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Abstract

Genome-wide association studies (GWAS) have been fruitful in identifying disease susceptibility loci for common and
complex diseases. A remaining question is whether we can quantify individual disease risk based on genotype data, in order
to facilitate personalized prevention and treatment for complex diseases. Previous studies have typically failed to achieve
satisfactory performance, primarily due to the use of only a limited number of confirmed susceptibility loci. Here we
propose that sophisticated machine-learning approaches with a large ensemble of markers may improve the performance
of disease risk assessment. We applied a Support Vector Machine (SVM) algorithm on a GWAS dataset generated on the
Affymetrix genotyping platform for type 1 diabetes (T1D) and optimized a risk assessment model with hundreds of markers.
We subsequently tested this model on an independent Illumina-genotyped dataset with imputed genotypes (1,008 cases
and 1,000 controls), as well as a separate Affymetrix-genotyped dataset (1,529 cases and 1,458 controls), resulting in area
under ROC curve (AUC) of ,0.84 in both datasets. In contrast, poor performance was achieved when limited to dozens of
known susceptibility loci in the SVM model or logistic regression model. Our study suggests that improved disease risk
assessment can be achieved by using algorithms that take into account interactions between a large ensemble of markers.
We are optimistic that genotype-based disease risk assessment may be feasible for diseases where a notable proportion of
the risk has already been captured by SNP arrays.
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Introduction

Genome-wide association studies (GWAS) have been success-

fully employed to interrogate the genetic architecture of common

and complex diseases [1]. Unlike traditional linkage and candidate

gene association studies, GWAS have enabled human geneticists

to examine a wide range of complex phenotypes, and have allowed

the confirmation and replication of previously unsuspected

susceptibility loci. Some of the more notable examples of success

include dozens of susceptibility loci now known to modify

individual disease risk of type 2 diabetes (T2D) [2], type 1

diabetes (T1D) [3,4], Crohn’s disease (CD) [5], as well as loci

influencing polygenic traits such as height [6–8], body mass index

[9] and dyslipidemia [10]. However, for many conditions, these

variants still explain only a small proportion of individual

differences in disease predisposition or phenotypic diversity; for

example, the 54 validated loci that influence human height

collectively only explain 4–6% of variation in the trait after

adjustment of age and sex [11], and the 31 validated susceptibility

loci for Crohn’s disease collectively only explains 20% of the

genetic risk variance [5]. Identifying most of the remaining genetic

variance still represents a challenge, albeit tractable, for the

foreseeable future.

Besides identifying genes influencing disease susceptibility or

phenotypic variation, another often suggested utility of GWAS is

that these discoveries will facilitate implementation of personalized

medicine, in which preventive and therapeutic interventions for

complex diseases are tailored to individuals based on their genetic

make-up, as can be determined by genome-wide genotyping

profiles on a SNP-based array. The latter promise is now routinely
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used for certain monogenic disorders where the underlying genetic

factor has already been characterized; however, for common and

complex diseases, where multiple loci work together to increase

disease risk, the application of personalized medicine may not be

as straightforward. In fact, several studies have been recently

published on the assessment of risk for common diseases using

multiple genetic variants (reviewed in [12–16]). However, a

consistent theme from these studies is that disease assessment

methods so far show limited predictive value, and the performance

of these studies is far below what would be considered clinically

feasible or practical. For example, at least four studies have been

conducted to use several ‘‘validated’’ variants for risk prediction of

type 2 diabetes (T2D) [17–20]. The AUC (area under the receiver

operating characteristic curve) scores for the T2D studies range

from 0.55 to 0.60, indicating that the prediction is only slightly

better than chance; however, they also indicate that the use of

more markers should lead to improvement of predictive

performance. A more recent study on multiple human diseases

reported slightly higher AUC scores for Age-related Macular

Degeneration (AMD) and Crohn’s Disease (CD), but the results

are still largely negative; in fact, the authors cautioned that the

scientific community should avoid ‘‘overstating the value of

association findings in terms of personalized medicine’’ [15].

Other similar negative studies have been conducted for a variety of

human diseases and complex traits, such as height [11], coronary

heart disease [21] and cardiovascular diseases [22], although

positive studies have been reported for AMD when combining

genetic, demographic, and environmental variables [23]. Alto-

gether, these observations have triggered concern about the

potential value of individual-based disease risk assessment, at least

for the time being.

Our view is that since the majority of risk factors for human

diseases or complex traits have yet to be identified, the failure of

previous studies on predicting individual disease risk is not

unexpected: First, all these studies have investigated only a limited

number of susceptibility variants that were confirmed in previous

GWAS. As previously discussed, these validated susceptibility loci

typically only explain a small proportion of the genetic risk

underlying phenotypic variance. Therefore, the omission of the

vast majority of genuine susceptibility loci that are yet to be

validated from GWAS precludes success, since most of the

informative markers are absent from prediction model. For

example, none of the four T2D risk assessment studies [17–20]

used more than 20 SNPs; we do not expect that any such study

would yield satisfactory results from a handful of loci, which

collectively explain only a minor fraction of disease risk. We

however acknowledge that the reason why most genetic variants

have not been identified is because the first generation of GWAS

were powered to detect variants of large effect sizes; with the ever

increasing sample sizes in GWAS, more loci will be discovered and

validated in the future. Second, only relatively simple statistical

approaches, such as additive genotype scores (unweighted or

weighted number of risk alleles) or logistic regression assuming

independence between variants, have been applied in previous

studies. These approaches, although widely used in statistical

genetics, do not take into account the complex relationships or

interactions between multiple loci contributing to disease risk. In

fact, regression analysis is optimized for the purpose of estimating

the effects of predictor variables, unlike other more sophisticated

machine-learning approaches (especially maximum-margin ap-

proaches) for the sole purpose of classification or discrimination.

