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Abstract
The human brain functions as an efficient system where signals arising from gray matter are
transported via white matter tracts to other regions of the brain to facilitate human behavior. However,
with a few exceptions, functional and structural neuroimaging data are typically optimized to
maximize the quantification of signals arising from a single source. For example, functional magnetic
resonance imaging (FMRI) is typically used as an index of gray matter functioning whereas diffusion
tensor imaging (DTI) is typically used to determine white matter properties. While it is likely that
these signals arising from different tissue sources contain complementary information, the signal
processing algorithms necessary for the fusion of neuroimaging data across imaging modalities are
still in a nascent stage. In the current paper we present a data-driven method for combining measures
of functional connectivity arising from gray matter sources (FMRI resting state data) with different
measures of white matter connectivity (DTI). Specifically, a joint independent component analysis
(J-ICA) was used to combine these measures of functional connectivity following intensive signal
processing and feature extraction within each of the individual modalities. Our results indicate that
one of the most predominantly used measures of functional connectivity (activity in the default mode
network) is highly dependent on the integrity of white matter connections between the two
hemispheres (corpus callosum) and within the cingulate bundles. Importantly, the discovery of this
complex relationship of connectivity was entirely facilitated by the signal processing and fusion
techniques presented herein and could not have been revealed through separate analyses of both data
types as is typically performed in the majority of neuroimaging experiments. We conclude by
discussing future applications of this technique to other areas of neuroimaging and examining
potential limitations of the methods.
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I. Introduction
There has been an increasing appreciation that distributed neural circuits, comprised of gray
matter regions linked together by white matter tracts, are the mechanism by which the brain
supports basic sensory processes and even higher cognitive function [1]. Recent advances in
neuroimaging technologies have vastly increased the scientific community’s ability to non-
invasively measure both brain structure and function. Specifically, neuroimaging techniques
such as functional magnetic resonance imaging (FMRI), magnetoencephalography (MEG),
electroencephalography (EEG), diffusion tensor imaging (DTI) and structural magnetic
resonance imaging (MRI) each provide information about different underlying signals (e.g.,
electrophysiological versus hemodynamic) from different tissue types (e.g., neurons in gray
matter versus axons in white matter) that have different spatial and temporal properties as well
as different signal and noise characteristics. This plethora of information results in unique
challenges in signal processing for each imaging modality, which become even more complex
when information is combined across different modalities. In the current application, we focus
on using standard signal processing techniques and novel multi-variate analytic techniques to
combine two measures of functional connectivity derived from both white matter (DTI) and
gray matter (resting state FMRI) data (see Fig. 1). Detailed descriptions of white and gray
matter connectivity in addition to potential methods for combining these measurements are
now presented.

A. Measures of White Matter Connectivity
One of the unique features of the human brain is the relatively high conduction velocity between
neurons facilitated by myelinated axons [2]. The link between white matter integrity and
cognitive functioning has been demonstrated in research linking cognitive development to
increased myelination over time in children [3], as well as decreased myelination associated
with age-related cognitive decline [4]. To date, the most effective method of measuring the
different properties of white matter is DTI [5;6]. The primary signal source in DTI arises from
the different diffusion rates of water molecules secondary to Brownian motion in different
neuronal structures [5;6]. Diffusion in white matter is relatively anisotropic because the water
molecules move more freely along the path of the axon, but are restricted transversally by the
axon cell walls. In contrast, diffusion is both greater and more isotropic in ventricles containing
cerebral spinal fluid due to the lack of a constraining structure. Within white matter, the
diffusion of water molecules is also dependent on the density and integrity of the myelin, the
number of axonal tracks bundled together along similar pathways and the permeability of the
local membranes [5;7]. These structural variations in white matter can be quantified with DTI
[7;8] through the calculated value of fractional anisotropy (FA), mean diffusivity (MD) radial
diffusivity (RD), and axial diffusivity (AD).

The diffusion tensor is a 3×3 positive semi-definite symmetric matrix D, describing the random
translational motion of water molecules in three dimensions [9]. The diffusion tensor can be
measured by a Stejskal-Tanner [10] experiment done in multiple directions. The MRI signal
intensity at a voxel is given by

(1)

where b is the diffusion sensitizing parameter that depends on gradient strength, gradient
duration, and the time between the two bipolar gradient pulses, g is a unit vector along the
gradient direction, and S0 is the image intensity for b=0. D, being a symmetric matrix, has 6
unknowns and combined with S0 there are 7 unknowns. Thus with 7 diffusion experiments,
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one with b=0 and six others for independent gradient directions (g), we can calculate D. The
tensor can be diagonalized to obtain three eigenvalues (λ1, λ2, λ3), in descending order, with
λ1 being the largest, and the three corresponding orthonormal eigenvectors (e1,e2,e3). The
eigenvector e1, corresponding to eigenvalue λ1, is called the principal eigenvector.

To relate the properties of the diffusion tensor to more meaningful physical concepts alternative
scalar measures are defined. These measures have been chosen to capture the two-dimensional
diffusion in axon bundles, which for simplicity can be considered to be a collection of narrow
tubes with preferential diffusion in one direction. Mean diffusivity (MD) is defined by

(2)

The axial (AD) and radial (RD) diffusivities are respectively defined by

(3)

and

(4)

The axial diffusivity is a measure of the diffusivity along the axon bundle since this is the
preferential direction for diffusion. The diffusion in the plane perpendicular to the axons has
no special preference and radial diffusivity is defined to characterize it. Fractional anisotropy
is defined by

(5)

where FA is a measure of diffusion anisotropy and is in the range of (0,1). If the diffusion is
isotropic, FA = 0, and if the diffusion is completely in one direction then FA = 1.

