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Abstract

We are using Optical Coherence Tomography (OCT) to image structure and function of the
developing embryonic heart in avian models. Fast OCT imaging produces very large 3D (2D + time)
and 4D (3D volumes + time) data sets, which greatly challenge ones ability to visualize results. Noise
in OCT images poses additional challenges. We created an algorithm with a quick, data set specific
optimization for reduction of both shot and speckle noise and applied it to 3D visualization and image
segmentation in OCT. When compared to baseline algorithms (median, Wiener, orthogonal wavelet,
basic non-orthogonal wavelet), a panel of experts judged the new algorithm to give much improved
volume renderings concerning both noise and 3D visualization. Specifically, the algorithm provided
a better visualization of the myocardial and endocardial surfaces, and the interaction of the embryonic
heart tube with surrounding tissue. Quantitative evaluation using an image quality figure of merit
also indicated superiority of the new algorithm. Noise reduction aided semi-automatic 2D image
segmentation, as quantitatively evaluated using a contour distance measure with respect to an expert
segmented contour. In conclusion, the noise reduction algorithm should be quite useful for
visualization and quantitative measurements (e.g., heart volume, stroke volume, contraction velocity,
etc.) in OCT embryo images. With its semi-automatic, data set specific optimization, we believe that

the algorithm can be applied to OCT images from other applications.

1. Introduction

We are using Optical Coherence Tomography (OCT) to image structure and function of the
developing embryonic heart in avian models. OCT allows one to non-invasively image living
hearts with microscopic resolution, and to visually and quantitatively analyze development.
Due to the diminutive size and rapid movements of the early embryonic heart, OCT imaging
provides a unique ability to study anatomy and function. We believe that OCT has the requisite
spatial and temporal resolution and is hence an important tool to facilitate understanding of the
underlying mechanisms responsible for normal/abnormal heart development [1]. However,
noise present in OCT imaging systems [2-11] limits our ability to interpret, visualize and
analyze image data which is crucial to the understanding of early cardiac development. The
purpose of our study is to address this limitation by creating an algorithm for noise reduction
in OCT images and evaluating its performance both visually and quantitatively through
volumetric visualization and image segmentation. The novelty of our noise reduction technique
lies in its ability to optimally reduce noise based on the characteristics of a particular image
data set.

Due to its deleterious effects on coherent imaging systems such as ultrasound and OCT, there
has been significant effort to characterize and reduce noise [2-21]. The two most common noise
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sources are shot noise, which is additive in nature and can be adequately described by the
Additive White Gaussian Noise (AWGN) process, and speckle noise, which is multiplicative
in nature and harder to eliminate due to its signal dependency. In fact, speckle carries useful
information about the underlying tissue structure [11]. OCT is very similar to ultrasound and
a brief review of shot and speckle noise reduction in ultrasound is in order. Shot noise reduction
is applied both during acquisition [17] and post-acquisition using simple image processing
techniques [22-24] such as an averaging filters, median filters and Gaussian low-pass filters.
However, many of these filtering techniques tend to remove useful features from images. One
of the most effective technique for shot noise removal is the phase preserving non-orthogonal
wavelet (NW) filtering technique proposed by Kovesi [16]. As for speckle noise removal from
ultrasound images, spatial domain techniques have been employed including the one proposed
by Xie et al. [19] who applied a salient boundary enhancement technique with a speckle
suspension term, and Dutt and Greenleaf [13], who employed a local statistical model to
quantify the extent of speckle formation and subsequently used an unsharp masking filter to
suppress speckle. As for transform domain techniques, wavelet-based speckle suppression has
been reported [12,14,20]. More recently, Fan et al. [25] combined pyramid decomposition of
images with anisotropic diffusion filtering to reduce speckle in ultrasound images of phantoms
and liver. For OCT images, shot noise has been reduced using post-acquisition image
processing techniques [22-24] such as averaging filters, median filters and Gaussian filters.
There are also reports on speckle reduction techniques in OCT including physical techniques
[2,4,5,7,8], those applied prior to image formation [6], and post-acquisition, image processing
techniques such as hybrid median filter (HMF), Wiener filter, ELEE filter, symmetric nearest
neighbor (SNN) filter, Kuwahara filter, adaptive Wiener filter, rotating kernel transformation
(RKT), anisotropic diffusion filtering, orthogonal and non-orthogonal wavelet filters [3,7,10].
Ozcan et. al [7] have compared the relative performances of the ELEE filter, two wavelet
transform based filters, the HMF, SNN, a Kuwahara filter, and the adaptive Wiener filter, and
have argued that post-acquisition digital image processing is advantageous because it does not
require the additional acquisition of compounding angles required by the physical technique
for speckle reduction. Puvanathasan and Bizheva [9] have used a fuzzy thresholding algorithm
in the wavelet domain for speckle reduction in OCT images of a human finger tip, and have
compared their technique with the Wiener and Lee filters.

In this paper, we create an algorithm to reduce both shot and speckle noise through digital
image processing. The Kovesi NW filtering technique, originally applied to video surveillance
data, can greatly reduce shot noise. However, manual optimization of parameters can be a
daunting and unsatisfying task. Hence, we will investigate methods for automatically
optimizing the wavelet filter bank for OCT. We call our technique Optimized Non-orthogonal
Wavelet (ONW) denoising. To reduce speckle, we use an enhanced version of the Laplacian
Pyramid Nonlinear Diffusion (LPND) technique used by Fan et. al on ultrasound images of
the liver and carotid artery [25]. Since speckle size depends on imaging parameters such as the
characteristics of the light source, the spot size, and sampling rate, we have investigated
adaptive optimization of LPND parameters, and call the method Adaptive LPND (ALPND).

