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SUMMARY
We propose a similarity-based regression method to detect associations between traits and
multimarker genotypes. The model regresses similarity in traits for pairs of ”unrelated” individuals
on their haplotype similarities, and detects the significance by a score test for which the limiting
distribution is derived. The proposed method allows for covariates, uses phase-independent similarity
measures to bypass the needs to impute phase information, and is applicable to traits of general types
(e.g., quantitative and qualitative traits). We also show that the gene-trait similarity regression is
closely connected with random effects haplotype analysis, although commonly they are considered
as separate modeling tools. This connection unites the classic haplotype sharing methods with the
variance component approaches, which enables direct derivation of analytical properties of the
sharing statistics even when the similarity regression model becomes analytically challenging.
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1. Introduction
A haplotype is an ordered allele sequence of multiple markers on the same chromosome.
Compared to a single marker, a haplotype may better capture genetic variations because it
incorporates information from multiple markers simultaneously and conserves the joint linkage
disequilibrium (LD) structure among them (International HapMap Consortium 2003; de
Bakker et al. 2005). However, modeling haplotype variations tends to require a large number
of parameters or run into sparsity problems, as the majority of the polymorphism is
concentrated on a relatively small number of haplotypes while the rest is sparsely spread over
a fair number of categories. The existence of the many categories and sparse categories often
leads to either power loss or unstable statistical inference, and consequently, limits the
efficiency of haplotype-based association analysis in practice.

Modeling haplotype similarity instead of haplotype variants have been frequently considered
as a tool to bypass the problems caused by many haplotypes and rare haplotypes. To detect the
potential regions that may contain functional variants, approaches based on haplotype
similarity look for unusual sharing of chromosomal segments within homogeneous trait groups
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(Houwen et al. 1994; McPeek and Strahs 1999). The underlying rationale is that affected
individuals tend to share similar genetic materials in close vicinity to the disease mutation;
even with complex diseases that exhibit greater etiologic heterogeneity, one can still expect to
find disproportionately large clusters of cases sharing common haplotypes in the region
flanking a disease mutation (Feder et al. 1996; Puffenberger et al. 1994).

The excess similarity among cases can be identified by either comparing to the similarity level
expected from genealogical process (Durham and Feingold 1997; Sevice et al. 1999), or by
contrasting with control haplotypes (Van der Meulen and te Meerman 1997; Bourugain et al.
2000, 2001, 2002; Tzeng et al. 2003ab; Yu et al. 2004). The former approaches were used in
the successful positional cloning of Mendelian disorders since the 1980’s. However, extension
of these methods to complex diseases makes comparisons to the genealogical expectations less
practical. The latter approaches bypass the need to model the evolutionary process by which
the observed haplotypes were produced. However, these methods tend to be feasible only with
binary traits and do not incorporate covariate information. Moreover, these methods limit
similarity calculations to the concordant samples only (i.e., case-case similarity and control-
control similarity) and do not use information obtained from case-control similarity. Recently,
Sha et al. (2007) addressed the latter concern by contrasting similarity of concordant pairs
(case-case and control-control) with similarity of discordant pairs (case-control), and showed
that such contrast can improve power.

Current developments have shifted the focus from two-sample tests to regression models that
correlate trait similarity with genetic similarity (Beckmann et al. 2005; Wessel and Schork
2007). This new direction incorporates similarity comparison between discordant pairs, and
establishes a model-based framework that is ready for accommodating covariates and various
trait types. The idea of gene-trait similarity was pioneered by Qian and Thomas (2001) with
pedigree data. Qian and Thomas (2001) quantified the similarities of phenotypes and of
haplotypes within each family, and correlated these family statistics using the Mantel statistics.
Beckmann et al. (2005) extended the framework for population-based samples. Although not
accounting for covariate information yet, their methods can work on qualitative and
quantitative traits. Wessel and Schork (2007) took one step further and developed a general
regression framework for dissimilarity analysis between phenotypes and genotypes. Their
model treats genetic similarity as the response variable, and treats trait similarity and
environmental covariates as explanatory variables. However, because covariates tend to affect
the disease risk rather than the genetic variants, it would be more desirable to switch the roles
of genetic similarity and trait similarity. Finally, one major challenge of the gene-trait similarity
approaches is the complex correlation structure introduced by the pairwise samples, as the
observation unit in the regression is now pairs of individuals instead of single individuals.
Consequently, the distributions of the test statistics are hard to derive analytically, and
permutation is needed to find p-values.