Finally, the whole-genome genotype data in the diseases from

these previous studies are probably ‘‘overly’’ complex, with the

genetics per se possibly only explaining a small proportion of disease

incidence, unless coupled with other factors such as environmental

exposures. For example, T2D has a heritability estimate of ,50%

[24] while T1D has a much stronger familial component, with a

heritability estimate of ,90% [25]. Therefore, we expect that

whole-genome genotype-based disease risk assessment would

operate better in T1D than in previous studies of T2D. Altogether,

we are not proposing that the failure of previous studies indicates

that disease risk assessment is infeasible, rather that alternative

routes should be taken for a better evaluation of individual disease

risk assessment.

In the current study, we have attempted to address the issues

discussed above. First, rather than cherry-picking a few known

susceptibility loci for disease risk assessment, we utilized an entire

list of markers reaching a pre-defined statistical threshold for

association with a disease (for example, P,161025), even if the

majority of SNPs in that list have not been confirmed to be

genuine susceptibility loci. There is no doubt that some false

positive hits will arise, but we show that the computational

approaches used are in fact robust with the inclusion of these non-

contributing markers when also taking advantage of other markers

that are already established to be associated with the disease.

Second, we have utilized Support Vector Machine (SVM) [26], a

well-developed machine-learning technique in computer science.

Unlike traditional ‘‘number of risk alleles’’ approach or logistic

regression assuming independence between markers, our ap-

proach can both optimize prediction modeling and take advantage

of potential interactions between markers to achieve the optimal

binary predictive power. Finally, we have used T1D as an example

of our efforts for disease assessment. Unlike other common

diseases, such as T2D or coronary heart disease, a large fraction of

variance of genetic risk is already known for T1D: indeed, over

50% of the genetic susceptibility to T1D pathogenesis can be

explained by risk alleles in the major histocompatibility complex

(MHC) region alone, while the remaining genetic contribution has

been attributed to variants conferring more moderate risks [27].

The availability of multiple GWAS datasets for T1D, including

samples from different geographical sites, genotyped at different

locations and on different genotyping platforms (Affymetrix

Author Summary

An often touted utility of genome-wide association studies
(GWAS) is that the resulting discoveries can facilitate
implementation of personalized medicine, in which
preventive and therapeutic interventions for complex
diseases can be tailored to individual genetic profiles.
However, recent studies using whole-genome SNP geno-
type data for disease risk assessment have generally failed
to achieve satisfactory results, leading to a pessimistic view
of the utility of genotype data for such purposes. Here we
propose that sophisticated machine-learning approaches
on a large ensemble of markers, which contain both
confirmed and as yet unconfirmed disease susceptibility
variants, may improve the performance of disease risk
assessment. We tested an algorithm called Support Vector
Machine (SVM) on three large-scale datasets for type 1
diabetes and demonstrated that risk assessment can be
highly accurate for the disease. Our results suggest that
individualized disease risk assessment using whole-ge-
nome data may be more successful for some diseases
(such as T1D) than other diseases. However, the predictive
accuracy will be dependent on the heritability of the
disease under study, the proportion of the genetic risk that
is known, and that the right set of markers and right
algorithms are being used.

T1D Risk Assessment Using GWAS
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Mapping 500K and Illumina HumanHap550 SNP arrays), allows

the unbiased and systematic comparative evaluation of different

methods.

Results

Overview of the risk assessment algorithms
We tested a machine-learning approach called Support Vector

Machine (SVM, see Methods), as well as logistic regression (LR,

see Methods) in order to assess individual disease risk for type 1

diabetes (T1D) using three GWAS datasets (Table 1). SVM is one

of the most popular classifiers in the field of machine learning and

achieves state-of-the-art accuracy in many computational biology

applications [28]. In essence, SVM is a supervised machine-

learning algorithm that produces a linear boundary to achieve

maximum separation between two classes of subjects (cases versus

controls), by mathematical transformation (kernel function) of the

input features (SNP genotypes) for each subject. Unlike most

regression-based methods, SVM allows more input features (such

as SNPs or genes) than samples, so it is particularly useful in

classifying high-dimensional data, such as microarray gene

expression data [29]. We also applied LR as a control algorithm,

since it is widely used in genetic studies to model the joint effects of

multiple variants. Unlike previous disease assessment studies that

typically use genotype data from a handful of validated

susceptibility loci, we examined a large ensemble of SNP markers

with suggestive evidence for association with T1D, using a few P-

value cutoff thresholds ranging from 161023 to 161028, as well as

highly stringent quality control measures (see Methods). When

more relaxed P-value criteria are being used, the contributing

SNPs scatter across the genome; when more stringent criteria are

used (P,161028), only a few independent loci contribute

(assuming that all MHC markers represent a single locus).

Furthermore, we included the 45 known T1D susceptibility

markers [4] into the prediction models to ensure that their

predictive values were accounted for. Although these SNP lists

may contain some false positive loci that are not genuinely

associated with T1D, recent advancements in machine-learning,

such as regularization, have made classifiers more tolerant to

irrelevant input features [30]. Since we cannot completely

eliminate falsely associated loci from the list of predictors, our

goal is to include them in the prediction models (using various

thresholds) and then assess their influence on performance.