FA has served as the most widely used marker of white matter connectivity and integrity in
the literature to date. A lower FA is associated with poorer organization of fiber bundles as FA
decreases when diffusion becomes more isotropic due to a lack of white matter integrity.
However, decreased FA values can result from either a decrease in AD or an increase in RD
which in turn can be caused by two different physical mechanisms. Specifically, a decrease in
AD (and associated reduction in FA) can be caused by axonal damage. An increase in RD (and
associated reduction in FA) can result from a breakdown of the myelin sheath surrounding the
axons, resulting in greater mobility of water molecules diffusing radially away from the axons
[11]. Therefore, if differences in FA in white matter are observed, analyzing AD and RD will
provide better insight about the cause of FA change. Although DTI has conventionally been
used to measure white matter properties, information is also present for gray matter structure.
At the current resolution of most imaging protocols, diffusion is observed to be isotropic in
gray matter (small FA and greater MD). Therefore, AD and RD do not provide unique
information and gray matter diffusion may be more appropriately characterized by MD.
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B. Measures of Gray Matter Connectivity
FMRI was developed in the early 1990’s [12;13] based on the different paramagnetic properties
of deoxyhemoglobin, cerebral blood flow and cerebral blood volume that occur following
neuronal activity and has become the most-widely used neuroimaging technique [14]. In a
typical FMRI experiment, a sensory or cognitive task is performed and the subsequent data is
modeled using general linear model (GLM) statistics such as multiple regression [15] or
deconvolution [16]. The GLM often assumes that the time series are independent and
identically distributed (i.i.d.) and that the variance is constant across all voxels [17]. However,
a major limitation of GLM is that it is only capable of distinguishing regions of the brain that
show a relationship with a predetermined hemodynamic response of the stimuli. Specifically,
the most basic GLM (the student t-test) used to determine brain activity is given by

(6)

where μA and μB are the sample means of the time series when stimuli A and stimuli B (or a
baseline period) are being delivered. TA and TB are the amounts of time that conditions A or
B take place. σ ̂2 is an estimate of the common variance given by

(7)

with  where x(t) is the hemodynamic response over time. This
basic GLM framework can be expanded into a regression equation which not only accounts
for experimental manipulations, but also for constants and first or second order polynomials.

Data-driven techniques, such as independent component analysis (ICA), have more recently
been applied to FMRI data to discover underlying brain activity [18;19]. ICA is a statistical
and computational technique used for revealing hidden factors that underlie sets of random
variables, signals or measurements and performs a blind-source separation of overlapping
signals into individual spatial and temporal components [20]. The ICA of a random vector
consists of a linear transformation that minimizes the statistical dependence between the
components. It can be viewed as an extension of principal component analysis (PCA), which
only imposes independence up to the second order with an additional orthogonality constraint.
The key assumption in ICA is that the sources are statistically independent, and although this
is probably not strictly true for FMRI signals, the algorithm has been proven to be robust
[19]. Another requirement is that, to perform a unique separation of the sources, no more than
one of the signals of interest can have a Gaussian probability distribution function.

The ICA model is described by x = As, where s is the source defined by an M-dimensional
random vector, A(V x M) is the unknown mixing matrix and x is the observed signal denoted by
a V-dimensional random vector. M is the number of sources and V is the number of voxels.
The length of the vectors of x and s is T (number of time steps). Usually M is greater or equal
to V, so A is typically of full rank. In addition, in the preprocessing steps of ICA, the data in
x is whitened (mean removed and variance set to 1) so that the scale of the data will be removed
for all subsequent calculations. The goal of the ICA algorithm is to estimate W(M x V) such that
ŝ = Wx, where W is the estimated unmixing matrix and is the approximation of the sources.
There have been a variety of algorithms created to calculate the W matrix, including Infomax
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[21], FastICA [22], joint approximate diagonalization of eigenmatrices (JADE) [20],
simultaneous blind extraction using cumulants (SIMBEC) [23], and AMUSE [24]. However,
research indicates that Infomax is a good choice for FMRI data due to its consistency,
reliability, noise reduction capabilities and ability to yield results with the highest t-values
compared to several other approaches [25]. Infomax finds the independent components by
maximization of the joint output entropy of sources passed through a non-linear squashing
function [26]. This approach updates the weights through an iterative equation using gradient
ascent

(8)

The update is given by: ΔW = −η[I + ϕ(u)uH]W, where ϕ(u) = 2tanh(u) and the non-linearity
is chosen as tanh(u). This approach has been shown to be equivalent to a maximum likelihood
method when the derivative of the non-linearity matches the assumed source density [21].

This algorithm can be extended to apply to neuroimaging data derived from a group of subjects
[27]. In Group ICA, instead of having one set of components for each subject, one set of “group”
components is estimated from the full data set. Entering all the subjects into an ICA analysis
has an advantage that this method orders the components of different subjects the same way.
It is computationally heavy to estimate components of whole brain data sets for a group of
subjects; therefore data-reduction methods are performed prior to the ICA. Specifically, the
data from individual subjects are first reduced in dimension using PCA decomposition [28]
and are then concatenated together to form one large dataset, which is further reduced using
PCA decomposition on a group level (prior to the ICA estimation). An aggregate unmixing
matrix (WG) is created and can be defined as

(9)

where W1 … WI are the individual unmixing matrices corresponding to the subject’s partition
and I is the number of subjects. This is possible due to the heuristics adopted in the group ICA
algorithm [27]. Thus, the individual unmixing matrices can be considered separable and
hypothesis tests can be performed by fitting the individual subject timecourses to a GLM model
[29]. It is also possible to perform back-reconstruction to calculate individual subject
component images.