We have identified three approaches for evaluation of noise reduction. First, there are
quantitative measures on individual images such as edge preservation (B) [15], structural
similarity measure (SSIM) [26], and contrast-to-noise ratio (CNR) [27], as reported in a recent
work by Fan et al [25]. We will create a weighted sum of these measures and use this scalar
image quality criterion to optimize ALPND. This measure will also be used to evaluate other
noise reduction algorithms. Second, as described by Frangakis et al [28], one can evaluate the
effect of noise reduction on 3D image visualization. We will investigate how noise reduction
affects both isosurface, surface rendering and direct volume rendering [29]. Gradients provide
enhanced volume visualization of internal surfaces and tissue boundaries [30-32], and we are
particularly interested in the role of noise reduction in improving visualization through accurate
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estimation of gradients in data. Third, one can determine the effect of noise reduction on
segmentation [33]. We used a simple tolerance based seeded region growing algorithm
available within the visualization package Amira [34] and a more sophisticated semi-automatic
image contour segmentation tool called LiveWire [35,36] to both qualitatively and
quantitatively evaluate the effect of noise reduction.

The rest of the paper is organized as follows. In Section 2, we briefly describe baseline
denoising algorithms such as median filtering, Wiener filtering, and orthogonal wavelet (OW)
filtering, followed by our proposed ONW-ALPND denoising algorithm. In Section 3, we
discuss methods for evaluating the performance of image denoising algorithms. Section 4
presents results of our proposed denoising algorithm along with quantitative/qualitative
comparisons to baseline algorithms. This is followed by a discussion in Section 5.

2. Image denoising algorithms

2.1 Baseline methods: median, Wiener and orthogonal wavelet (OW) filtering

We briefly review some “baseline” noise reduction filters, which will be compared to our new
noise reduction filter. The median filter has been used as a baseline comparison method for
filtering additive, impulse and speckle noise in OCT images [3,7,10]. In median filtering, noise
is suppressed by replacing each pixel with the median computed from neighboring pixels in a
window. We used the Matlab Image Processing Toolbox implementation [37] of the median
filter called median2. Like the median filter, the Wiener filter is a popular baseline comparison
method for shot and speckle noise removal both in ultrasound and OCT images [7,21,25]. The
Wiener filter is a linear filter mostly suited for images degraded by additive noise. Wiener
filtering assumes that the signal and noise processes are second-order stationary (in the random
process sense). The basic Wiener filter is a bandpass filter that minimizes (in a least-squares
sense) the difference between the true and observed signal. It is defined in terms of the following
spectra (i) Fourier Transform of the point spread function (PSF) of the system, (ii) Power
spectrum of the signal process, and (iii) Power spectrum of the noise process. We used the
Matlab Image Processing Toolbox implementation [37] of the Wiener filter called wiener?2
which is an adaptive version of the Wiener filter that uses statistics estimated from a local
neighborhood of each pixel [38]. We also used a standard wavelet wdencmp from the Matlab
Wavelet Toolbox for noise reduction. Wavelets are a powerful tool in image analysis for pattern
detection, signal recovery, image compression and noise reduction [39]. Orthogonal wavelets
(OW) are a specific class of wavelets where the basis functions are orthogonal i.e. any pair of
basis functions in the set has a zero correlation. Image denoising using OW filter consists of
(i) decomposition of spatial image data into wavelet coefficients using an appropriate family
of wavelet basis functions, (ii) identification of a suitable threshold for the wavelet coefficients
followed by a thresholding operation, and (iii) reconstruction of the spatial domain image from
the thresholded wavelet coefficients [12,14,20].

Following some ad hoc optimizations, we determined a fixed set of algorithm parameters that
were used in our baseline denoising schemes. For median2, we used a square 13 x 13 filter
kernel. In wiener2, we again set the filter size to be 13 x 13. In the case of the OW filter using
wdencmp function of Matlab, we used the symlet-7 (sym7) wavelet with decomposition
performed up to level 3. In order to make a fair comparison, these values were chosen to match
the optimal settings for the proposed ONW and ALPND denoising schemes.

2.2 Optimized non-orthogonal wavelet (ONW) denoising

To reduce shot noise, we created the ONW algorithm. It builds upon the basic Kovesi NW
filter [16] which was originally applied to synthetic and video surveillance images. Kovesi
argued that denoising should not corrupt the phase information in the image, and used a non-
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orthogonal wavelet filter bank followed by a thresholding of the magnitudes of the wavelet
coefficients leaving the phase unchanged. In our modification, we include an image data set
specific method for designing the optimal wavelet filter bank for OCT images. A parameter
optimization scheme is applied once to a given data set, a set of parameters for designing an
optimal filter bank are derived, and all the images in the data set are processed using this optimal
filter bank.

The basic Kovesi NW filter is illustrated in Fig. 1. It uses a non-orthogonal wavelet filter bank
with a non-zero correlation between any two filters in the bank [16]. Filters are created to detect
features at different frequency subbands (called scales) and different orientations. Assuming
the original noise to be an Additive White Gaussian Noise (AWGN) process, the amplitude of
the transformed noise follows a Rayleigh distribution [16], whose probability density function
(PDF) is characterized by a single parameter. Due to this property, a noise threshold can be
determined for the lowest scale from the transformed coefficient values and a simple scaling
operation can be applied to derive noise thresholds for higher scales. The noise threshold at
each scale is then subtracted from the corresponding filter response and the resulting constituent
images are used to reconstruct the denoised image.