Our proposed similarity method also follows this direction. For trait similarity, we measure
the trait covariance of all distinct individual pairs conditional on covariates. For haplotype
similarity, we measure the sharing level of haplotype pairs of two individuals. We then propose
to regress trait similarity on haplotype similarity, and study gene-trait association by testing
for zero regression coefficient of haplotype similarity. In section 2, we formulate the gene-trait
similarity regression model, construct a score test for association, and derive its limiting
distribution to facilitate hypothesis testing in large scale. To tackle the issue of missing phases,
we use the similarity metrics that can measure haplotype similarity directly from genotypes.
In section 3, we show that the similarity regression is closely connected to an alternative
haplotype analysis approach, the variance component method. In Section 4 we investigate the
performance of the proposed method using simulations. In Section 5, we apply it to the case-
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control data obtained from the amyotrophic lateral sclerosis study of Schymick et al. (2007).
Finally we conclude with discussions and remarks in Section 6.

2. Methods
2.1 The Gene-Trait Similarity Model

Let Yi denote the trait value, Xi denote the K × 1 covariate vector including the intercept term,
and Hi denote the L × 1 haplotype vector of the ith individual in a sample of n subjects. The
h th element of Hi, denoted by Hi,h, records the number of copies of haplotype h that subject
i carries.

For genetic similarity, define Sij to be the haplotype similarity between subjects i and j (i ≠ j).
From the definition of H, we have

(1)

where s (h, k) is a certain similarity metric that is used to measure the similarity level between

haplotypes h and k. Let  under the condition of no haplotype effects,
in which γ is the covariate effects including the intercept. We assume that the conditional mean
can be modeled by some specific function of  such as that specified by the generalized
linear model. Then for trait similarity, which is denoted by Zij, we define

(2)

which is the weighted cross product of the trait residuals with some weight ωi. The cross product
of residuals has been used to describe the level of trait similarity between a pair of subjects in
linkage studies (Elston et al. 2000; Thomas et al. 1999). Here the residual is defined with respect
to the covariate-adjusted mean for each subject. The weight ωi may be used to account for the
fact that Yi is not necessarily homogeneous. In principle, ωi can be any pre-specified positive
values such as 1, or some function of the trait variance. As we will illustrate later, optimal ωi
can be identified if a model is imposed on trait values and haplotype effects.

We propose a similarity regression model of the following form to study and test the gene-trait
association:

(3)

where eij’s are some mean-zero error terms. By the definition of Zij (which has been adjusted
for the effects of baseline and other covariates), the proposed regression has a zero intercept.
Intuitively, in a chromosomal region that contains disease genes, one would expect that b > 0
as higher genetic similarity would lead to higher trait similarity. In ”null” regions, b ≈ 0 as
genetic similarity and trait similarity would have little correlation.

Similar to Elston et al. (2000), one may estimate b in (3) using the least-square method and
conduct inference accordingly. However, this approach is complicated by the need to invert a
large variance-covariance matrix of eij’s. To bypass this issue, in this work we focus on the
score test of b = 0, where the inverse of the covariance matrix takes place only under the null
hypothesis and the covariance matrix becomes diagonal. In general, the estimation of b can be
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accomplished by using the variance-component estimation in a generalized linear mixed model
if such model is posited on trait values.