The application of ICA has been especially important for FMRI studies of functional
connectivity during the collection of resting state data [30]. Because ICA is a data-driven
approach, it permits the identification of networks of brain regions that synchronously fluctuate
either at rest or during a task. Moreover, unlike GLM analyses, it is not constrained by a priori
models specifying when and where the resultant activation is expected to occur. Functional
regions that exhibit similar fluctuations in signal are grouped into different components that
represent different networks of correlated activity. Although several networks (i.e.,
components) have been identified during the collection of resting state data [31], the most
widely discussed component corresponds to the default mode network (DMN). The DMN has
been previously defined during studies of resting glucose metabolism [32] and decreased
activation following mental activity during both PET [33;34], FMRI [35], and EEG [36]. The
most commonly reported regions [31;33;37–40] of the human brain that compose the DMN
(see Fig. 2) include the posterior cingulate gyrus (Brodmann’s areas (BA) 23,31), posterior
parietal lobule (BA 7,39,40), dorsolateral and superior frontal areas (BA 8,9,10), and anterior
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cingulate gyrus (BA 11, 32). Although the exact function of the DMN remains unknown, some
researchers have suggested that it corresponds to the baseline state of passive mental activity
associated with random episodic thought processes [30;41–43]. The interested reader is
referred to an excellent review paper on DMN structures and potential functionality [30].

C. Potential Methods for Combining Connectivity Measures
Currently, joint ICA (J-ICA) is one of the few existing multivariate methods that are capable
of fusing information from two or more imaging modalities and identifying regions (possibly
different regions in the two modalities) that are coupled together [44;45]. Other existing tools
for examining joint information across multiple imaging modalities include region-based
approaches such as structural equation modeling or dynamic causal modeling [46]. However,
these approaches do not provide an examination of all available information (i.e., the full set
of brain voxels), which is one of the proposed benefits of both FMRI and DTI. Methods that
transform data matrices into a smaller set of modes or components, such as singular value
decomposition [47;48] and ICA, are also alternative methods for data fusion. However, J-ICA
technique provides several advantages compared to these other data fusion techniques.
Foremost, the use of a feature-based approach provides a mechanism for examining data that
was modeled at the first level following the signal processing steps that are unique to each
imaging modality. Therefore, it is less dependent on individual and somewhat arbitrary
decisions such as solving of the inverse problem (MEG/EEG) or the selection of a statistical
parametric threshold (FMRI data). Second, J-ICA enables the analysis of different types of
data in a unified analytic framework. Third, J-ICA does not preferentially treat the information
from either imaging modality, such as occurs when data from one modality are used as priors
[49]. Finally, this approach also separates the data into joint components, each of which has a
DTI and an FMRI portion, which may be especially useful for applications in clinical
neuroscience (e.g., component-specific differences in different patient groups). Most
importantly, these features can then be queried for shared dependence, which is not detectable
with a simple voxel-wise subtractive or conjunctive approach. Herein lies the true benefit of
J-ICA, as the resultant maps do not merely represent areas that have separately been identified
by the individual imaging techniques (i.e., conjunction), but rather signals of two distinct
modalities are used to inform one another.

In J-ICA each data type (e.g., FMRI or DTI) is first reduced to a feature. Similar to the
traditional ICA formulation, for each modality J-ICA is defined by x = Ak sk where sk the source
defined by a M-dimensional vector source, Ak (V x M) is the unknown mixing matrix and xk is
the observed signal defined by a V-dimensional vector, where k is the modality, M is number
of sources and V is the number of voxels. The vector x is of size I, where I is the number of

subjects. Next, new variables composed from the two modalities are defined  and

. The result is the new shared mixing matrix, xJ = AJ sJ, where AJ is of size I by
M. Similar to ICA, the J-ICA algorithm has to estimate an unmixing matrix WJ

(M x I) such that
ŝJ =WJ xJ, where ŝJ(M x 2V) is the approximation of the two sources. Therefore, s ^J contains
the joint components of the two modalities. The Infomax algorithm can then also be used to
obtain the WJ unmixing matrix similar to methodology described above.

To date, we are unaware of a study that has examined the shared variance associated with
measures of both gray (resting state FMRI with the use of ICA) and white (DTI) matter
connectivity in the same subject population on a voxel-wise level. Although J-ICA has been
performed on structural [44] and EEG [50] data and DTI with patient population [45] with
FMRI it has never been done for these two measures of connectivity using a purely data driven
approach, where the DMN is revealed using ICA. Even though resting state FMRI and DTI
have been independently used to quantify neuronal connectivity, it is likely that combining the
information from these two imaging modalities will provide new and unique information about
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functional connectivity. Therefore, four separate J-ICA analyses were conducted between the
DMN component identified from the resting state FMRI data and the 4 scalars (FA, MD, RD
and AD) commonly calculated during the analyses of DTI data. Our overall hypothesis was
that white matter density (FA) and axonal integrity (AD) would be directly associated with the
robustness of activity in the DMN during resting state. We further predicted that the corpus
callosum, which is the primary fiber bundle that mediates communication between the two
hemispheres, would demonstrate the strongest relationship between DTI and FMRI measures.

