TABLE 1. Computed Enhancement/Quenching of the Emission Intensity in the x-y Plane, and the Enhancement/Quenching of the Total Power Radiated (Integrated around a Closed Surface Containing the System) by the Various Nanoparticle Systems Studied with the Dipoles Oriented Perpendicular to the Metal Surface (Along the x Axis)a.
perpendicular dipole (along x-axis) | enhancement/quenching of emission intensity in the x-y plane | enhancement/quenching of total radiated power |
---|---|---|
20-nm Ag monomer, s = 2 nm | 9.3 | 9.3 |
20-nm Ag monomer, s = 5 nm | 5.2 | 4.9 |
20-nm Ag monomer, s = 10 nm | 2.3 | 2.4 |
20-nm Ag dimer, s = 4 nm | 107 | 162 |
20-nm Ag dimer, s = 10 nm | 10.1 | 18.5 |
20-nm Ag dimer, s = 20 nm | 4.5 | 4.8 |
40-nm Ag monomer, s = 2 nm | 21.1 | 13.65 |
40-nm Ag monomer, s = 5 nm | 9.78 | 10.24 |
40-nm Ag monomer, s = 10 nm | 5.52 | 5.91 |
40-nm Ag dimer, s = 4 nm | 4612 | 5207 |
40-nmAg dimer, s = 10 nm | 129 | 139.87 |
40-nm Ag dimer, s = 20 nm | 24 | 25.38 |
80-nm Ag monomer, s = 2 nm | 31.2 | 31.2 |
80-nm Ag monomer, s = 5 nm | 31.4 | 26.5 |
80-nm Ag monomer, s = 10 nm | 18.5 | 18.3 |
80-nm Ag dimer, s = 4 nm | 3475 | 3214 |
80-nm Ag dimer, s = 10 nm | 593 | 572 |
80-nm Ag dimer, s = 20 nm | 140 | 132 |
100-nm Ag monomer, s = 2 nm | 33 | 30.1 |
100-nm Ag monomer, s = 5 nm | 29.4 | 26.5 |
100-nm Ag monomer, s = 10 nm | 21.9 | 19.4 |
100-nm Ag dimer, s = 4 nm | 4755 | 5349 |
100-nm Ag dimer, s = 10 nm | 287 | 355 |
100-nm Ag dimer, s = 20 nm | 98 | 84.8 |
140-nm Ag monomer, s = 2 nm | 11.9 | 10.6 |
140-nm Ag monomer, s = 5 nm | 12.3 | 10.9 |
140-nm Ag monomer, s = 10 nm | 9.9 | 8.2 |
140-nm Ag dimer, s = 4 nm | 5950 | 5336 |
140-nm Ag dimer, s = 10 nm | 385.6 | 361 |
140-nm Ag dimer, s = 20 nm | 68.3 | 59.6 |
The enhancement or quenching of the total power radiated indicates changes in the relative radiative decay rates of the Ag-dipole system when compared to the isolated dipole.