2.2 The Score Test of H0 : b = 0
To construct the score test for testing H0 : b = 0, we further assume that

 under the condition of no haplotype effects, where mi is a known
prior weight, such as the binomial denominator, ϕ is the dispersion parameter, and υ (μi) is the
variance function. With the two moment restrictions on  and  in our model, we use the
following estimating equations for (b, γ, ϕ) to construct the score test for testing H0 : b = 0:

Assume that Yi’s are independent under the null hypothesis of no haplotype effect (i.e., b = 0).
An intuitive explanation of this independence assumption is that, under H0, the trait dependence
should reflect the baseline relationship between the pair of the subjects. Here such relationship
is zero because the study subjects are unrelated. This assumption will be more rigorously
justified after we postulate a model on haplotype effects (Section 3).

Following the above null independence assumption of Yi’s and by the definition of variance,

we have that under H0, cov(Zij, Yl | X, H) = 0 ∀i ≠ j and ∀l,  and

 Thus Ub, the score statistic for b, is

where γ̂ is the maximum likelihood estimate of γ under H0, ϕ̂ is the restricted maximum

likelihood type of estimate of ϕ under H0 and  To derive its distribution, we rewrite
Ub in a quadratic form as

(4)

In the above equation, S0 is a matrix with diagonal elements equal to 0 and off-diagonal
elements equal to Sij, and Ω = diag {ωi}. We show in Web Appendix A that (4) has

approximately the same distribution as the weighted chi-square random variable 

where  ’s are independent chi-squared variables, and λ1 ≥ λ2 ≥ … ≥ λn are the ordered
eigenvalues of the matrix C defined as
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where Q is the projection matrix V−1 – V−1 DX (XT DV−1 DX)−1 XT DV−1 under H0 with matrix
D = diag {∂δ (ηi)/∂ηi} and  With this result, we approximate the distribution of Ub by
the three-moment approximation method of Imhof (1961) as did in Allen and Satten (2007).
The level-α significance threshold is estimated by

where  and χα is the αth quantile of  (i.e., chi-squared distribution with
h′ degrees of freedom). Alternatively, one can report the p-value of the observed statistic Ub

by  where 

2.3 Analysis with Unphased Genotype Data
To bypass the issues involved in phase missing and phase imputation, we use measures that
do not require phase information to quantify haplotype similarity. One possible choice of such
s (h, k) is the ”counting measure”, scount (h, k), of Tzeng et al. (2003a), which calculates the
proportion of alleles in common between haplotype h and haplotype h. Define  to be a 2 ×
1 vector whose elements record the number of major alleles and the number of minor alleles
for subject i at marker m, m = 1, 2, …, M. It can be shown that

That is, haplotype similarity score between subjects i and j is equal to the average allelic sharing
across markers. With this transformation, it is possible to bypass the need of imputing haplotype
phase, because all we need to measure haplotype similarity is the allele counts at each SNP.

Concerns may arise in terms of choosing between phase-dependent and phase-independent
metrics for performing haplotype-similarity analysis. In theory, metrics using the phase
information should be more powerful as they may capture the identical-by-descent (IBD)
sharing more precisely. However, these metrics are not robust to practical complications such
as genotyping errors and recent marker mutations that often limit their performance in reality.
Indeed, previous and recent works have found that phase-dependent and phase-independent
metrics have very similar performance (Tzeng et al. 2003a; Sha et al. 2007).

3. Connection with the Variance-Component Score Test
Similar to the linkage analysis where the regression-based approaches have been shown
equivalent to the variance-component methods (Sham and Purcell 2001), the proposed gene-
trait similarity regression is also connected with the variance-component approaches of
haplotype analysis. The connection can be obtained by the fact that E(Zij | X, H) ≈ ωiωj × cov
(Yi, Yj | X, H). To see this, consider a generalized linear mixed model (GLMM):

(5)

where μi = E(Yi | β, Xi, Hi), g (·) is the link function, γ is the fixed effect of environmental
covariates, and β is the random effect of the haplotypes. Conditional on Xi, Hi and β, Yi’s are
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assumed to be independent with conditional mean μi and conditional variance

 Under this model,  and  and
under H0,  and  Matrix Rβ = {rhk} describes the correlation between effects of
haplotypes h and k. One common correlation structure imposed on β is to allow evolutionarily
close haplotypes to be more correlated, such as to set rhk = s(h, k) with rhk being the (h, k)
element of matrix Rβ, and s (h, k) (0 ≤ s(h, k) ≤ 1) being the similarity metric that measures the
similarity level between haplotypes h and k (Schaid 2004; Tzeng and Zhang 2007).