II. Methods
A. Subjects

Twenty-four (12 males, 12 females) right-handed (mean Edinburgh Handedness Inventory
score = 75.50% +/−23.94%) adult volunteers (mean age = 25.16+/−4.72) completed the study.
None of the study participants were taking psychoactive medications or had a history of
neurological, psychiatric or substance abuse disorders. Informed consent was obtained from
all subjects according to institutional guidelines at the University of New Mexico.

B. Data Acquisition Task
All data was collected on a Siemens 1.5 Tesla scanner using an eight-channel radio-frequency
coil (RF) and using SENSE. Subjects rested supine in the scanner with their head secured by
chin and forehead straps, with additional foam padding to limit head motion within the head
coil. At the beginning of the scanning session, a single, high resolution T1 [TE (echo time) =
4.76 ms, TR (repetition time) = 12 ms, 20° flip angle, number of excitations (NEX) = 1, slice
thickness = 1.5 mm, FOV (field of view) = 256 mm, resolution = 256 × 256] anatomic image
was collected. A total of three different resting state runs were collected for each subject. During
each run, 90 echo-planar images were acquired using a single-shot, gradient-echo echoplanar
pulse sequence [TR = 2000 ms; TE = 36 ms; flip angle = 90°; FOV = 256 mm; matrix size =
64 × 64]. Twenty-eight contiguous, sagittal 5.5-mm thick slices were selected to provide whole-
brain coverage (voxel size: 4 × 4 × 5.5 mm). The first two images of each run were subsequently
eliminated to account for T1 equilibrium effects, leaving a total of 88 images per run.

Two or three DTI scans were acquired for each subject along the AC-PC line using a single-
shot spin echo, echo planar imaging sequence with 6 diffusion gradients [TE = 70 ms; TR =
8500 ms; FOV = 256 × 256 mm; matrix size = 128 × 128]. The twice-refocused spin echo
sequence was chosen for data acquisition to reduce the effects of eddy currents secondary to
gradient switching, to reduce artifacts associated with head movement and allow increased
time for diffusion sensitizing gradients [51]. Generalized autocalibrating partially parallel
acquisitions (GRAPPA) with 2× acceleration was also used to reduce susceptibility-induced
image distortions [52]. A total of 74 contiguous axial slices were collected for whole brain
coverage with a slice thickness of 2 mm, resulting in a voxel resolution of 2 mm3.

Presentation software (Neurobehavioral Systems) was used for stimulus presentation and
synchronization of stimulus events with the MRI scanner during the resting state task. Visual
stimuli were rear-projected using a Sharp XG-C50X LCD projector on an opaque white
Plexiglas projection screen. Subjects were asked to relax and passively stare at a fixation cross
(visual angle = 1.54°) for three minutes (90 images) with their eyes open during the three
separate runs. Although research suggests that the resulting patterns of brain activity are similar
for paradigms in which subjects keep their eyes opened or closed [33;38], subjects were
requested to keep their eyes open to minimize the likelihood that they would fall asleep and to
avoid the electrophysiological spectrum changes (i.e., increased alpha waves) associated with
closed eyes [36]. Subjects were requested to keep head movement to a minimum throughout
the functional imaging, DTI and anatomical scans.
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C. Data Analyses
All data were analyzed in a hierarchical fashion. Specifically, data from the individual
modalities (resting state FMRI and DTI) were first pre-processed to improve signal-to-noise
characteristics and to meet the assumptions necessary for the level-one analyses. For the resting
FMRI data, ICA and Group ICA were performed as level-one analyses to identify the
appropriate feature (i.e., DMN activity) of interest. For the DTI data, level-one analyses
consisted of the calculation of the eigenvectors and eigenvalues so that the appropriate scalar
values (i.e., FA, MD, RD and AD) could be determined. The individual features from these
two level-one analyses were then analyzed for shared variance using four separate J-ICAs. An
outline of the pre-processing through level-two analyses can be seen in Fig. 3. The individual
steps involved in these data analyses are now discussed in more detail.

D. FMRI Processing
Functional images were generated and processed using a mixture of freeware and commercial
packages including the Analysis of Functional NeuroImages (AFNI) [53], GIFT [54], FIT
[44], MATLAB (Mathworks, Inc., Sherborn, MA, USA) and FSL [55]. In the following
section, we detail the six individual signal processing steps that were conducted on the FMRI
resting state data to improve data quality prior to the ICA. During the collection of FMRI data,
each slice is acquired at a different time point within the scanner. Therefore, the three individual
time-series were first temporally aligned using a sinc interpolation to ensure that all data had
the same temporal origin. Second, the 4-dimensional images were subsequently spatially
registered to the third image from the first resting run (i.e., first image that was not contaminated
by T1 equilibrium effects) in both 2- and 3-dimensional space to minimize effects of head
motion. Retrospective motion correction techniques can be conceptualized as occurring in two
distinct steps, motion detection and the subsequent correction of this motion [53;56;57] and
are based on assumptions of stability in contrast values between successive images, relatively
small movements compared to image resolution, and that motion can be modeled according to
six rigid-body parameters. In the detection phase, a cost function, C = ΣV(I(v) − R(v))2, which
is posited to be an index of spatial displacement, is calculated between the image of interest
(I) and the reference image (R) across all voxels v. An iterative optimization algorithm
(typically a least-squares fit) is then implemented to minimize the cost function, thereby
reducing the spatial displacement between the two images. During the correction phase, the
image of interest is interpolated to a new spatial grid specified by the optimization solution
using a sinc function, correcting for the differences in spatial displacement.