In our modified filter, we propose an optimization scheme for the parameters that generate the
wavelet filter bank as illustrated in the schematic flow diagram in Fig. 2. The parameters
controlling the filters in the filter bank are (i) number of scales (s), (ii) number of orientations
(0), (iii) number of standard deviations around noise threshold to reject as noise (k), (iv)
multiplying factor between scales (p), (v) wavelength of smallest scale filter (1), (vi) ratio of
the standard deviation of the Gaussian describing the filter transfer function in the frequency
domain to the filter center frequency (Rg) , and (vii) ratio of angular interval between filter
orientations and the standard deviation of the angular Gaussian function used to design filters
(Ra). We have seen by experimentation that, although parameters (i) through (iv) can be set
independently of image data, parameters (v) through (vii) namely &, Rq and R, are image
dependent. However, Kovesi’s technique [16] does not adapt these parameters based on noise
characteristics of the images. We propose a parameter optimization step where empirically
determined maximum and minimum values are used for &, Ry and R, and each parameter is
varied in this range [see Equation(1) below]. For each setting, the wavelet filter response of
the smallest scale filter across all orientations, denoted by hgg, is computed. We note that the
smallest scale filter mostly responds to noise thereby making it a useful approximation to the
“noise pattern” in the image. Next, a user-selected noisy region-of-interest (ROI) from the
original image | (denoted by Q) is matched to the co-located ROl in hgg using an image distance
measure function D based on local histograms [40]. Finally, the optimal parameter settings
(3", Rq’, Ry’,) are determined as those values that result in the minimum image distance
between the two ROIs. Mathematically, this can be represented as:

(V.Ry . R,) =arg min D |hys (%3, 4, Rgs Ra) 1 (x,3) |

X,y € Q,
Amin £ A < Amax,
Rgmin < Rg S Rgmux’
R < Ra = Ramux (1)

Qmin

where Amin, Amax» Rg,min» Rg,max» Ra,min, @1d Ra max, are the maximum and minimum values
of &, Ry and R, that have been determined empirically. To compute this image distance D, the
two ROIs are divided into tiled rectangular blocks. A local image histogram with a predefined
number of bins is computed for each tile for both the ROIs. Now, a sum-of-absolute-difference
(SAD) distance metric is computed between the histograms of the two ROIs [40]. We note that
ONW is not only suited for shot noise reduction, but could also be used for speckle reduction.
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However, we have found that in presence of speckle, shot noise reduction alone is not sufficient
f and more sophisticated speckle reduction techniques need to be employed.

2.3 Adaptive Laplacian pyramid nonlinear diffusion (ALPND) denoising

We developed the Adaptive Laplacian Pyramid Nonlinear Diffusion (LPND) technique
building upon the basic LPND filter of Fan et al [25] which was originally used on ultrasound
images of the liver and the carotid artery. Specifically, we use an optimization scheme for
determining parameters of the nonlinear diffusion step that are specific to the speckle
characteristics of a given OCT image data set. In other words, the optimization is done once
for a given data set by choosing a representative image (visually) that best describes the speckle
characteristics. A detailed discussion of pyramid decomposition of images can be found in the
medical imaging textbook by Paul Seutens [41]. As illustrated in the flow diagram of Fig. 3,
the basic technique proposed by Fan et al. [25] for speckle reduction in ultrasound images
employs (LPND) which essentially comprises of a nonlinear (anisotropic) diffusion technique
[42] applied to the frequency subbands of the images obtained by Laplacian pyramid image
decomposition. As a result of this decomposition, the high frequency speckle noise occupies
lower pyramid layers; its effect in higher layers will be negligible. Parameters controlling the
amount of smoothing due to anisotropic diffusion are computed separately for each
decomposition layer. The smoothing itself is directional in nature and is dependent on the
gradient - a high gradient means lesser smoothing while a lower gradient implies heavier
smoothing. As a result, speckle is reduced without affecting image features and edges.

We developed a technique for optimally determining the diffusion threshold ty and filter kernel
size N used for the nonlinear diffusion process, as illustrated in the flow diagram of Fig. 4.
This optimization step is necessary to ensure that the speckle filtering is adaptive to the
characteristics of the data set and to the imaging set up. Our technique computes a combined
figure of merit p for evaluating visual quality of the denoised images produced by LPND.
Specifically, the following image quality metrics - structural similarity (SSIM) measure, edge
preservation parameter (3) and contrast-to-noise ratio (CNR) were computed [25]. These three
measures are robust estimators of signal preservation in an image which made them applicable
for our filter evaluation. SSIM is a measure of overall processing quality, which compares the
original and processed images based on statistics of co-located sub-regions. p is an edge
preservation metric that involves computation of high-pass filtered (edge-enhanced) images
from the two images being compared using a Laplacian operator. CNR is the relationship of
signal intensity differences between two regions, scaled to image noise. Improving CNR
increases perception of the distinct differences between two clinical areas of interest.

