Skip to main content
. Author manuscript; available in PMC: 2009 Sep 22.
Published in final edited form as: J Phys Chem C Nanomater Interfaces. 2008 Jul 31;112(30):11236–11249. doi: 10.1021/jp802414k

TABLE 1. Computed Enhancement/Quenching of the Emission Intensity in the x-y Plane, and the Enhancement/Quenching of the Total Power Radiated (Integrated around a Closed Surface Containing the System) by the Various Nanoparticle Systems Studied with the Dipoles Oriented Perpendicular to the Metal Surface (Along the x Axis)a.

perpendicular dipole (along x-axis) enhancement/quenching of emission intensity in the x-y plane enhancement/quenching of total radiated power
20-nm Ag monomer, s = 2 nm 9.3 9.3
20-nm Ag monomer, s = 5 nm 5.2 4.9
20-nm Ag monomer, s = 10 nm 2.3 2.4
20-nm Ag dimer, s = 4 nm 107 162
20-nm Ag dimer, s = 10 nm 10.1 18.5
20-nm Ag dimer, s = 20 nm 4.5 4.8
40-nm Ag monomer, s = 2 nm 21.1 13.65
40-nm Ag monomer, s = 5 nm 9.78 10.24
40-nm Ag monomer, s = 10 nm 5.52 5.91
40-nm Ag dimer, s = 4 nm 4612 5207
40-nmAg dimer, s = 10 nm 129 139.87
40-nm Ag dimer, s = 20 nm 24 25.38
80-nm Ag monomer, s = 2 nm 31.2 31.2
80-nm Ag monomer, s = 5 nm 31.4 26.5
80-nm Ag monomer, s = 10 nm 18.5 18.3
80-nm Ag dimer, s = 4 nm 3475 3214
80-nm Ag dimer, s = 10 nm 593 572
80-nm Ag dimer, s = 20 nm 140 132
100-nm Ag monomer, s = 2 nm 33 30.1
100-nm Ag monomer, s = 5 nm 29.4 26.5
100-nm Ag monomer, s = 10 nm 21.9 19.4
100-nm Ag dimer, s = 4 nm 4755 5349
100-nm Ag dimer, s = 10 nm 287 355
100-nm Ag dimer, s = 20 nm 98 84.8
140-nm Ag monomer, s = 2 nm 11.9 10.6
140-nm Ag monomer, s = 5 nm 12.3 10.9
140-nm Ag monomer, s = 10 nm 9.9 8.2
140-nm Ag dimer, s = 4 nm 5950 5336
140-nm Ag dimer, s = 10 nm 385.6 361
140-nm Ag dimer, s = 20 nm 68.3 59.6
a

The enhancement or quenching of the total power radiated indicates changes in the relative radiative decay rates of the Ag-dipole system when compared to the isolated dipole.