Third, random spikes in the voxel time series due to machine or other artefacts were eliminated.
This was accomplished by first fitting the time-series of each voxel to a smoothed curve. Next,
the median absolute deviation (MAD) of the differences between the data time series and the
smoothed curve is calculated. For each time point of the voxel, s(t) = (x(t)−c(t))/σ is calculated,
where x(t) is the original BOLD intensity at time t, c(t) is the smoothed fitted curve at time t
and σ is the standard deviation of the residuals that is computed by . Any s(t)
that is greater than 2.5 is replaced by s′(t) = 2.5 + 1.5 · tanh((s(t) − 2.5)/1.5). Fourth, voxel time
series were linearly detrended using a first order polynomial to eliminate scanner drift. Finally,
the data was spatially blurred using a 10 mm Gaussian full-width half-maximum filter to
improve the signal-to-noise ratio [58] and to increase compliance with random field models
[15]. All the images were then spatially registered to the anatomical T1 image using a 12-
parameter affine transformation and converted to a 1 mm3 standard stereotaxic coordinate
space [59].

The GIFT software package was then used for level-one analyses to calculate the group
independent components across all 24 subjects’ resting state data using the Infomax algorithm
[26] as described in the Introduction. A modified minimum description length (MDL) criterion
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was used to establish the ideal number of independent components [60] estimated to be 20.
The resulting group components were then scaled to a z-score (by dividing by the standard
deviation of the source). Due to the non-gaussian nature of the resultant distribution, the z-
scores have no definite statistical interpretation and are solely used for descriptive purposes
[61]. The group component that best represented the DMN was selected by spatially correlating
all the z-transformed components X with an ideal DMN mask (I), by computing

 [40]. The resultant DMN group component was then used to select each
subject’s DMN component using back-reconstruction [27]. These individual subject’s DMN
components were then used as the feature to be input into the four J-ICAs for level-two analyses.

The ideal mask for the DMN analyses was created from the anatomical regions that have been
most commonly reported to comprise this network in previously published peer-reviewed
research [40]. Specifically, the mask was constructed by using the Wake Forest University
Pick atlas and selecting the following anatomical regions: posterior cingulate (BAs 23/31),
inferior and superior parietal lobes (BAs 7/39/40), superior frontal gyrus (BAs 8/9/10) and
anterior cingulate cortex (BAs 11/32). The mask was also blurred with a 10mm Gaussian full-
width half-maximum filter in order to match smoothness of the input FMRI data. The colors
of the masks correspond to the weights assigned to each voxel prior to the spatial blur, and
therefore range between 0 and 1 (see Fig. 2 in Introduction).

For visualization purposes in subsequent figures, the selected component was parametrically
and spatially thresholded. A histogram of all z scores within the brain was first calculated, and
95% of the voxels with lower z scores were then eliminated. Specifically, only voxels with the
highest 5% of z scores were maintained. An additional constraint was applied in which the
remaining voxels (z-score > 5%) were required to have a minimum volume size of 0.440 ml
with a connectivity radius of 1.8 mm [62].

E. DTI
A combination of freeware packages was used to process and analyze the DTI data, including
AFNI and FSL. DTI preprocessing consisted of the following 5 steps. As specified in the
methods, the DTI data consisted of a b = 0 image, and 6 diffusion gradient images (G1, G2 …
G6). First, the image distortion caused by gradient eddy currents was corrected by using the
FLIRT algorithm [55] in FSL. The correction consisted of registering G1 – G6 to the b = 0
image using mutual information as a cost function and 6 degrees of freedom as parameters
(translations and rotations). All b = 0 and gradient images collected during the second or third
DTI runs were then registered to the b = 0 image from the first run. Similar images (e.g., all b
= 0 images, all G1 images) and were then averaged together to improve signal to noise
characteristics.

Diffusion tensors and scalar measure images (FA, MD, RD, and AD) were then calculated in
AFNI using a non-linear method for exponentially fitting the data. A non-linear method was
adopted as linear methods tend to overestimate the calculation of FA, especially in regions of
high anisotropy (i.e., when FA is large), possibly because the smaller eigenvalues are biased
to be too small [63]. The resultant scalar images were registered to the subject’s T1 anatomic
structural image using the FLIRT algorithm with 12 degrees of freedom as registration
parameters. The data were then warped into a standard stereotaxic coordinate space [59] and
interpolated to a 1 mm3 resolution using a sinc function. Each scalar DTI image was then
smoothed with a 10 mm Gaussian FWHM filter to reduce effects of image misregistration and
to correct for differences in morphometry (non-overlapping tissue boundaries) across the
different subjects for the group analyses [64].
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F. J-ICA
The freeware package fusion ICA Toolbox (FIT) was used to perform data fusion of the selected
DMN component and the resultant DTI values [44]. Specifically, four J-ICAs were conducted
to determine the shared variance between the DMN network and FA, MD, RD and AD. The
methodology used in the J-ICA was very similar to the individual subject analyses described
in detail above. Specifically, MDL was also used to estimate the ideal number of components
to generate during each J-ICA. The ideal number of components in the J-ICA was found to be
21 for all analyses. The Infomax algorithm was then used to calculate the components, which
were subsequently transformed into z-scores. Specifically, J-ICA outputs two paired
components corresponding to each of the two input measures of connectivity (FMRI = DMN;
DTI = FA, MD, RD or AD). The output components associated with the FMRI data were then
spatially correlated with the same ideal DMN mask as used previously in the group ICA results
[40]. The FMRI component with the highest r-value was then selected as the J-ICA DMN
component along with its corresponding pair from the four DTI scalars. Pulsatility artifacts are
common in the ventricles during the collection of DTI data secondary to physiological
processes (i.e., heart rate and respiration). Therefore, these regions were excluded from all J-
ICA analyses.