A combined figure of merit u was derived from the above three measures (CNR, SSIM and
B) using a weighted linear function as shown by Equation (1) below where set the weights
o1 = my = o1 = 1/3. Since each individual measure does not completely capture all aspects of
image quality accurately (e.g. CNR produces a higher value with more smoothing and may
erroneously rate a highly blurry image higher than a less blurry image), we found it
advantageous to combine these parameters linearly using user-selected weights (which in our
case were set equal). This let us tune out extreme effects caused by any one individual
parameter.

u:wl.CNR+w2.ﬁ+w3.SSIM (2)

A region-of-interest (foreground) Qg and a background region Qpgg are needed to evaluate
p and were manually selected by a user. p is therefore a function of tg, N, Qrg, Qpg, ©1,

oy, ®3. However, for a fixed user choice of foreground and background regions and the weights
w;j, itis sufficient to denote p as p(ty, N). The parameter values tq and N were iterated through
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aset of values from a predetermined range (determined empirically), and the optimal parameter
settings (tgq’, N”) were derived by maximizing p. Mathematically, this is written as:

(t;’,N') =arg max u(tg,N)
Idmin S td S tdmin’
Nmin £ N < Nimax 3)

2.4 Combined filter for shot and speckle noise reduction

We created a noise reduction method using both the ONW and ALPND algorithms in a serial
fashion to reduce shot and speckle noise, respectively. We call this combined technique the
ONW-ALPND denoising algorithm. To apply this method, a single representative 2D image
was chosen from a data set, and ONW and ALPND parameters were optimized. Following
optimization, the ONW-ALPND denoising algorithm was run on the entire (2D+time) or (3D
+time) data set.

3. Methods for evaluating image quality

We have developed three methods to evaluate the performance of our noise reduction
algorithms. First, we quantitatively evaluate image quality from the 2D OCT images before
and after denoising. Second, we use volume and surface rendering of the original and denoised
volumetric data sets as a means for evaluating the noise reduction performance. Third, we apply
a tolerance based seeded region growing algorithm for image segmentation available within
Amira [34], a popular 3D image analysis and visualization package, and a semi-automatic
contour segmentation technique called LiveWire [35,36] to both noisy and denoised image
data. Our evaluation was performed using the following data sets (i) (2D + time) data set that
consisted of about 500 images (captured at 195 fps) from a complete cardiac cycle of a day 2
quail embryo, (ii) (3D + time) data set that consisted of 20 volumes (3 cardiac cycles) of the
day 2 quail embryonic heart captured at a rate of 10 volumes/sec, (iii) a single volume 3D data
set consisting of 131 2D image slices of a stage 14 quail embryo corresponding to one phase
(beginning of diastolic filling) of the cardiac cycle, and (iv) human colonic crypt data set
consisting of 600 2D image slices. This volume was obtained by an image processing technique
called retrospective gating (the topic of retrospective gating is reserved for a future publication).

3.1 Evaluating 2D image quality

A quantitative method was used for evaluating image quality [3,25] of the resultant images
produced through filtering. A human expert was shown (2D + time) OCT images of the quail
embryonic heart. She first picked a region on the myocardial wall as the foreground and a
nearby surrounding region consisting of cardiac jelly as the background. Following this, a
combined figure of merit , introduced in Section 2.3 [Equation (2)], was evaluated for the 2D
images.

3.2 Volumetric visualization

We next describe the methods used to visualize our (2D + time), 3D, and (3D + time) data sets
before and after applying the noise reduction schemes. For the (2D + time) data, the
ONWALPND denoising algorithm was applied to each 2D frame following which all the
original (noisy) and denoised frames across time were assembled into a single movie file
[37]. As for the (3D + time) data, surface renderings of volumetric data from each time point
were generated using the isosurface algorithm which generates a surface passing through the
volumetric data corresponding to a chosen gray value called the iso-value, using an algorithm
similar to marching cubes [29]. . Although surface rendering is a useful tool for data
visualization, surfaces are normally rendered opaque eliminating the ability to visualize
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internal structures such as interfaces between tissue types and boundaries. A 3D volume
rendering of our data sets was implemented to enable visualization of internal structures by
using suitable voxel opacities for the data points within the volume. To compute the voxel
opacities, we built a 2D opacity transfer function (OTF) that assigns an opacity value based on
both the original data value and its gradient. In other words, a 2D OTF maps each (data,
gradient) pair to an opacity value. To optimize these volume renderings, we first rendered a
volume using the “default” OTF provided by the software. Then, sub-regions within the volume
were explored and the shape of the OTF was changed using a set of control points till an optimal
rendering was obtained (as evaluated visually by the user). The beating heart of the quail
embryo before and after the noise reduction step has been visualized as a time series of 3D
volume renderings. To generate the surface and volume rendering discussed above, we
implemented software extensions using the 3D visualization packages Amira [34] and Drishti
[43] by the way of scripts and plug-ins.