Evaluation of risk assessment models by within-study
cross-validation

To evaluate the sensitivity of various risk assessment models on

the number of predictor variables and the parameters of the

models, we performed five-fold cross-validation experiments on

the WTCCC-T1D dataset. During each cross-validation, 80% of

the samples (both cases and controls) were used to select a subset of

SNPs as predictors (see Methods), train a prediction model, and

then test on the remaining 20% of the samples. We stress here that

the results from a within-study cross-validation do not reflect the

true performance of risk assessment (see discussion below), but can

help select relevant parameters or thresholds to use. The AUC

(area under ROC curve) score was used to evaluate the

performance of risk assessment: the value ranges from 0.5 to 1,

with a higher number indicating better discriminative power

between cases and controls. We found that under various

thresholds for SNP selection, the SVM algorithm consistently

and slightly out-performed LR, achieving the highest AUC score

of ,0.9 (Table 2). The best performance seems to be achieved

when a P-value cutoff of 161025 is used for selecting SNPs for

SVM model training, corresponding to 399–443 SNPs in five

cross-validation experiments.

Evaluation of risk assessment models on independent
datasets

To assess the prediction model in an unbiased way, it is

important that independent datasets from different sources be

evaluated. This is a practical concern for all GWAS, since the

SNPs detected from the training dataset may be spuriously

associated with the disease, when cases and controls undergo

different DNA preparation protocols [31], when cases and controls

are genotyped in different batches, when population stratification

is present [32] or when cases share other traits that are unrelated

to the disease of interest (for example, cases often have a higher

average body mass index than controls when studying T2D [33]).

A within-study cross-validation design is not able to adjust for

these potential biases which are present in both the training and

testing data; therefore, we sought to test the risk assessment models

parameterized from the WTCCC-T1D dataset on additional

GWAS datasets (Table 1).

Since the CHOP/Montreal-T1D dataset was genotyped using

the Illumina platform, we generated whole-genome imputed

genotypes using MACH and then utilized shared markers present

on the Affymetrix array for the risk assessment. Additionally, we

examined a third GWAS dataset from the Genetics of Kidneys in

Diabetes consortium (GoKinD), which was genotyped on the same

platform as the WTCCC-T1D data, and we used shared markers

for the risk assessment. Since this dataset does not contain control

subjects, we supplemented this dataset with control subjects from

the UK Blood Service (UKBS) collection (a subset of samples from

WTCCC not used in the training phase). Similar to the analysis

presented above, we varied the P-value cutoff thresholds and

summarized the results for each threshold.

We found that the AUC score is 0.83 and 0.84 for the CHOP/

Montreal-T1D and GoKinD-T1D datasets, respectively, when

SNPs with P-value cutoff of 161025 were used in the SVM model

(Figure 1, Table S1 and Table S2). These values are notably lower

Table 1. Description of the three T1D datasets used in the study.

GWAS dataset Num of Cases Num of controls Array platform Purpose

WTCCC-T1D 1,963 1,480 Affymetrix Mapping 500K Prediction model training and parameter selection; evaluation
of predictive models trained on CHOP/Montreal-T1D

CHOP/Montreal-T1D 1,008 1,000 Illumina HumanHap550 Evaluation of predictive models trained on WTCCC-T1D, using
whole-genome imputed genotype data

GoKinD-T1D 1,529 1,458 Affymetrix Mapping 500K Evaluation of predictive models trained on WTCCC-T1D or
CHOP/Montreal-T1D

doi:10.1371/journal.pgen.1000678.t001

T1D Risk Assessment Using GWAS
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than those obtained in cross-validation experiments, suggesting

that data differential biases might lead to the inflated performance

measures for both SVM and LR seen in Table 2. Nevertheless,

SVM consistently achieves higher accuracy than LR, and the

AUC scores in both datasets still indicate reasonably good

performance. Unlike the previous cross-validation results in

Table 2, we found that SVM demonstrate more clear advantage

over LR when evaluated by between-study validation. This

suggests that SVM may be less susceptible to differential biases

than LR through improved utilization of a subset of SNPs, so the

differences in performance is less when comparing results

generated on independent datasets versus those generated by

cross-validation. We also note that the performance advantage of

SVM over LR is less obvious, when models were tested on the

GoKind-T1D dataset. This could be due to several reasons: First,

the control group for the GoKind-T1D dataset was generated at

the same site as the WTCCC-T1D dataset, which may introduce

differential biases that are shared between the two datasets, with

LR being more susceptible to biases than SVM. Second, the

CHOP/Montreal-T1D dataset was imputed for proper genotype

matching, which may lead to systematic differences from the

WTCCC-T1D data from some less well imputed markers due to

platform differences. Third, the GoKind-T1D dataset contains

markers passing QC in both the WTCCC study and the GoKind

study, so they represent a subset of higher-quality markers, making

experiments on GoKind-T1D less susceptible to biases. To further

investigate this, we re-performed the experiments of training

models on WTCCC-T1D and testing on CHOP/Montreal-T1D,

using makers that passed QC in GoKind-T1D data (P,161025

threshold, 409 markers, as opposed to 478 markers): the AUC

score for LR increased to 0.82 but remained at 0.84 for SVM,

suggesting that inclusion of lower-quality markers led to degraded

performance for LR while the impact was less for SVM.

Furthermore, we investigated how the algorithms performed

when the models were trained on an independent dataset with

different size and ascertainment schema. As such, we built

prediction models from the imputed CHOP/Montreal-T1D

dataset using markers that are present on the Affymetrix arrays,

and then evaluated the model performance on the WTCCC-T1D

and the GoKind-T1D data (Figure 2, Table S3 and Table S4).

Despite the use of a different training dataset, SVM still

demonstrated an advantage over LR, with an AUC score of

0.85 on WTCCC-T1D and 0.84 on GoKind-T1D datasets,

respectively, when a P,161026 threshold is used for SNP

selection. Altogether, these results suggest that an SVM-based

risk assessment algorithm can accommodate differences in training

data and can generate consistent, robust results across different

datasets.

