TABLE 2. Computed Enhancement/Quenching of the Emission Intensity in the x-y Plane, and the Enhancement/Quenching of the Total Power Radiated (Integrated around a Closed Surface Containing the System) by the Various Nanoparticle Systems Studied with the Dipoles Oriented Parallel to the Metal Surface (Along the y Axis)a.
parallel dipole (along y-axis) | enhancement/quenching of emission intensity in the x-y plane | enhancement/quenching of total radiated power |
---|---|---|
20-nm Ag monomer, s = 2 nm | 0.051 | 0.042 |
20-nm Ag monomer, s = 5 nm | 0.200 | 0.180 |
20-nm Ag monomer, s = 10 nm | 0.620 | 0.590 |
20-nm Ag dimer, s = 4 nm | 0.240 | 0.280 |
20-nm Ag dimer, s = 10 nm | 0.021 | 0.029 |
20-nm Ag dimer, s = 20 nm | 0.333 | 0.280 |
40-nm Ag monomer, s = 2 nm | 0.510 | 0.300 |
40-nm Ag monomer, s = 5 nm | 0.110 | 0.058 |
40-nm Ag monomer, s = 10 nm | 0.210 | 0.180 |
40-nm Ag dimer, s = 4 nm | 0.220 | 0.240 |
40-nm Ag dimer, s = 10 nm | 0.260 | 0.280 |
40-nm Ag dimer, s = 20 nm | 0.025 | 0.029 |
80-nm Ag monomer, s = 2 nm | 1.590 | 1.410 |
80-nm Ag monomer, s = 5 nm | 1.210 | 0.860 |
80-nm Ag monomer, s = 10 nm | 0.500 | 0.360 |
80-nm Ag dimer, s = 4 nm | 0.210 | 0.244 |
80-nm Ag dimer, s = 10 nm | 0.250 | 0.304 |
80-nm Ag dimer, s = 20 nm | 0.180 | 0.248 |
100-nm Ag monomer, s = 2 nm | 2.330 | 1.758 |
100-nm Ag monomer, s = 5 nm | 1.780 | 1.275 |
100-nm Ag monomer, s = 10 nm | 1.180 | 0.765 |
100-nm Ag dimer, s = 4 nm | 0.093 | 0.137 |
100-nm Ag dimer, s = 10 nm | 0.128 | 0.175 |
100-nm Ag dimer, s = 20 nm | 0.143 | 0.203 |
140-nm Ag monomer, s = 2 nm | 1.580 | 1.166 |
140-nm Ag monomer, s = 5 nm | 1.240 | 0.904 |
140-nm Ag monomer, s = 10 nm | 0.990 | 0.721 |
140-nm Ag dimer, s = 4 nm | 0.018 | 0.031 |
140-nmAg dimer, s = 10 nm | 0.023 | 0.042 |
140-nmAg dimer, s = 20 nm | 0.032 | 0.066 |
The enhancement or quenching of the total power radiated indicates changes in the relative radiative decay rates of the Ag-dipole syste when compared to the isolated dipole.