Let g′ (μ) = ∂g (μ) /∂μ. Then by Taylor expansion on the mean function 
with respect to β around E(β) = 0, we have

Therefore

Consequently, the expected trait similarity is

(6)

(7)

The result indicates that trait similarity is (approximately) in a linear relationship with
haplotype similarity if we choose  (In that case, E(Zij | X, H) ≈ τSij.) For the canonical
link g(·), this choice is equivalent to  Comparing (7) to (3), we see that testing b =
0 in the similarity regression is the same as testing for τ = 0 in a variance component model.
This implies that under the null hypothesis of b = 0, τ is zero and hence Yi’s are independent.
The connection also suggests that the test of H0 : b = 0 should be one-sided, and that the gene-
trait regression model (3) can use a zero intercept.

Recently Tzeng and Zhang (2007) constructed the variance component score test for testing
H0 : τ = 0 based on the GLMM (5) as

where matrix S = {Sij}, W = diag {wi} with  and Δ = diag {g′
(μi)}. Notice that under GLMM (5), Ub of equation (4) becomes
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(8)

as V−1 = ΔW Δ. Comparing Tτ to Ub in (8), we notice that both statistics incorporate genetic
information solely through the form of haplotype similarity (i.e., S or S0). We also note that
both statistics share analogous quadratic forms; the forms are almost identical if ωi = g′ (μi) is

used, in which case  Thus while haplotype sharing (i.e., to
detect unusual sharing of haplotypes among homogeneous trait groups) and haplotype
smoothing (i.e., to smooth the haplotype effects by introducing correlation structure on similar
haplotypes) are commonly considered as separate modeling strategies in haplotype analysis,
they are unified through the framework of similarity regression and random effects haplotype
analysis. With this comparison, we also learn the subtle difference between the two is that
Ub of similarity regression uses information from between-individual comparison (i.e., i ≠ j),
while Tτ of variance component includes the comparison of between and within individuals.
Relatively speaking, the amount of information contributed by the comparison of the two
haplotypes within a person is small (relative to the between-individual comparison) because
two out of the four comparisons are self-comparison and hence not informative. As a result,
although more data information is utilized in the variance-component test, we expect a similar
performance of the two approach in detecting haplotype-phenotype association.

4. Simulation Studies
We performed simulation studies to investigate the behaviors of the proposed gene-trait
similarity regression. We follow the same simulation scheme as Tzeng and Zhang (2007),
where a coalescent process is first used to generate the SNP sequences, and then a causal SNP
(rather than causal haplotypes or haplotype-similarity levels) is used to determine the trait
values. Specifically, we implemented the coalescent program of Wall and Prichard (2003) to
generate SNP sequences using the following parameters: an effective population size of 104,
a scaled mutation rate of 5.6 × 10−4 (per bp), and a scaled recombination rate around 6 ×
10−3 (per bp) for the cold spots and 45 times greater for the hot spots. These parameters are
chosen to produce a similar number of common SNPs to the European American sample in
the SeattleSNP database and to mimic the linkage disequilibrium pattern of the SELP gene
observed in it. A total number of 100 sequences were generated from this model. We selected
certain SNPs as the disease loci and form a haplotype region by including the two SNPs to its
left and the three SNPs to its right. The disease SNP is selected based on the disease allele
frequency (0.1 and 0.3) and the pairwise LD pattern between the disease SNP and its flanking
SNPs (R2). We focus mostly on regions with max R2 > 0.7, i.e., at least one of the neighboring
SNPs is highly correlated with the unobserved disease SNP. Such scenario reflects the common
study designs where the disease SNP variation is captured by at least one tagSNPs. In the
simulation studies, we further classify the haplotype regions by the level of average R2, after
seeing exploratory results that suggest the relevancy of the average LD level across markers.
The average R2 is obtained by averaging the 5 R2 ’s of the disease SNP and one of the nearby
SNPs.