Predictive models have high specificity for T1D
Our analyses of three GWAS datasets demonstrate that the

SVM-based prediction model is highly reliable in separating T1D

cases from control subjects, but a remaining concern is whether

the model is specific to T1D, that is, does it tend to predict patients

with other diseases as potential T1D cases? To address this

concern, we applied the same risk assessment model trained on

Table 2. Evaluation of risk assessment models on the WTCCC-T1D dataset by five-fold cross-validation.

SNP
selection SVM (support vector machine) LR (logistic regression)

Min
#SNP

Max
#SNP

AUC1 (SD2) Sensitivity3 (SD2) Specificity3 (SD2) AUC1 (SD2) Sensitivity3 (SD2) Specificity3 (SD2)

P,161028 0.89 (0.017) 0.87 (0.018) 0.75 (0.041) 0.89 (0.016) 0.86 (0.026) 0.75 (0.035) 240 280

P,161027 0.89 (0.018) 0.87 (0.024) 0.75 (0.036) 0.88 (0.018) 0.86 (0.034) 0.76 (0.031) 286 328

P,161026 0.89 (0.018) 0.88 (0.019) 0.74 (0.041) 0.89 (0.022) 0.86 (0.033) 0.76 (0.044) 328 372

P,161025 0.89 (0.013) 0.88 (0.013) 0.73 (0.041) 0.88 (0.014) 0.85 (0.028) 0.75 (0.037) 399 433

P,161024 0.88 (0.012) 0.87 (0.021) 0.73 (0.026) 0.87 (0.011) 0.84 (0.016) 0.75 (0.030) 519 558

P,161023 0.86 (0.010) 0.85 (0.020) 0.69 (0.015) 0.80 (0.009) 0.77 (0.040) 0.69 (0.025) 1007 1085

1area under receiver operating characteristic curve.
2standard deviation.
3sensitivity and specificity were calculated with default cutoff of zero point.
doi:10.1371/journal.pgen.1000678.t002

Figure 1. Performance of risk assessment models trained on
the WTCCC-T1D dataset. For both the CHOP/Montreal-T1D and the
GoKind-T1D datasets, the SVM (support vector machine) algorithm
consistently outperforms LR (logistic regression), and the best
performance is achieved when SNPs were selected using P-value cutoff
of 161026 or 161025.
doi:10.1371/journal.pgen.1000678.g001

T1D Risk Assessment Using GWAS
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WTCCC-T1D dataset on six other disease cohorts from

WTCCC, including bipolar disorder (BD), coronary heart disease

(CAD), Crohn’s disease (CD), hypertension (HT), rheumatoid

arthritis (RA) and type 2 diabetes (T2D). This analysis is especially

interesting, since these diseases include a different subtype of

diabetes and two autoimmune diseases (CD and RA), which may

share some susceptibility loci with T1D.

By testing the SVM-based prediction model for T1D on other

six disease cohorts, we found that with the exception of RA, the

specificity values are indeed encouraging, ranging from 71.6% for

T2D to 74.8% for BD (Figure 3). The specificity for RA, an

autoimmune disease with a large genetic susceptibility component

from the MHC region, is 57.6%, confirming that T1D and RA do

share some genetic risk factors and susceptibility pathways. Besides

MHC, the PTPN22 locus on 1p13 is well known to contribute to

both T1D and RA [34,35], and the WTCCC study reported three

additional shared susceptibility loci (IL2RA on 10p15, PTPN2 on

18p11 and chromosome 12q14 region) [36]. For other diseases,

these specificity values are at similar range or slightly higher than

that for the UK Blood Service (UKBS) control cohort, so a patient

affected by diseases unrelated to T1D is not more likely to be

predicted as a T1D patient, compared to a control subject. In

conclusion, our analyses suggest that the risk assessment model

built for T1D is specific to that disease.

Understanding the behavior of the risk assessment
models

To investigate in depth why the SVM algorithm works in the

setting of T1D risk assessment, we next evaluated several different

forms of the risk assessment models by modifying the predictors or

the model parameters. The following six different types of analyses

helped us better understand the source of the improved

performance of the SVM algorithm.

1) We found that elimination of SNPs in the MHC region

severely deteriorate the performance of disease risk assess-

ment. Since a large fraction of the genetic contribution to

T1D can be explained by risk alleles in the major

histocompatibility complex (MHC) region (,50%) [37], we

tested whether using SNPs outside of the MHC region had

any predictive value. This analysis helped identify the relative

contribution of MHC-linked SNPs with major effects and

other SNPs with moderate effects on disease risks. For this

analysis, we removed all the SNPs located from 25 Mb to

34 Mb on chromosome 6: this genomic span is larger than the

actual MHC region in order to ensure that SNPs outside

MHC but in linkage disequilibrium (LD) with MHC markers

are not used in the prediction model. With the P,161025

threshold, a large proportion of the SNPs (,83%) were

removed from the prediction models. We then tested the

performance of the SVM and LR algorithms using the same

approach described above. As expected, using SNPs outside

of the MHC region do not confer satisfactory performance in

disease risk assessment; for example, for the GoKind-T1D

data, using SNPs with P,161025, the AUC score for SVM

dropped from 0.84 to 0.64, whereas the AUC score for LR

dropped from 0.81 to 0.65. Similar results were obtained for

the CHOP/Montreal-T1D dataset. Therefore, elimination of

SNPs with major effects severely attenuates the performance

of disease risk assessment; on the other hand, our analyses also

confirmed that SNPs outside the MHC region do explain a

portion of the genetic susceptibility to T1D and can provide

complementary information for risk assessment. These results

also suggest that whole-genome genotypes provide more

information than the costly HLA-typing techniques used in

the clinical settings, even for the purpose of risk assessment of

MHC-linked diseases such as T1D.