3.3 Semi-automatic segmentation

4. Results

First, we used a tolerance based seeded region growing algorithm for segmentation. Many
image analysis and visualization packages such as Amira [34] implement this basic algorithm.
Here, the user clicks on a region in the image called a seed and subsequently manipulates a
pair of sliders which define a tolerance (in terms of intensity) around the seed value. The
algorithm returns a region within the 2D image which satisfies the tolerance set by the user.
Second, we employed a semi-automatic 2D image contour segmentation algorithm called
LiveWire [35,36] to determine the heart contour from images in our (2D + time) and the single
volume 3D data sets. In LiveWire, the user performs mouse-clicks to choose points on a
boundary in a digital image. Following each mouse-click, a contour edge is automatically
drawn between the current and previous points and the LiveWire boundary starts wrapping
around the object of interest. LiveWire is based on a least cost path algorithm of Dijkstra
[44] for detecting an optimal boundary in a digital image. More specifically, the boundary
detection problem is formulated as an optimal path search in a weighted graph. Graph searching
provides mathematically piece-wise optimal boundaries while greatly reducing sensitivity to
local noise or other intervening structures [35,36]. We slightly modified the algorithmic
implementation of LiveWire so that the user first clicks on a finite number of almost evenly
spaced points on the contour and then instructs the software to complete the contour. The
segmented heart contours (i.e. from the noisy and denoised data) are compared to the “ground
truth” segmentations obtained from human expert users. We first made a subjective (visual)
comparison for a few test cases. In addition to this visual comparison, we have developed a
quantitative method for computing the distance between two contours. Briefly, the two
contours are sampled by selecting an equal number of uniformly spaced pixels (points) on each
of them. The x and y coordinates are then noted for each set of points. Following this, Euclidean
distances are computed between the two sets of corresponding points [45] and the standard
deviation of these distances is obtained to quantify the differences in shape of the contour and
location of sampled points in the two contours. A smaller value implies a higher similarity and
vice-versa.

We performed experiments using the three data sets discussed in the beginning of section 3.

We determined optimal parameter settings for both the ONW and the ALPND algorithms using
a representative image from our (2D + time) data set. We ran the optimization process using

2D images from different phases of the cardiac cycle and found little variation in the optimal
values determined in each case. The optimization process was more dependent on the imaging
set up and less on which image from a data set was chosen. For our experiments, we chose one
image close to the beginning of diastole for both ONW and ALPND optimization. This image
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has been shown as the input image in Fig. 4. In the case of the ONW algorithm, the optimal
parameter settings were determined to be 1’ = 3, Ry’ = 0.35, and R, = 0.25, as opposed to the
default (suboptimal) settings for the basic Kovesi NW filter which were 2" = 2, Ry’ = 0.55,
and Ry = 1.0. In the case of the ALPND algorithm, the optimal value for the square filter
kernel size N was 13 and that for the diffusion threshold ty was determined to be 0.0001, when
compared with a default (suboptimal) setting of N = 7 and tgq = 0.005 that have been suggested
previously by Fan et al [25].

4.1 ONW denoising

In Fig. 5, we compare the basic Kovesi NW filter with the ONW filter using a sample 2D image
from the (2D + time) data set [Fig. 5(a)]. Although the Kovesi NW filter efficiently reduced
noise, we see that in the resulting image [Fig. 5(b)], there is a loss of information with depth.
For instance, the image information close to the bottom part of the inflow tract (see bottom
right portion of the tubular heart) seems to be lost in Fig. 5(b). The proposed ONW technique
reduced the shot noise but preserved image information with depth [Fig. 5(c)]. Figs. 5d-f show
the results of applying ONW to OCT images of the human colonic crypt data set. As before,
a depth-dependent loss of information due to suboptimal choice of filter bank parameters is
very apparent [Fig. 5(e)]. For instance, in Fig. 5e, the muscularis mucosae (thin layer of smooth
muscle) at the bottom of the mucosa and the lower parts of the crypts of Lieberkuhn are clearly
lost in this image. The ONW technique again preserved information with depth [Fig. 5(f)].

4.2 ALPND denoising

We applied the LPND method to the image already processed using ONW [Fig. 6(a), 6(b)].
Suboptimal parameter settings produced a heavily blurred image [Fig. 6(b)]. The ALPND
method produced a speckle-reduced image with minimal blurring [Fig. 6(c)].

4.3 Visual and quantitative comparison with other filtering techniques

InFig. 7 (a)-(f), we visually compared the ONW-ALPND denoising algorithm with the baseline
denoising algorithms and the basic Kovesi NW filter [16] using a panel of experts in OCT
technology and embryonic development. More specifically, our expert panel consisted of (i)
an expert in cardiac developmental biology (Dr. Michiko Watanabe, Associate Professor of
Pediatrics, Case Western Reserve University), (ii) two students from the Case School of
Medicine majoring in Anatomy, and (iii) two experts in OCT imaging (Michael Jenkins &
Andrew Rollins, authors). Our experts were shown images from different cardiac cycles for
training and evaluation. Using the same input image as in Fig. 5(a) [repeated as Fig. 7(a)], we
applied the baseline algorithms, the basic Kovesi NW filter and finally our ONW-ALPND
denoising algorithm. Experts indicated that the denoised image obtained using the proposed
method [Fig. 7(f)] was visually better as compared to the other methods [Fig. 7 (b)-(e)]. Figure
8 shows a movie comparing the image frames from the noisy and the denoised data sets after
applying the proposed algorithm. Again, experts indicated that with denoising, blood flow can
be more clearly visualized. Also, we can see structures such as cardiac jelly and the endocardial
wall better after denoising. We also performed a quantitative comparison with the baseline
algorithms. We chose 50 consecutive (in time) images from our (2D + time) data set. In order
to make a fair comparison, the optimal filter kernel size determined by the ALPND algorithm
was used to set the kernel size for the baseline algorithms. We obtained the combined figure
of merit (u) in Equation (2) for the filtered images [Fig. 7(g)] produced by each of the above-
mentioned techniques, from which it is evident that our proposed denoising algorithm performs
better than the baseline algorithms.
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4.4 Surface and volume visualization