We next determined the trait value of an individual using the regression model g (μi) = γ0 +
γ1Xi + θGi, where μi ≡ E(Yi | Xi, Gi) and Xi is a standard normal variable. The genetic value
Gi is determined by the genotype of the disease locus (AA, Aa, or aa) and the disease effect
(additive, dominant, and recessive). For genotypes AA, Aa, and aa, Gi = (2, 1, 0) for additive
effect, (1, 1, 0) for dominant effect, and (1, 0, 0) for recessive effect. We considered two types
of traits: binary traits and normal traits. For binary traits, we use the logit link and set γ0 = −4.5,
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γ1 = 0; and θ = log 2, resulting a disease rate of 1%. For normal traits, we use the identity link
and set γ0 = 0, γ1 = 1, and θ = 1. We set the trait variance Var (Yi | Xi, Gi) to be 2 and 4 for
allele frequency q = 0.1 and q = 0.3, respectively. The resulting heritability is about 0.1 under
the additive model, 0.06 ~ 0.08 under the dominant model, and 0.01 ~ 0.02 under the recessive
model. For both traits, we set θ = 0 when evaluating the sizes of the proposed test.

Under each simulation scenario, we used balanced case-control sampling to obtain 100 cases
and 100 controls, and used random sampling to obtain 200 individuals with normal traits. We
then removed the disease SNP information and converted the remaining haplotype data to
unphased genotypes. We performed haplotype association analysis using three approaches: the
standard haplotype regression of Schaid et al. (2002) (referred to as HAP method), the gene-
trait similarity regression method with ωi = 1/υ (μi) (referred to as HS method), and the single
SNP analysis using 1 degree of freedom (referred to as SNP-1 method) and 2 degrees of
freedom (referred to as SNP-2 method). The results of the SNP methods were obtained using
the minimum p-value among the 5 SNPs, whose significant thresholds were determined using
the multiple-testing correction method of Moskvina and Schmidt (2008). This method
estimates the effect number of independent tests for correlated SNPs at a given overall type I
error rate, and estimates the significance level for each individual test accordingly. In the HAP
method, haplotypes with frequencies less than the program default threshold (i.e., 5/(2×No. of
individuals)) will be pooled into the category of the reference haplotype.

Type I Error Rates
Table 1 shows the type I error rates for the binary traits and normal traits at the nominal levels
of 0.05 and 0.01. The results are obtained via 10,000 replications. For both trait types, the type
I error rates are somehow conservative, especially at the 0.05 nominal level. There could be
two possible causes for the differences: (a) the use of the quadratic form ZT ΛZ (see Web
Appendix A) to approximate the distribution of Ub, and (b) the use of the 3-moment
approximation to approximate the distribution of the quadratic form. We ran simulation to
investigate and found that (a) was the more plausible cause. To reach this conclusion, we
obtained the empirical p-values, for each replication, by resampling 104 Ub’s using the fact

that  The resulting type I error rates do not differ substantially from the 3-
moment approximation, which indicates that the 3-moment method approximates the
distribution of the quadratic form reasonably well. We also examined the type I error rates with
an increased sample size of 1000. The resulting type I error rates based on 2,000 replications
are shown in Table 1. When the sample size increases, the type I error rates approach to the
nominal levels. This suggests that the numerical differences we observed are likely due to the
loss of accuracy in approximating Ub with ZT ΛZ when using moderate sample sizes. This is
possibly caused by the fact that matrix C (and hence Λ) is not positive definite, and the use of
large samples can improve the accuracy and alleviate the over-conservative situation.