2) We found that pruned sets of independent markers lead to

worse performance. The risk assessment model used sets of

markers reaching pre-defined thresholds, which may include

Figure 2. Performance of risk assessment models trained on
the CHOP/Montreal-T1D dataset. For both the WTCCC-T1D and the
GoKind-T1D datasets, the SVM (support vector machine) algorithm
consistently outperforms LR (logistic regression), and the best
performance is achieved when SNPs were selected using P-value cutoff
of 161026 or 161025.
doi:10.1371/journal.pgen.1000678.g002

Figure 3. Specificity of the SVM-based risk assessment models.
The risk assessment models were parameterized on the WTCCC-T1D
dataset and evaluated on other disease cohorts from WTCCC, including
bipolar disorder (BD), coronary heart disease (CAD), Crohn’s disease
(CD), hypertension (HT), rheumatoid arthritis (RA), and type 2 diabetes
(T2D). The specificity measure was calculated with default cutoff of zero
point. Except for RA, the specificity measures of the prediction model
are comparable for other diseases as that for the control subjects.
doi:10.1371/journal.pgen.1000678.g003

T1D Risk Assessment Using GWAS
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correlated markers. The SVM algorithm is inherently capable

of handling the inter-marker correlation structure, whereas we

used regularization techniques [38] in the LR model for

addressing this problem. (We did not use stepwise regression

model because it is highly unstable when the number of

predictor variables is large.) Since many markers are in high

LD with each other, we can prune this list to generate a

smaller set of markers that have pairwise r2 less than a certain

threshold. Intuitively, using fewer markers should lead to

information loss and therefore lower predictive power, but we

were interested in specifically quantifying this magnitude of

loss. We trained a SVM-based prediction models on the

WTCCC-T1D dataset using SNPs with P,161025 that were

pruned by various thresholds: when r2 threshold of 0.1, 0.2, 0.5

and 0.8 were used, the AUC scores in the testing dataset were

0.65 (63 SNPs), 0.76 (75 SNPs), 0.79 (153 SNPs) and 0.83 (268

SNPs), respectively. We next used the P,161028 criteria to

select SNP markers, and then performed the same set of

computational experiment again: when r2 threshold of 0.1,

0.2, 0.5 and 0.8 were used, the AUC scores in the testing

dataset were 0.67 (55 SNPs), 0.76 (60 SNPs), 0.79 (113 SNPs)

and 0.82 (184 SNPs), respectively. Altogether, our analyses

suggest that the use of independent markers does indeed lose

information which is important for risk assessment. Therefore,

many previous studies that use only the single most significant

SNP per associated loci did not capitalize on all the available

genotype information in an optimal manner.

3) We found that radial kernel performs better than linear

kernel in SVM. The SVM algorithm that we have used

adopted a default radial kernel to transform genotype scores

(see Methods), as it is a widely used kernel in most SVM

applications. To determine if the data transformation leads

to better performance, we also evaluated the SVM

algorithm without any transformation, that is, with a linear

kernel. Similar to previous experiments, we trained a SVM-

based assessment models on the WTCCC-T1D dataset

using SNPs with P,161025. We found that the AUC scores

of SVM using linear model are less than those with radial

kernel for the GoKind-T1D dataset (0.77 vs 0.84),

suggesting that linear combination of predictors (SNPs) is

less optimal than higher-order transformation of predictors

when separating cases versus controls using SNP genotypes.

Similar results were obtained for the CHOP/Montreal-T1D

dataset. These observations are consistent with recent

findings on the genetic interactions between MHC loci

and non-MHC loci for conferring T1D risk [4]. However,

unlike LR, the SVM model suffers from poor interpretabil-

ity, that is, one cannot identify specific pair of SNPs that

interact with each other from the model parameters.

Additionally, we note that two types of interactions may

be important contributors to the risk assessment: statistical

interactions between unlinked SNPs (that contribute to

liability scale in a non-additive fashion), as well as haplotype

interactions (correlated SNPs that are on the same haplotype

and are not captured by a model with additive predictors).

4) We investigated the relative effect of modeling correlated

SNPs in MHC and non-MHC regions. Our results so far

demonstrate that handling of interactions between SNPs, as

well as utilizing SNPs with major effects in the MHC region,

are important for risk assessment, but their relative

contribution is unknown. To test the effect of incorporating

non-MHC loci and modeling correlated SNPs for the

performance of LR and SVM, respectively, we next

performed several variations of the pruned analysis, with

the P,161025 threshold for selecting SNPs and with

pairwise r2,0.2 threshold for pruning independent sets of

SNPs in GoKind-T1D dataset (Table 3). First, we used

pruned list of MHC SNPs only, so only independent

markers contribute to risk assessment: the AUC for LR and

SVM is 0.70 and 0.74, respectively. The decreased

performance could be due to the inability to model

interaction effects between correlated SNPs, but it also

could be due to the (unknown) causal variants being tagged

less well in the pruned set. Second, we used pruned list of

MHC SNPs plus all non-MHC SNPs: the AUC for LR and

SVM is 0.74 and 0.75, respectively, suggesting that

additional non-MHC loci contribute to improved perfor-

mance but the effects are more obvious for LR. Third, we

used MHC SNPs only but without pruning: the AUC for

LR and SVM is 0.78 and 0.81, respectively, suggesting that

both LR and SVM benefit from incorporating correlated

SNPs within MHC, which play a more prominent role in

the risk modeling than non-MHC markers. Altogether, these

analyses suggest that a key contributor to the performance of

the SVM algorithm is the better modeling of LD structure

among MHC SNPs.