Surface and volume renderings from the original and denoised data were evaluated by experts
in image processing and embryonic development. First, the experts were shown a volume
rendering from one representative volume in the (3D+time) data set produced by each of the
baseline denoising algorithms and the ONW-ALPND denoising algorithm. Anecdotally, the
experts indicated that the ONW-ALPND denoising enabled the best visualization of internal
structures without loss of useful details. Next, we asked them to compare the volume rendering
produced by the ONW-ALPND denoising algorithm fro with that obtained from the original
data [Fig. 9(a)]. They concluded that denoising enabled better visualization of tissue boundaries
and the tubular structure of the heart. Following this, experts were shown surface renderings
from the original [Fig. 9(c)] and ONW-ALPND denoised data [Fig. 9(d)]. They concluded that
the heart surface was smoother and that the adjoining surfaces were more clearly visible after
denoising. Finally, they were shown a movie made from a time series of volume renderings
consisting of six phases of the cardiac cycle, corresponding to both the original and the denoised
data [Fig. 9(e)]. They concluded that the dynamics of the beating heart in 3D, e.g. interaction
between the heart and adjoining structures, could be more clearly visualized.

4.5. Semi-automatic segmentation

4.5.1 Tolerance based seeded region growing—Figures 9(f) and (h) show a visual
comparison of noisy versus ONW-ALPND denoised data respectively using an en face 2D
image from the single volume 3D data set. It is clear that anatomically important features such
as outpocketings (sometimes called tethers) from the endocardial wall into the surrounding
cardiac jelly are more distinctly visible in the denoised image in Fig. 9(h) (red arrows),
suggesting that it should be easier to segment after denoising. We have verified that the
tolerance based seeded region growing algorithm (section 3.3) performed better on denoised
data because it clearly segmented out the lower portion of the cardiac jelly, as shown by the
red region in Fig. 9(i). This can be observed by comparing it with the corresponding red region
in Fig. 9(g), which shows the same algorithm applied on noisy data.

4.5.2 LiveWire segmentation—We compared LiveWire 2D segmentation results obtained
by applying the proposed denoising technique with those obtained from noisy data and the OW
filter denoising technique [Fig. 10(a)]. The data set consisted of 90 2D images from the (2D +
time) data set corresponding to one complete cardiac cycle of the quail embryo. We computed
the contour distance measure (section 3.3) between human expert traced contours and those
obtained using LiveWire on (i) noisy data [denoted by D(l4,l5) in Fig. 10], (ii) denoised data
using proposed technique [denoted by D(l4,13)], and (iii) denoised data using OW filter
[denoted by D(l4,14)]. A scatter plot of D(I4,15) versus D(l4,13) is shown in Fig. 10 (b). It can
be easily seen that a larger number of points (64%) lie below the dotted line [corresponding to
D(l4,12) =D(lI4,13)] than above it, as indicated by solid red squares. This indicated that LiveWire
segmentation of the myocardial wall after noise reduction more closely matched an expert
traced contour than LiveWire segmentation from noisy data.

Computing accurate gradients from data is very crucial for the success of 2D image
segmentation algorithms. Some of the existing approaches for noise reduction are not tuned to
the specific noise characteristics of an image data set. Therefore, the resulting images may be
insufficiently or excessively filtered posing challenges to the gradient estimation process
thereby affecting the performance of segmentation. Using the same (2D + time) data set, we
compared the performance of the OW filter when used as a preprocessing (denoising) step for
segmentation with our proposed ONW-ALPND technique [Fig. 10(c)] using human expert
tracings as the baseline. We observed that, in 60% of the cases (solid red squares), Livewire
contours produced by the proposed method were closer to human expert tracings than the
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LiveWire contours produced by OW filtering, thereby suggesting the superiority of the
ONWALPND method.

We next performed the same experiments on the single volume 3D data set consisting of 2D
slices obtained at different spatial positions (outer myocardial wall was visible in 131 slices).
These images were from a stage 14 quail heart volume at a single phase in the cardiac cycle.
This data set was obtained using an image processing technique called retrospective gating
(the topic of retrospective gating is reserved for a future publication). For this data set, Figs. 9
(H-(i) have already demonstrated visually that both image quality and segmentation
performance are better in the case of ONW-ALPND denoised data. We further provide
quantitative evaluation results in Fig. 11. Figure 11(a) shows a comparison of ONW-ALPND
versus noisy data as a scatter plot in which about 60% of the points (solid red squares) lie below
the dotted line, indicating that noise reduction aids segmentation. Similarly, Fig. 11(b) shows
a comparison of ONW-ALPND versus the OW filter in which 65% of the points (solid red
squares) indicate better conformity of the ONW-ALPND technique to human expert tracings.

The results from these data sets indicate a moderate percentage of conformity of contours
obtained from the proposed algorithm to human tracings (in the range of 60-65%), when
compared with those obtained from noisy data and the OW filtering method. This was probably
due to (i) inaccuracies in human tracings owing to the changing shape and position of the
myocardial wall contour across the 2D slices, and (ii) robustness of the LiveWire segmentation
algorithm to noise.

4.5.3Shot versus speckle noise reduction for LiveWire segmentation—We
performed an experiment to evaluate the effect of shot noise reduction on segmentation. First,
we applied ONW-ALPND to the noisy images from both the (2D + time) and the single volume
3D data sets. We then applied LPND only to these same images. LiveWire segmentation was
performed in both cases and compared (as usual) with human expert tracings (Fig. 12). We
observed that the segmentation performance improvement due to the addition of the shot noise
reduction step was only marginal, as demonstrated by Fig. 12(a) for the (2D + time) data set
where only 48 of the 90 images (53%) indicated that adding the shot noise reduction step helped
segmentation, and by Fig. 12(b) for the single volume 3D data set where only 62 of the 131
images (47%) indicated an improved LiveWire segmentation as a result of the shot noise
reduction step. In other words, there was strong evidence to believe that speckle noise is more
dominant in “segmentable” regions.

