP RNAi injection into
hypothalamus

50% inhibition of AGRP expression, metabolic rate ›, body weight fl, normal
food intake

[99]

AgRP overexpression
in leg

Food intake ›Body weight › [100]

Ablation of AgRP neurons Hypophagic phenotype
Essential for feeding in adult mice

[9, 11]

anx/anx Anorexia
Defective AgRP projections
Short-lived (3–5 weeks)

[108, 109, 126]

Contactin k.o. Anorexia
Defective AgRP projections
Short-lived (<3 weeks)

[107, 108]

›: increase fl: decrease
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the presence of a developmental defect. Reports
indicate that AgRP is increased in the intact arcuate
nucleus in early development but after day 14 post
partum, neuronal extensions become significantly
defective and the mice exhibit severe anorexia [108,
109]. Both anx/anx and Contactin k.o. mice are short
lived in the homozygous state (3 – 5 weeks or
<3 weeks, respectively) [108] and may present
limited opportunities for long-term experimental
designs. Yet, their anorectic phenotypes and defec-
tive AgRP/NPY system may provide an appropriate
paradigm to further our understanding of the central
actions of AgRP.

Human genetics of AgRP
In addition to animal models that clearly implicate
AgRP in the regulation of energy balance, studies in
humans show significant associations of Single Nu-
cleotide Polymorphisms (SNPs) with resistance to the
development of obesity in Whites and Blacks, and
type-2 diabetes mellitus (T2DM) in Black Africans
(Table 2).
Two SNPs have been reported in the 5’-UTR of AgRP
(�3019G>A and�38C>T) [110] that were found in
Blacks only (Table 1). The T allele of the �38C>T
SNP was associated with leanness in Sierra Leoneans
and reduced fatness in the Blacks of the HERITAGE
Family Study [111]. In addition, all the diabetics
(T2DM) recorded in the Sierra Leonean cohort were
CC homozygous (for the �38C>T SNP) suggesting
that the T allele may predispose to obesity-resistance
in Blacks on both sides of the Atlantic, as well as
provide a protective mechanism against the develop-
ment of T2DM in Black Africans.
Two other SNPs have been reported that were not
associated with any obese phenotypes [112], but a
third SNP, Ala67Thr, was associated with anorexia
nervosa [113]. This SNP was found in Whites only [13,
114] and a later study showed that heterozygotes were
resistant to late-onset obesity [115]. Specifically, the
Ala67Thr polymorphism was consistently associated
with a reduction of four different measures of human
fatness: BMI, fat mass, percent body fat, and abdomi-
nal visceral fat, all adjusted for gender and age.
Importantly, these findings were true in the case of the
parents but not so in the case of the offspring, which
suggests that the Ala67Thr genotype could exert its
effects in an age-dependent fashion. In other words,
the Ala67Thr polymorphism in AgRP could provide a
diagnostic marker for preponderance to develop
obesity (i.e. the Ala67Ala homozygotes) or resistance
against late-onset obesity (i.e. the Ala67Thr hetero-
zygotes) under obesigenic conditions.
In a separate study, the potential association of the two
common AgRP SNPs with nutrient selection was

examined. In Whites, the Ala67Thr heterozygotes
derived a smaller proportion of total energy (E%)
from fat than the Ala67Ala homozygotes (Ala67Thr:
29.4% vs Ala67Ala: 31.5%, p=0.009), mainly due to
a lower intake of saturated (p=0.06) and monounsa-
turated fats (p=0.01). Their carbohydrate intake was
2.6 E% units higher compared to the Ala67Ala
homozygotes (Ala67Thr: 55.1% vs Ala67Ala:
52.5%, p=0.03). In Blacks, protein intake was
associated with the <M- 38C>T promoter polymor-
phism. T/T homozygotes had a significantly lower
protein intake than the C-allele carriers (C/C: 16.8%,
C/T: 17.2%, T/T: 15.4%, p=0.04). No differences
existed between genotypes and total energy or alcohol
intakes. These data show that the two ethnic-specific
AgRP variants, previously associated with leanness,
are also associated with macronutrient intake. This is
the first study to report such associations in humans
and replication in other populations are needed for
confirmation. Animal studies, however, provide sup-
port to these findings in humans, whereby i.c.v.
injection of AgRP resulted in preference for high fat
content diets [116]. Therefore, the Ala67Thr poly-
morphism could provide a defense against preference
for fatty foods.
A rare mutation, +79G>A, was recently identified in
the minimal promoter of two White carriers (Table 2).
Comparison of the 45-year-old male proband, who
was also a carrier of the common Ala67Thr poly-
morphism, with an age- and weight-matched wild type
population showed marginal differences for Resting
Metabolic Rate (RMR) and Body Mass Index (BMI).
The second carrier, however, was an obese 57-year-old
female who was wild type for the Ala67Thr SNP (i.e.
Ala67Ala). This individual had reduced RMR relative
to the control population [117]. Functional analysis in
hypothalamus- and periphery-derived cell lines
showed reduced promoter activity for the +79A
allele in adrenocortical but not neuronal cell lines,
suggesting that it could affect the peripheral expres-
sion levels of AgRP. The +79G>A mutation could
predispose to body weight gain and reduced RMR (as
suggested by the phenotype of the second carrier)
while the presence of the Ala67Thr polymorphism
could neutralize its effects (as suggested by the
phenotype of the proband who was a compound
heterozygote for the two mutations).
The plasma levels of AgRP have also been measured
in humans. AgRP plasma levels were reported to be
elevated in obese men [81], which is consistent with
results from some animal models [82], but this finding
has been replicated only in lean humans [87, 118].
Indeed, a third study showed that AgRP plasma levels
were inversely correlated with adiposity and BMI
[119]. We have also determined the AgRP plasma
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levels in African Americans (unpublished data) and
found that they also correlated inversely with adipos-
ity. These findings raise doubts about the utility of
AgRP plasma levels as a biomarker for assaying the
obesity status of humans. Moreover, AgRP plasma
levels may reflect the expression of the gene by
peripheral sites whose actions remain to be elucidat-
ed, and may not represent the expression and action of
AgRP in the arcuate nucleus.
In all, polymorphisms in regulatory and coding
regions of AgRP could affect energy balance. Most
of these genetic variants tend to predispose carriers
against body weight gain in an obesigenic environ-
ment. The rare +79G>A mutation may be the only
exception but additional analysis is required in a
population with a higher frequency for this mutation.
Since this mutation was found initially in an individual
of Mediterranean origin, but not in American Cau-
casians or African Americans, we suggest that other
Mediterranean populations be screened for the pres-
ence of this mutation.

Concluding remarks
Chronic overexpression of AgRP leads to hyperpha-
gia and the development of obesity, making AgRP a
powerful modulator of energy balance. Emerging
experimental evidence also suggests that AgRP may
act as an inverse agonist possibly in a melanocortin-
independent pathway that has yet-to-be determined.
The intriguing finding that AgRP-deficient mice live
significantly longer than controls, while consuming a
high fat diet, opens up the possibility for AgRP to play
a role in life expectancy. This adds a new dimension to
the functional properties of AgRP and begs the
question as to whether AgRP SNPs that have already
been shown in humans to predispose to a leaner
phenotype (a feature of longevity) may also predis-
pose to a longer lifespan. AgRP could lie at the

crossroads of energy balance regulation and aging,
and our ability to reduce its expression levels could
lead to a healthier and longer life.
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