5) We found that an alternative allele coding scheme without

assuming genetic model has similar results. In the previous

analysis, for each SNP, we coded the three different

genotypes (homozygous major allele, heterozygotes, homo-

zygous minor allele) as 0, 1 and 2, respectively. To

investigate the sensitivity of prediction models on allele

coding, we next explored an alternative coding scheme, by

generating two dummy variables (0 or 1) for each SNP,

indicating the presence or absence of an allele. This coding

scheme effectively doubles the number of predictor

variables, but without assuming an additive risk model for

each SNP. We tested the new coding scheme on the

GoKind-T1D dataset, and found that the AUC score

remained the same as 0.84. For the CHOP/Montreal-T1D

dataset, the AUC Score slightly decreased from 0.83 to 0.82.

Therefore, relaxing genetic model assumptions do not

appear to have a major impact on the performance of risk

models.

6) We found that the collection of known T1D susceptibility

loci has poor performance. Recent progress with GWAS has

enabled the identification of dozens of confirmed and

replicated T1D susceptibility loci [3,4]. As a negative control

experiment, we tested the performance of risk assessment

using only established susceptibility loci. This analysis is

Table 3. Comparative analysis of prediction models by
including different sets of markers.

Marker selection (P,161025) # markers AUC1 (LR) AUC1 (SVM)

All (MHC and non-MHC) SNPs 409 0.81 0.84

MHC SNPs 338 0.78 0.81

Non-MHC SNPs 71 0.65 0.64

Pruned MHC and non-MHC SNPs2 82 0.74 0.76

Pruned MHC SNPs2 27 0.70 0.74

Pruned MHC SNPs2 and not pruned
non-MHC SNPs

98 0.74 0.75

1area under receiver operating characteristic curve.
2SNPs are pruned using pairwise r2 threshold of 0.2.
doi:10.1371/journal.pgen.1000678.t003
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similar to the several previously published T2D risk

assessment studies, in that the prediction model only

considers known information, while ignoring other poten-

tially associated loci. We built risk assessment models around

the WTCCC-T1D dataset, using 45 known T1D suscepti-

bility SNPs compiled from a recent meta-analysis [4], after

excluding one locus on chromosome X (Table S5). Note that

only one representative SNP from the MHC region is used

in the assessment models. For the SVM algorithm, the AUC

scores are 0.66 for the GoKind-T1D dataset and 0.65 for

the CHOP/Montreal-T1D dataset, indicating a limited

value of risk assessment using a reduced number of validated

SNPs. For the LR algorithm, the AUC scores are 0.68 for

both the GoKind-T1D and the CHOP/Montreal-T1D

datasets, which are slightly higher than those obtained using

the SVM algorithm. Nevertheless, the relatively modest

performance is not unexpected, and echoes what has already

been observed in T2D disease assessment studies. Collec-

tively, this analysis confirms that one of the keys to success is

the use of a large ensemble of loci associated to the disease of

interest, at the cost of including potential false positive loci.

Discussion

In this study, we tested the plausibility of building a classifier

and using a large number of SNPs for disease risk assessment on

three large T1D datasets. In general, the SVM algorithm achieved

satisfactory performance when hundreds of SNPs were included in

prediction models, with AUC scores of ,0.84 for predicting

disease risk for T1D in several GWAS datasets. In contrast, the

SVM or the LR algorithm achieved only an AUC score of

0.66–0.68 when 45 known T1D susceptibility loci were used. This

difference clearly indicates that the predictive value lies in utilizing

a large number of SNPs in a sophisticated machine-learning

algorithm. We note that another recent study also reported that

using thousands of SNPs improve the performance of disease risk

assessment compared to using fewer SNPs for diseases studied by

WTCCC [39], although the study used a cross-validation design.

On the other hand, we observed a decrease in the predictive

accuracy when too many SNPs were used, suggesting an upper

bound of the number of SNPs for T1D risk assessment before

noises from falsely associated markers lead to degraded perfor-

mance. However, we caution that this upper bound depends on

the sample size and the power of the study to rank truly associated

SNPs higher than background noises.

One of the major differences between the two classifiers used in

the study is in their capability of handling main and interaction

effects. SVM takes into account both effects, while LR aims to

model linear main effects but ignores interaction. As an example,

for a simple interaction model with two risk loci A and B, the

disease risk will increase significantly only if A = 0 and B = 1 or

A = 1 and B = 0. Such interaction can be captured by SVM using

various kernels, but not by the simple LR model. In our study, we

observed that SVM outperformed LR by taking into account both

main and interaction effects, implying that both genes and their

interactions contribute to T1D. This is particularly important for

T1D, as many previous studies have already shown that risk from

MHC and non-MHC regions accumulates at a rate less than

expected from the model of multiplicative effects, and that the

relative risks for non-MHC loci are reduced when MHC-related

risk is high [4]. Additionally, we also found that better modeling of

LD structure within MHC (haplotype interactions) play a major

role in SVM-based risk modeling. However, these issues have been

largely ignored in previous simulation studies on disease risk

assessment [13,15,40], probably because the appropriate modeling

of interaction effect is by itself not well understood. Nevertheless,

some previous real-data studies already documented the impor-

tance of interactions effects in prediction model for quantitative or

qualitative phenotypes: for example, Lee et al have applied a

MCMC approach that takes into account of within and between

loci interactions, for phenotype prediction in heterogeneous stock

mouse population in a cross-validation design [41]. Therefore,

while simulation studies are useful in drawing general qualitative

conclusions such as that predictive accuracy increases with

heritability, their quantitative findings may not be accurate

because of the ‘‘non-interaction’’ assumptions they have to make.

Although we have limited understanding of the interaction

patterns of variants underlying common and complex diseases,

we argue that the previous simulation results may not necessarily

reflect real-world scenario.