Power
Results of the power comparisons are shown in Figure 1 (for binary traits) and Figure 2 (for
normal trait) at the nominal levels 0.05 and 0.01. We considered the scenarios that the true
genetic effects are either additive, dominant or recessive. The data were analyzed with an
additive model, with the exception to the SNP-2 method. The power calculations are based on
5,000 replications. The regions studied here have max R2 > 0.9.

We first compare the HS method vs. the other methods. The general power patterns are similar
for both trait types so we can concentrate the comparison on either type. With allele frequency
of 0.1 (the upper panel) and under either additive or dominant effect, the HS method has higher
power when the average R2 is high, but exhibits a power drop when average R2 is low (i.e., the
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case where only 1 SNP is correlated with the disease SNP). Under recessive effect, most of the
methods have no power to detect the effect and hence all power is around the nominal level.

When the allele frequency is 0.3 (the lower panel), the HS method exhibits a clear power gain
over the other methods (even in cases where the average R2 is low) for the additive and
dominant effect scenarios. Under the recessive effect scenario, the SNP-2 methods have
comparable or better power than the HS methods.

In the cases presented here, the SNP method tends to have higher power than the HAP method.
This is likely due to the fact that these selected regions contain disease SNPs that are in
extremely high correlation with at least one neighboring SNPs (i.e., max R2 > 0.9). The SNP
method is expected to perform well when one SNP is a perfect surrogate to the disease SNP.
However, the standard haplotype analysis, which regresses the trait values on multiple
haplotype polymorphisms, must spend extra degrees of freedom on the less or not significant
variants and hence becomes less efficient than the SNP method in this case.

We also compared the HS method with the variance-component (VC) method of Tzeng and
Zhang (2007), and observed similar power performance for these two approaches. This
reconfirms the findings reported in section 3.

To make sure that the power pattern observed above was not subject to the regions chosen, we
ran additional simulations to systematically examine the power performance of each method.
In this set of simulations, only the binary trait under the additive effect was considered, due to
the similarity in results between different trait types and effects. Regions with max R2 > 0.7
were examined and the disease allele frequency was set to be less than 0.4. There are a total
of 207 regions with q ∈ 0.1 ± 0.045, 208 regions with q ∈ 0.2 ± 0.045, and 121 regions with
q ∈ 0.3 ± 0.045. Figure 3 shows boxplots of power across all regions for each method. The
power was obtained based on 1,000 replications at the nominal level of 0.01.

We present the power by different ranges of the average R2: (a) > 0.8, (b) (0.6, 0.8], (c) (0.4,
0.6]; (d) (0.2, 0.4], and (e) ≤ 0.2. The scenarios (a) and (e) are considered to be cases at the end
of the spectrum while the rest are intermediate cases. In scenario (a), all neighboring SNPs are
in very high LD with the disease SNP (all R2 > 0.8), and in (e), the disease SNP has high
correlation with only 1 nearby SNP and has 0 correlation with the rest 4 SNPs. Intermediate
levels of multilocus LD are represented in cases (b) to (d). Given a certain disease allele
frequency, we see in Figure 3 that the median power of the HAP method (left boxplots) and
the HS method (middle boxplots) increase with average R2. This trend is expected: when more
SNPs start to capture a greater amount of information about the disease locus, the power of
those methods that utilize multimarker information should improve as well. We also note that
the HS power increases more sharply than the HAP method, suggesting that the HS method
could be more sensitive to the changes in the joint LD structure of multiloci. In contrast to the
increase pattern of the HS and HAP methods, the median power of the SNP method (right
boxplots) stays relatively constant.