5. Discussion

The combined ONW-ALPND filter aids data interpretation by reducing noise, facilitates
biologically useful volume visualizations, and improves semi-automatic segmentation. The
results shown in Figs. 5 through 12 strongly support our claim with regard to the usefulness
of these filters in investigating early cardiac development in small animal models. We explored
the use of each individual filter (ONW, ALPND) in isolation but concluded that the combined
filter when applied serially in a specific order (ONW followed by ALPND) produced the best
volume visualizations as evaluated subjectively by human experts. These experts were also
provided the results from median, Wiener and OW filtering methods to evaluate and compare
with the proposed filter. As an example, one expert evaluated the median filter as being
inadequate in terms of noise reduction when shown the corresponding volume renderings.

There are some limitations to the current implementation. First, both the ONW and ALPND
techniques involve an optimization step, which is currently applied on one representative image
to determine the optimal settings for the filtering process. Once the optimal settings are
obtained, the denoising is performed using these predetermined settings for the entire data set.
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Depending on the choice of the “representative” image, ONW may cause a signal drop off
especially deeper in the tissue and the ALPND may result in image blurring. One solution
would be to use different optimized parameters on different blocks of images. Second, with
regards to the computational time, we first employed an unoptimized MATLAB code which
took about 25 seconds to process a single 512 x 512 image from the (2D + time) data set on a
2.16 GHz Intel Core Duo laptop with 2 GB of RAM. Since this computation time can become
prohibitively large for our extreme data sets, we performed some code optimization. We have
currently reduced the computation time to 6 seconds per image on the same computer
configuration but believe that further optimizations are possible. Third, we perform denoising
on 2D image dataonly i.e. a 3D data set is processed in a serial fashion by applying the denoising
to each 2D image in the stack. We plan to extend denoising to 3D as part of our future work.
Also, we employ aserial, slice-by-slice, semi-automatic 2D segmentation technique to perform
3D segmentation. We plan to extend this to a fully automatic 3D implementation. Supervised
(i.e. training-based) 3D shape modeling techniques such as Active Shape Models (ASM) and
Active Appearance Models (AAM) [46-49] will be useful in this regard but will pose several
new challenges. For instance, the complex morphological changes that organs undergo during
development would make training a subjective and difficult task. Fourth, there are probably
opportunities for improving the opacity and color mapping functions for volume visualization.
A 2D opacity transfer function (OTF) leads to enhanced volume visualization as shown by the
renderings obtained using the Drishti software [43]. However, it is possible to obtain even
improved renderings by designing more complex OTFs that use a higher number of data-
dependent variables (and hence a higher number of dimensions). For instance, in addition to
the original data value and its gradient, a Laplacian (second derivative) of the data could be
employed to derive OTFs. When combined with suitable scalar weighting values along with
the original data value and its gradient, a Laplacian can help determine exact location of
boundaries, as suggested by Kniss et al [32]. We are planning to build extensions to our volume
visualization software so that it can support higher dimensional OTFs during volume rendering.

We have routinely encountered very large data sets while producing our volume and surface
renderings. Occasionally, we have had to sub-sample our data sets due to computer memory
limitations. A possible solution to this data management issue is a multi-resolution volume
rendering. Here, the user can work with a lower resolution data set (obtained from sub-sampling
high-resolution data) for exploratory purposes. They can then load sub-regions of the image
data set at higher resolutions at will (Fig. 13). Some currently available visualization software
packages have large scale data visualization features. For example, Amira [34], a popular 3D
image analysis and visualization tool provides a Large Data Access (LDA) module which lets
the user perform multi-resolution volume rendering shown in Fig. 13.

OCT technology coupled with image processing steps discussed in this paper would constitute
a useful tool for investigating the early embryonic heart. Developmental cardiac researchers
currently lack an effective imaging tool to investigate the morphological dynamics of the early
avian/murine embryonic heart. Recently, we demonstrated the ability of OCT to
morphologically phenotype embryonic murine hearts [50]. The set of image denoising
algorithms, volume and surface visualization techniques and semi-automatic segmentation
techniques presented in this report could be easily adapted to images of murine hearts and
would represent a first step towards a fully automated, non-destructive, high-throughput system
to assess the phenotype of embryonic murine hearts. This would allow researchers to pinpoint
critical time periods at a much faster rate. Also, we have recently demonstrated the ability to
image the 3D avian embryonic heart while beating [1,51,52]. Again, an evolved image
processing pipeline would assist us in understanding mechanisms that drive normal versus
abnormal heart development in early stages.

Opt Express. Author manuscript; available in PMC 2009 September 22.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Gargesha et al. Page 12

6. Conclusion

The combined ONW-ALPND filter efficiently reduced additive and speckle noise in OCT
images. This algorithm compared very favorably to other popular denoising algorithms when
evaluated both visually and quantitatively on 2D images from a (2D + time) data set of the
quail embryonic heart. Also, surface and volume visualization from denoised data were greatly
improved as compared to that from original data when evaluated visually with the help of
human experts. Cardiac structure and function was much more easily visualized following
denoising. Also, it was demonstrated using two different data sets [(2D + time) and single
volume 3D data sets] that segmentation of substructures such as heart could be performed more
efficiently using semi-automatic algorithms after applying our noise reduction techniques. We
are currently developing techniques for optimizing opacity transfer functions (OTFs) for
producing better visualization of 3D data sets. We are also exploring supervised (training-
based) 3D segmentation techniques.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Kovesi NW filtering for shot noise reduction. The image is convolved with a filter bank after
Fourier transformation. The result is transformed back to the spatial domain by an inverse
Fourier transformation. A noise threshold is identified in each scale and the filtered image is
produced by reconstruction.
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Fig. 2.