Although the implementation of individual risk assessment in

clinical settings could have major economic benefit to the public

health at the population level [42], the clinical utility of individual

risk assessment depends on a few factors that must be taken into

account. First, the appropriateness of individual risk assessment is

dependent on the genetic etiology of the disease [16]. Given that

the vast majority of the phenotypic variation in T1D can be

explained by genetic factors, T1D assessment would have a strong

basis for being applied in clinical settings: in fact, HLA-typing,

albeit being both costly and imperfect, is now being used in clinical

settings for assessing T1D risk for siblings of affected patients.

Unlike T1D, where genetic factors are estimated to explain ,90%

of the phenotypic variance, the heritability estimates for T2D are

less than 50% [24]. Therefore, even if all genetic risk factors are

identified ultimately for T2D and a perfect SNP-based prediction

model is available for the disease, they would have less impact in a

clinical setting than T1D prediction models.

Second, the clinical utility of a risk assessment model depends on

the disease prevalence at the particular clinical setting. Using the

sensitivity and specificity measures for the WTCCC-T1D model on

CHOP/Montreal-T1D datasets (Figure S1), we evaluated three

scenarios of diagnostic testing using SNP arrays: (1) general

population (disease prevalence = 0.4%), (2) siblings of affected

patients (disease prevalence = 6%), (3) siblings of early-onset patients

who developed diabetes before 5 yrs of age (disease preva-

lence = 13%). When a general population is screened by the

prediction model, the positive predictive values are relatively modest,

indicating that the risk assessment model is not of much utility for

population-level screening. However, in a realistic clinical setting,

where siblings of affected patients are evaluated, the WTCCC-T1D

prediction model achieves a positive predictive value of 16% and a

negative predictive value of almost 100%; that is, ,16% of predicted

positive patients will eventually develop the disease, while very few

predicted negative patients will develop the disease, with overall

accuracy of 93%. Finally, for siblings of early-onset patients, the

positive predictive value reaches 31%, while a strong negative

predictive value of 96% can still be retained with an overall

prediction accuracy of 87%. Although T1D has a large genetic

contribution from risk alleles in the MHC region, it is well known

that costly HLA-typing per se is not sufficient for T1D risk assessment

with high accuracy. Based on our results, we envision that low-cost

SNP genotyping platforms may have the potential to replace HLA-

typing in assessing T1D risk in clinically relevant settings.

Third, for a given disease, the best assessment model and the

most optimal number of predictors (SNPs) may depend on the

distribution of effect sizes. Some autoimmune diseases, such as

T1D, have major-effect loci (MHC) that explain a large

proportion of the genetic risk (,50% for T1D), with additional
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moderate-effect loci that explain the remaining proportion.

Therefore, for these diseases, the collection of SNPs with

P,161025 in a given GWAS probably already captured the vast

majority of the variance for genetic susceptibility, and can lead to

good prediction performance. Therefore, diseases such as T1D

might represent an extreme example where genotype-based risk

assessment is clinically feasible. In contrast, MHC loci play a much

less important role or no role in CD or T2D susceptibility, so a

much more liberal P-value threshold may be required for SNP

selection, to ensure the capture of a large fraction of the genetic

risk in prediction models. This step will likely include more

markers that are falsely associated with the disease in prediction

models, and may dilute the contribution from genuinely associated

loci. Taking interception from independent datasets (for example,

SNPs with P,0.05 in two GWAS) may be explored for risk

assessment on these diseases. Furthermore, diseases such as

psychiatric disorders do not appear to even have any major-effect

loci that are common, so accurate assessment of disease risk may

require even more markers or whole-genome markers.

Finally, besides genetic factors, other risk factors that are specific

for each disease need to be accounted for in order to make an

accurate risk assessment. Early onset diseases such as T1D may be

less dependent on non-genetic factors. In contrast, T2D is a late-

onset disease with a range of known environmental risk factors

contributing to its pathogenesis, and may be predicted more

accurately if such factors are also used. Therefore, a comprehen-

sive disease risk assessment model should try to take into account

environmental risk factors, such as diet and smoking habits, as well

as other predictor variables such as gender and BMI in order to

improve performance. These factors are most likely disease-

specific and can be identified from cumulative epidemiological

studies on each disease. We note that the SVM model used in our

study can readily take into account additional predictor variables.

In conclusion, the results from recent GWAS have yielded

enormous amounts of data that can be mined and utilized for

better understanding of human disease, including disease risk

assessment using genetic profiles. Although only a small fraction of

risk factors for complex diseases have been identified to date, other

variants with moderate effects are present in the GWAS data, and

a risk assessment algorithm should be able to take advantage of

these variants for improved performance. We expect that methods

that utilize whole-genome data, rather than a few ‘‘validated’’

susceptibility loci, could improve predictive accuracy and have

greater impact on health care in the future; for example, by

applying personalized intervention strategies on newborns who are

at risk of developing T1D, we may reduce their risk of developing

the disease or be better prepared to treat the disease. This would

be feasible if these individuals can be identified from genetic risk

profiles, using algorithms (such as the SVM algorithm proposed in

this study) with high positive predictive values.

Methods

Description of study subjects
Type 1 Diabetes (T1D) GWAS dataset from WTCCC: We

accessed the 500K Affymetrix chip genotype data from WTCCC on

,1,500 samples from the 1958 British Birth Cohort, ,1,500 samples

from the UK Blood Service Control Group, as well as ,2,000

samples each from the following disease collections: type 1 diabetes

(T1D), type 2 diabetes (T2D), rheumatoid arthritis (RA), inflamma-

tory bowel disease (IBD), bipolar disorder (BD), hypertension (HT),

coronary artery disease (CAD), as previously described [36]. For each

dataset, we have downloaded the genotype calls generated by the

Chiamo algorithm, and we have applied the default confidence score

of 0.9 to keep the high-quality genotype calls. In addition, we

removed the 30,956 SNP markers failing QC threshold (due to one of

three criteria), as specified in the website. For each dataset, we

observed the same recommended sample exclusion criteria, as

specified in the various ‘‘exclusion-list’’ files in the data repository.