The boxplots support the general pattern identified in Figure 1 and Figure 2: the HS method
mostly has higher power than the HAP method and the SNP-1 method, and the exception is
the cases with low average R2 and low allele frequency. This low power scenario of the HS
method can be seen in the top right two panels of Figure 3. We suspect that this is related to
the HS method being more sensitive to multilocus LD structure, and are actively investigating
the underlying mechanisms.
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5. Analysis of the ALS study of Schymick et al.
We applied our method to a case-control study of amyotrophic lateral sclerosis (ALS) obtained
from the National Institute of Neurological Disorders and Stroke (NINDS) neurogenetics
Repository at the Coriell Institute. The ALS study was conducted by Schymick et al. (2007)
and one main objective of this study is to identify genetic factors that could contribute in the
pathogenesis of sporadic ALS. The study recruited 276 patients with sporadic ALS and 271
neurologically normal controls, and genotyped 555,352 SNPs across the genome. Schymick
et al. (2007) performed a genome-wide association analysis and reported the 34 most significant
SNPs with p-values less than 0.0001 based on the single SNP tests. Although none of the 34
SNPs was significant after the Bonferroni correction for multiple testing, the mot significant
SNP (rs4363506) lives in the close proximity to the dedicator of cytokinesis 1 gene (DOCK1),
which is recognized to play an important role in motorneuron disease.

To illustrate the proposed HS method, we analyzed a portion of the ALS data. We concentrate
on Chromosome 10 where the most significant SNP is located. Due to ambiguous marker
information, we exclude the 26,258th SNP of Chromosome 10 and worked with the remaining
28,817 SNPs. We replicated the single SNP test (SNP-2 method) of Schymick et al’s, and
followed their haplotype definition to perform 3-SNP sliding window haplotype association
tests using the HS method. The HS method identified the most significant association SNP
right around rs4363506 (p-value=1.2 × 10−7), and the p-values for the region around rs4363506
are shown in Figure 4 on the scale of negative logarithm of base 10 (upper panel). We see that
haplotype analyses exhibited a smoother association signals across SNPs than the single SNP
tests. Although the less-noisy haplotypic signals came at the cost of modeling multimarker
variations, we see that the HS method achieved a level of significance that is comparable to
single SNP analyses. To compare, we also implemented the HAP method and the VC method.
The results are presented in the lower panel of Figure 4. We observed that the p-values of the
HAP method are slightly less significant around rs4363506, and as expected, the VC method
yields very similar results as the HS method.

6. Discussion
In this article we introduced a regression model of trait similarity and haplotype similarity to
study haplotype association. We set trait similarity to be the weighted mean-corrected trait
cross products, and haplotype similarity to be the sharing degrees of the haplotypes between
two subjects. We constructed a score statistic based on the similarity regression to test the null
hypothesis of zero association between genotypes and traits. The score statistic is shown to
follow a weighted chi-squared distribution under the null hypothesis, which can be
approximated by the three-moment approximation method of Imhof (1961). The proposed
method uses a simple statistic, eliminates the needs to perform permutation, and can be easily
scaled up to the whole genome scale. In addition, the proposed method applies to both
qualitative and quantitative traits, and can incorporate covariate effects such as population
structure and other environmental confounders. The test could be conservative with moderate
sample size, but the conservativeness is alleviated with an increased sample size. Through
simulation studies, we explored its performance and observed that the proposed HS method
result in power increase in many cases.

The HS method assumes that the adjacent SNPs have a high probability to be passed down
together from some common ancestors in a region containing the disease SNP, and hence
models the sharing level of the genetic materials instead of the variants themselves. On one
hand, this rationale indicates that the HS method is more effective/sensitive in taking advantage
of the joint correlation of the SNPs. On the other hand, this also means that the performance
of the HS method can be more vulnerable to a low multilocus LD. For example, Figure 1 to
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Figure 3 show that a combination of low average LD and low allele frequency of the disease
SNP could diminish the performance of the HS method. While Figure 1 to Figure 3 are based
on regions with max R2 > 0.7 (i.e., the disease SNP is ”tagged” by at least one of the neighboring
SNPs), we found that a similar high/low power patterns by the allele frequency and the average
LD are observed for regions with max R2 ∈ [0.5, 0.7) (i.e., moderately tagged) and for regions
with max R2 < 0.5 (i.e., not tagged) (results not shown). We are examining whether this feature
of low power implies any of the following potential causes: (i) there is a joint acting effect
between the allele frequency and the multilocus LD, (ii) the conditions required in the HS
method is jeopardized with low average LD level and low allele frequency, or (iii) the
performance of the HS method can be better predicted by other high-order LD structure than
average R2, such as the multiple order Markov chains of Kim et al. (2008). Nevertheless, the
findings suggest that the HS methods would be most ideal if coupled with a careful
determination of haplotype regions based on the LD structure of multimarkers so to obtain the
power gain.