Proposed optimization scheme for shot noise reduction based on the Kovesi NW filter. The
resulting filter is called the Optimized Non-orthogonal Wavlet (ONW) filter. In ONW, a user-
defined ROI is matched against a co-located ROI in the smallest scale reconstruction to
compute an image dissimilarity measure. The parameters that generate the wavelet filter bank
are varied through empirically determined ranges to minimize this dissimilarity measure.
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Laplacian Pyramid Nonlinear Diffusion (LPND) technique for speckle reduction of Fan et al.
The image is decomposed into constituent images spanning different frequency bands (referred
to as layers). A nonlinear diffusion step is applied in each layer to reduce speckle and the output
image is reconstructed from the speckle-reduced images in each layer.
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The parameter optimization scheme used in adaptive LPND (ALPND) technique. The filter
kernel size N used to compute gradients for nonlinear diffusion and the diffusion threshold
tq are iterated through a set of values in an empirically determined range and a quantitative
figure of merit p is evaluated at each step. The optimal values for ty and N are determined by
maximizing p.
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Fig. 5.

ONW technique applied to OCT images of quail embryo (a-c) from (2D + time) data set and
colon crypt pattern (d-f). (a) Original image of day 2 quail embryo, (b) Denoised image using
the basic Kovesi NW filter, (c) Denoised image using ONW, (d) Original image of colon crypt
pattern, () Denoised image using the basic Kovesi NW filter, and (f) Denoised image using

ONW.
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Fig. 6.

ALPND technique applied to quail embryo OCT images (a) ONW filtered image from Fig. 5
(c), (b) Result of basic LPND filtering of Fan et al. applied to the image in (a), (¢) Result of
proposed ALPND technique applied to the image in (a).
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Fig. 7.

Visual and quantitative comparison of filtered images obtained by applying various noise
reduction techniques to image in (a). (b) Median filter, (c) Wiener filter, (d) The OW filter
using wdencmp function from the MATLAB® Wavelet Toolbox™, (e) the basic Kovesi NW
filter, and (f) proposed ONW-ALPND technique. (g) Quantitative comparison of figure of
merit of ONW-ALPND filter with median, Wiener, OW and the basic Kovesi NW filters.
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Fig. 8.
(3.19 MB) A (2D + time) movie of original (noisy) and ONW-ALPND denoised data from the
(2D + time) data set of the stage 13 quail embryo.
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Fig. 9.

Comparison of volume renderings of one phase of the cardiac cycle from the (3D + time) data
set before (a) and after (b) ONW-ALPND denoising. Volume renderings were produced using
the Drishti visualization software. An isosurface for a gray level value of 60 from both noisy
(c) and denoised (d) data. In (e), (301 KB) a movie is shown of the time series of original (left)
and denoised (right) volumes corresponding to a complete heartbeat. Figures (f) — (i) show an
enface 2D image slice from a different data set - the single volume 3D data set of quail embryo.
The noisy image appears in (f) and the ONW-ALPND denoised image is shown in (h). It is
clear that outpocketings from the endocardium (red arrows) are more clearly visible after
ONW-ALPND denoising. Figures (g) and (i) show the result of the Amira tolerance based
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seeded region growing tool applied to (f) and (h) respectively for segmenting the cardiac jelly
(red region).
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Fig. 10.

Quantitative comparison of LiveWire segmentation with human tracings using ONW-ALPND
and OW filters on 90 images from the (2D + time) data set. (a) Method used for contour
comparison. Scatter plots of contour distance measure (section 3.3) are shown in (b) comparing
noisy data with ONW-ALPND denoised data where 64% of the images showed closer
conformity of proposed technique to human tracings, and in (c) comparing OW filter denoised
data with ONW-ALPND denoised data where 60% of the images showed closer conformity
to human tracings.
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Fig. 11.

Quantitative comparison of LiveWire segmentation on the single volume 3D data set consisting
of 131 2D image slices corresponding to different spatial positions within the volume. Scatter
plots of contour distance measure (section 3.3) have been plotted. (a) Comparison of contours
obtained from noisy data with those obtained from ONW-ALPND where 60% of images

showed closer conformity of proposed technigue to human tracings, (b) Comparison of ONW-
ALPND with OW filter where 65% of images showed closer conformity of proposed technique

to human tracings.
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Fig. 12.

Quantitative comparison of LiveWire segmentation to human tracings with and without shot
noise reduction (ONW). Scatter plots of contour distance measure (section 3.3) have been
plotted. (a) Results from the (2D + time) data set consisting of 90 images from one cardiac
cycle of quail heart (where shot noise reduction helped in only 53% of the total images). (b)
Results from single volume 3D data set consisting of 131 2D images from one time point of
the cardiac cycle (where shot noise reduction helped in only 47% of the total images).
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Fig. 13.

Multi-resolution volume interaction on a single volume of quail embryonic heart from the (3D
+ time) data set. From a low resolution volume rendering of the heart, a region of interest can
be selected (shown by bounding box) for higher resolution viewing.
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