III. Result
A. Resting State Data

The first sets of results pertain to the measures of gray matter functional connectivity derived
from the resting state data through the group ICA analysis. A group ICA was first performed
on all of the individual subjects’ data to facilitate the selection of the DMN. Specifically, all
of the components from the group ICA were correlated with the ideal mask to determine the
component that had the highest spatial correlation. Results indicated that the spatial correlation
coefficient of the selected component was r = 0.4460, 2.5 standard deviations above the mean
of all components (mean = 0.0591 ± 0.1447). The correlation for the remaining components
ranged from − 0.0942 to 0.2711. Fig. 4 displays the time course, power spectrum of the time
course and z-score thresholded spatial map of the group DMN component. The peak of the
power spectrum for the DMN occurred at 0.027Hz, which is consistent with similar reports
from the literature [38;65]. Four clusters passed the intensity threshold criteria (z = 1.375) and
volume (volume > 0.440 ml) threshold for the spatial map of the group DMN component.
Cluster one included the bilateral medial and superior frontal gyrus (BAs 6, 8, 9, and 10) and
the bilateral anterior cingulate gyrus (BA 32). Cluster two consisted of the bilateral posterior
cingulate gyrus (BA 23), bilateral cingulate gyrus (BA 31) and the bilateral precuneus (BA 7).
The third cluster included the left middle and superior temporal gyrus (BA 39), left angular
gyrus and the left supramarginal gyrus (BA 40). The final and fourth cluster included the right
superior temporal gyrus (BA 39) and the right supramarginal gyrus (BA 40).

Using back reconstruction, all the individual subject’s components associated with the group
DMN component were then selected to be used in the subsequent J-ICA analysis. The average
correlation of the individual subject’s components with the ideal DMN mask was r = 0.334 ±
0.042 (range 0.2429 to 0.4154).

B. DTI data
For the analyses of DTI data, the respective eigenvalues and eigenvectors were first derived
using a non-linear algorithm as previously described in the methods sections. The eigenvalues
were then used in the subsequent calculation of the scalar values which are standard to most
DTI studies. The resultant images for a single subject can be seen in Fig. 5. The first 2 panels
of the figure displays the anatomical T1 map and underlying white matter tracts (panel A) and
the FA map (panel B) coded for the three principal directions (left-right axis, posterior-anterior
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axis, inferior-superior axis). The principal direction of diffusion was calculated by multiplying
the first eigenvector (that corresponds to the highest eigenvalue) to the FA magnitude, such
that

(10)

were E corresponds to the eigenvector values at each axis L-R (left-right), P-A (posterior-
anterior) and I-S (inferior-superior), and Rint, Gint, Bint represent the color map used for display.
The remaining panels correspond to the magnitude of FA, MD, AD and RD for the same
subject. Each image was scaled to have a maximum value of 255, and color coding scales were
selected to best contrast the different anatomical structures where appropriate. All four scalar
values were then subjected to separate J-ICA analyses to determine the relationship between
the scalars and our measure of gray matter connectivity (DMN).

C. Joint ICA
The final section describes the results from the four separate J-ICA analyses. The first J-ICA
used the 24 individual subjects’ back-reconstructed DMN components and their associated FA
maps to test our primary hypothesis that functional connectivity in the gray matter during
resting state would be dependent on the integrity of connectivity (FA values) between the two
hemispheres. The resulting output from this J-ICA was 21 joint FMRI/FA components. An
identical spatial correlation algorithm was then applied to the 21 resulting FMRI components
to select the component that best matched the spatial topography of the DMN as indicated by
our ideal mask. Results indicated that the component which correlated the highest with our
ideal mask (r = 0.3761) was more than 3 standard deviations (mean for all components = 0.0303
± 0.1027) above the spatial correlations for the remaining components (range = −0.1513 to
0.1207). Areas (z = 1.986; volume > 0.440 ml) of the DMN component were similar to those
previously identified in the group ICA analysis, with the exception of an additional cluster and
relatively larger volumes (more regions) of activation (see Fig. 6). The additional cluster was
located in the left middle temporal gyrus (BA 21) and the left superior temporal gyrus (cluster
5). The J-ICA indicated several white matter tracts where the degree of anisotropy (FA values)
was associated with shared variance with the DMN. These two fiber tracts included the entirety
of the corpus callosum (rostrum, genu, body and splenium) and the cingulate bundles
bilaterally.