The idea of our haplotype-trait similarity regression can be traced back to the Haseman-Elston
regression model for linkage analysis (Haseman and Elston 1972; Elston et al. 2000), where
the trait similarity of sib pairs is regressed on their IBD sharing probability. In our case, we
treat the entire population as a family, and regress trait similarity of pair-wise samples on their
identical-by-state status. Just like the Haseman-Elston regression, which is shown to be
equivalent to the VC methods in linkage analysis (Sham and Purcell 2001), our gene-trait
similarity regression is also analytically united with the VC approaches. Specifically, we
showed that testing the regression coefficient of the haplotype similarity is the same as testing
the genetic variance component in a mixed model. In addition, from the score statistics of the
two approaches, we see both methods utilize haplotype similarity, with a difference that the
within-individual haplotype comparison is used in the variance-component model but not in
the gene-trait similarity regression. These connections suggest that the two approaches should
have similar performance; this conjecture is supported by the simulations and data analysis.
This equivalence offers a new way of looking at haplotype-sharing methods: it enables direct
derivation of analytical solutions of the sharing statistics under the framework of VC methods.
In the cases studied here, both the similarity regression and the VC model yield closed-form
solutions. But for more complicated models (i.e., incorporating interaction effects), the
similarity regression model becomes much more analytically challenging yet the VC method
offers an efficient and reliable technique to draw inference.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Power comparisons for binary traits. The power are calculated based on 5,000 replications. In
each plot, the left (right) panels are for nominal level 0.05 (0.01), and the horizontal dotted
lines in the bottom indicates the corresponding nominal level. The upper (lower) panel is the
results for allele frequency q = 0.1 (0.3). Lines with circles are results for haplotype-based
analysis, and lines without circles are results for SNP-based analysis. Specifically, the solid
lines with filled circles indicate the HS method, the dashed lines with open circles indicate the
HAP method, the dotted-dashed lines indicate the SNP-1 method, and the solid lines indicate
the SNP-2 method. The “x” signs indicate the VC method.
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Figure 2.
Power comparisons for normal traits. The power are calculated based on 5,000 replications. In
each plot, the left (right) panels are for nominal level 0.05 (0.01), and the horizontal dotted
lines in the bottom indicates the corresponding nominal level. The upper (lower) panel is the
results for allele frequency q = 0.1 (0.3). Lines with circles are results for haplotype-based
analysis, and lines without circles are results for SNP-based analysis. Specifically, the solid
lines with filled circles indicate the HS method, the dashed lines with open circles indicate the
HAP method, the dotted-dashed lines indicate the SNP-1 method, and the solid lines indicate
the SNP-2 method. The “x” signs indicate the VC method.
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Figure 3.
Boxplots of power of the HAP/HS/SNP-1 methods for all simulated genome regions with max
R2 > 0.7. The data consist of 100 cases and 100 control which were generated under an additive
model. The power are evaluated based on 1,000 replications at nominal level 0.01. The upper/
middle/lower panels are the results for allele frequency q ≈ 0.1/0.2/0.3, respectively.
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Figure 4.
P-values from the ALS data analysis around the most promising SNP reported in Schymick et
al. (i.e., SNP rs4363506 with location indicated by the arrow). The p-values are presented on
the scale of negative logarithm of base 10, and the horizontal lines indicate the Bonferroni
genome-wide threshold. Upper panel: p-values of the HS method based on 3-SNP haplotypes
(solid line with filled circle) vs. p-values of the SNP-2 method (dotted-dashed line with open
triangle). Lower panel: p-values of the HS method (solid line with filled circle) vs. p-values of
the HAP method (dashed line with open circle). The “x” signs indicate the p-values of the VC
method.
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