The remaining J-ICA analyses were based on the individual subject’s DMN components and
the three remaining scalar maps (MD, AD, and RD) derived from the DTI analyses. For each
of these J-ICA analyses, FMRI results indicated a single component that was highly correlated
with the ideal mask compared to the remaining components. Specifically, in the MD analyses
the selected DMN component had a correlation of r = 0.3656 (mean = 0.0527±0.0943) with
the ideal mask, which was more than three standard deviations above the correlations obtained
with the remaining components (range = −0.0846 to 0.1633). Similar results were obtained for
the DMN component obtained in the AD (r = 0.4006; mean = 0.0394 ± 0.1053; remaining
components range = −0.0713 to 0.1635) and RD (r = 0.3423; mean = 0.0642 ± 0.0843;
remaining components range = −0.0333 to 0.1645) J-ICAs. These results highlight the
reliability of our methodology in selecting a DMN component across all four J-ICAs. As the
clusters of the DMN were extremely similar to both the group ICA data and the J-ICA with
FA, the individual anatomical locations are not reported to reduce redundancy.
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In contrast to the J-ICA of DMN and FA map, the results from the other three J-ICAs of
combining the scalar measures were not associated with any significant clusters in the white
tracts. Instead, the majority of the activity for the MD and AD components was localized to
regions that have high concentrations of CSF such as the ventricles and the longitudinal sinus.
This was also true for the J-ICA involving RD, with the exception that a few significant clusters
of activity were observed in prefrontal gray matter areas.

D. Supplementary Analyses
Finally, a supplementary analysis was performed to better characterize the direction of effects
for the J-ICA involving the DMN and FA maps. Specifically, we correlated the average FA
values in the corpus callosum/cingulate bundles with the average z scores from the DMN. For
both measures, the masks for the supplementary analyses were constructed by thresholding the
individual voxels in the resulting joint components based on the top 5% z-scores of the voxels
inside the brain (for voxels meeting this criteria refer to Fig. 6). An outlier analysis identified
one subject whose FA scores were more than 3 standard deviations below the mean. This
subject’s data was subsequently excluded from the analysis. The resulting correlation indicated
that a significant, positive relationship existed between the magnitude of FA values in corpus
callosum and cingulate bundles and the magnitude of activity in the DMN network (r = 0.43;
p < 0.05).

IV. Discussion
Signal processing techniques play an important role in elucidating the nature of the signals that
underlie neuronal functioning and ultimately human behavior. These roles range from the
determination of the pulse sequence parameters (e.g., fat suppression pulses) and processing
techniques (e.g., Fast Fourier Transforms) used to acquire and reconstruct the raw imaging
data through sophisticated techniques to fuse the information obtained across different imaging
modalities. Previous work has demonstrated how J-ICA can be used to combine FMRI data
with structural data [66], EEG [50] and genetic information [67]. The current application has
extended this work by demonstrating the unique information that can be obtained when
information from two different signal sources of connectivity are combined. Specifically, we
demonstrate how signal processing techniques can be used to combine information about gray
(FMRI) and white (DTI) matter connectivity in a purely data-driven fashion. Our results
demonstrate that the fusion of information from different imaging modalities and tissue types
can be synergistic and critical for understanding how the brain functions as a system.

Current results indicated that there was shared variance between the DMN and the degree of
anisotropic diffusion (FA) in the corpus callosum and the cingulate bundle. Specifically, the
magnitude of DMN activation was positively correlated with the magnitude of anisotropic
diffusion in these two white matter structures. In contrast, there were no significant regions
that exhibited a relationship between the DMN and measures of mean diffusivity (MD), more
direct markers of axonal diffusivity (AD) and myelin integrity (RD). The corpus callosum is
the major white matter fiber bundle linking the two cerebral hemispheres, and is comprised of
more than 300 million individual tracts [70]. It is crucial for interhemispheric integration and
communication [69]. A wide range of studies have reported positive correlations between
measures of callosal thickness and measures of higher cognitive functioning in healthy control
subjects [70] and clinical patient cohorts [71;72], supporting the integrative role of the corpus
callosum in coordinating cortical activity across hemispheres. The cingulate bundles, located
just superior to the corpus callosum, are white matter bundles that run longitudinally within
each hemisphere and connect anterior (executive) and posterior (sensory) communication
centers of the brain. Collectively, current results indicate that resting measures of gray matter
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connectivity (DMN) are most dependent on the integrity of white matter connections both
within and between the two hemispheres.

Current results also highlight the capabilities of J-ICA in detecting shared variance across
disparate signals arising from different tissue sources. To our knowledge, this is a unique
extension of J-ICA, given that previous applications [45;50;66] have predominantly focused
on signals that arise from the same tissue source (i.e., gray matter), which are more likely to
have similar signal properties. Moreover, the current application represents the first J-ICA
application that was based on a completely data-driven pipeline and not dependent on human
intervention. To date, the most widely used technique for selecting the DMN from the set of
randomly ordered ICA components is visual inspection followed by manual selection.
However, this processing is time consuming and prone to human error. By spatially correlating
the resulting component with an ideal mask, we were able to fully automate our J-ICA pipeline
to optimize processing efficiency. Finally, the current application demonstrates the superiority
of J-ICA in discovering co-varying signals that would be missed in standard univariate analytic
techniques that are employed in a vast majority of imaging studies.

Various signal processing strategies have been widely employed in both FMRI and DTI data
analyses. In the current application, the necessary steps to perform a complete data-driven
analysis of these two imaging modalities have been described. Although the most current signal
processing techniques were used in the study, there is still potential for improvement and
optimization. Specifically, FMRI and DTI are both imaging modalities that are characterized
by a low signal-to-noise ratio (SNR). Despiking, blurring and data averaging are a few
examples of the signal processing techniques that were used to increase the SNR in the current
experiment. However, other techniques, such as the filtering of FMRI signals in the temporal
domain or wavelet transformations, could have been applied to the data to increase the signal
and/or decrease noise. Furthermore, a careful study examining the effects of varying different
parameters from each of the signal processing steps (e.g., varying the blurring kernel size,
altering the parameters for despiking, changing the cost function in registration algorithms)
could also be undertaken to maximize signal strength. Also, the ICA methods employed in this
paper assumed that the data was linear, which is likely not entirely true. Non-linear ICA
techniques could therefore be developed to perform group and J-ICA, which may ultimately
be better matched towards signal properties. Finally, future extensions could include a multi-
dimensional J-ICA of different tissue types (gray and white) as well as signal sources
(hemodynamic and electrophysiological).

In summary, more advanced signal processing techniques such as ICA have only recently been
applied to the analyses of neural connectivity. This technique has already provided important
information about various cognitions and disorders [31], and has the additional advantage of
not relying on a priori assumptions regarding the expected spatial and temporal pattern of
activation. In the current paper we have replicated the finding that ICA can be used to determine
indices of functional connectivity during the resting state (DMN) when an a priori model of
expected activation does not exist (i.e., a standard GLM analysis). We have extended this work
with J-ICA by demonstrating that the magnitude of functional connectivity in the DMN is
dependent on the magnitude of anisotropic diffusion in the corpus callosum and cingulate
bundles. The simultaneous determination of white and gray matter connectivity may be
especially important for clinical populations such as schizophrenia, in which disturbances in
functional connectivity are posited to play a major role in observed behavioral and cognitive
dysfunction.
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Fig. 1.
A cartoon figure of two common measures of gray and white matter connectivity. The areas
in the gray matter (yellow coloring) correspond to the 1) anterior and 2) posterior cingulate
gyrus, which are two of the key components of the default mode network (DMN). Fractional
anisotropy values for the white matter tracts are also presented. Individual tracts are color-
coded for the primary direction of axonal orientation according to left-right axis (L-R; red),
posterior-anterior axis (P-A; green) or inferior-superior axis (I-S; blue).
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Fig. 2.
Representation of the default mode network depicting the major nodes of the network including
the anterior and posterior cingulate gyrus, inferior and superior parietal lobes and superior
frontal gyrus. Axial slice locations (Z) are presented according to the origin in Talairach space
and the two hemispheres are labeled for right (R) and left (L). The intensity values of the mask
were obtained by first creating a binary mask of regions previously reported to be active in the
default mode literature and then smoothing with a 10 mm Gaussian FWHM filter. Intensity
values are color-coded and range from 0 to 1 dependent on the spatial proximity to
stereotaxically defined default mode nodes of activation.
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Fig. 3.
Processing pipeline used to perform the joint analysis of the resting state FMRI (default mode
network component) and the DTI (FA, MD, AD, RD) data. A detailed description of each block
is described in the methods section.
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Fig. 4.
Results obtained from the group ICA. Time course (A), power spectrum of the time course (B)
and z-score activation map of the component (C) that best represented the default mode network
(DMN). Following ICA there is no scale for the component time course. Therefore in panel
A, the y axis is presented in signal units whereas the x axis corresponds to repetition time (each
TR occurred at 2 s intervals). Panel B demonstrates that the peak of the power spectrum
occurred at 0.0273 Hz. The spatial map corresponding to the DMN is displayed in panel C.
Key regions have been labeled and include 1) the anterior cingulate gyrus, 2) the posterior
cingulate gyrus, the 3) left and 4) right posterior parietal lobe with associated cortical areas.
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Red coloring corresponds to voxels that had a z value ranging from 1% to 5% (1.4 ≤ z < 2.8),
whereas the yellow coloring responds to voxels whose z values were greater than 1% (z ≥ 2.8).
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Fig. 5.
Results obtained from a single subject during the level-one DTI analyses. Panel A shows the
anatomical structure (i.e., white matter, gray matter and cerebral spinal fluid boundaries)
derived from the T1 map of a selected subject. All data is presented in neurological view as
indicated by the left (L) and right (R) hemisphere markings. Panel B shows the principal
direction of diffusion, color coded for either the left-right axis (L-R; red), posterior-anterior
axis (P-A; green) or inferior-superior axis (I-S; blue). The remaining four panels (C, D, E, and
F) respectively correspond to FA, MD, AD and RD magnitude. The color scales were selected
to best contrast the anatomical structure for each of the different scalar values.
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Fig. 6.
The output of the J-ICA examining shared variance between individual subject’s default mode
network (DMN) and FA voxel-wise maps. The spatial activation map corresponds to the
component which had the highest correlation with the ideal mask. Regions of the selected DMN
component included 1) the anterior cingulate gyrus, 2) the posterior cingulate gyrus, the 3) left
and 4) right posterior parietal lobe with associated cortical areas, and the 5) left superior
temporal gyrus. The FA component associated with the DMN included activation of the entire
corpus callosum and the bilateral cingulate bundles (c). Highlighted regions from the corpus
callosum include the (a) rostrum and the (b) splenium. Axial (Z) and sagittal (X) slice locations
are presented according to the origin in Talairach space and the two hemispheres are labeled
for right (R) and left (L). Only the voxels with the highest z-scores (>5%) in the resulting DMN
(warm colorings) and FA (cold colorings) components are displayed. For the DMN component
the red coloring corresponds to voxels that had a z value ranging from 1% to 5% (2.0 ≤ z <
3.8), whereas the yellow coloring corresponds to voxels whose z values were greater than 1%
(z ≥ 3.8). As for the FA component the dark blue coloring corresponds to voxels that had a z
value ranging from 1% to 5% (1.8 ≤ z < 3.0), whereas the cyan coloring corresponds to voxels
whose z values were greater than 1% (z ≥ 3.0).
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