T1D GWAS dataset from GoKinD: The Genetics of Kidneys in

Diabetes (GoKinD) study [43,44] T1D case data were download-

ed from dbGaP [45]. This dataset consists of T1D cases only

(about half have diabetic nephropathy but half without nephrop-

athy). Therefore, we subsequently used the UK Blood Service

dataset from WTCCC as control subjects for the risk assessment

sensitivity/specificity analysis. Both the case and control genotypes

in this dataset were independent and not used in the prediction

model building.

T1D GWAS datasets from CHOP and Montreal: The third

T1D case series used in our study was genotyped at the Children’s

Hospital of Philadelphia (CHOP), and a subset of this cohort has

been previously described [46]. The dataset contains 1,008 T1D

subjects and 1,000 control subjects. The T1D families and cases

were identified through pediatric diabetes clinics at the Children’s

Hospital of Montreal and at CHOP. All control subjects were

recruited through the Health Care Network at CHOP. The multi-

dimensional scaling analysis on genotype data was used to identify

subjects of genetically inferred European ancestry. All subjects

were genotyped at ,550,000 SNPs by the Illumina Human-

Hap550 Genotyping BeadChip; to apply the prediction model on

these subjects, we subsequently used genotype imputation (see

below) to generate imputed genotypes on these subjects.

Genotype imputation on Illumina arrays
We used the Markov Chain Haplotyping (MACH) software

(http://www.sph.umich.edu/csg/abecasis/MaCH/index.html)

for genotype imputation on markers that are present in the

Affymetrix array from WTCCC, but not present in the Illumina

HumanHap550K arrays used by us. The default two-step

imputation procedure is adopted for imputation: (1) In the first

step, 500 randomly selected subjects of European ancestry are

used to estimate the best model parameters. This model includes

both an estimate of the ‘‘error’’ rate for each marker (an omnibus

parameter which captures both genotyping error, discrepancies

between the imputed platform and the reference panel, and

recurrent mutation) and of ‘‘crossover’’ rates for each interval (a

parameter that describes breakpoints in haplotype stretches shared

between the imputed and the reference panel). The software

requires several input files for SNPs and phased haplotypes; we

used the HapMap phased haplotypes (release 22) on CEU

subjects, as downloaded from the HapMap database (http://

www.hapmap.org). (2) In the second step, we used the optimized

model parameters to impute the genotypes on .2 million SNP

markers in HapMap data. The default Rsq threshold of 0.3 in the

mlinfo file was used to flag unreliable markers used in the

imputation analysis, and the posterior probability threshold of 0.9

was used to flag unreliable genotype calls. The imputed genotype

data were then checked for strand orientation (since the Affymetrix

genotype data from WTCCC may not align correctly with the

HapMap phased genotype data) and inconsistencies were resolved

using the flip function in the PLINK software [47].

Disease risk assessment model building
For our purposes, genetic profiles on p SNPs for n individuals

may be summarized by an n*p matrix G = (gij), where gij denotes

the genotypic value of SNP i in individual j. The genotype data

are encoded by 0, 1 and 2. In genome wide association studies,

data for each individual consist of a genetic profile Gi = (gi1,…, gip)
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and a disease indicator yiM{0,1}, namely, we have predictor

variables Gi and response variable yi. Based on current genotyping

technologies, the number of SNPs p typically can be as large as

several hundred thousands, whereas the number of individuals n is

several thousands in typical genetic studies. Therefore, in our

comparison of prediction methods, we use only the list of markers

reaching a pre-defined statistical threshold of association with

disease. As a result, the number of SNPs used for disease

prediction is substantially reduced to at most one or two thousands

in our studies.

In machine learning, a predictor or classifier is built from past

experience and is used to make predictions of unknown future. In

our case, a trained classifier partitions the space of genetic profiles

into two disjoint and exhaustive subsets, cases and controls, such

that for a DNA sample with genetic profile g = (g1,…, gp), the

classifier can accurately predict if it is a case sample or a control

sample. With the large amount of WTCCC case-control data

available for training, we were able to build a predictor with good

accuracy that we subsequently applied on two independent test

cohorts. While the challenges ahead in translating the emerging

genomic knowledge into clinical practice, we envision the

approach we have taken to be an important step towards these

goals.

Many classification methods have been developed and applied

to various domains. No classifier could show dominant perfor-

mance consistently in all applications. In our comparison study, we

compared the efficacy of two representative ones, logistic

regression (LR) and support vector machine (SVM). A logistic

regression model and its variants are one of the most widely used

approaches in genetic data analysis. They are simple but often

provide an adequate and interpretable description of how the

inputs affect the output. In addition, simpler linear methods work

as well or better for microarray classification problems where the

number of candidate predictors exceeds the number of samples by

orders of magnitude [48]. We consider the logistic regression

model, which models the posterior probabilities of being a case or

a control via a linear combination of gi1,…, gip. Formally,

log
Pr (y~1jG~g)

1{ Pr (y~1jG~g)
~b0zb1g1z:::zbpgp

Under the LR model (b0,b1,…,bp), the probability of being cases

(y = 1) for a genetic profile is exp(bTg)/(1+exp(bTg)), where b = (b0,

b1,…, bp) and g = (1, g1,…, gp)
T. Given the training data, the LR

model is fit to get a maximum likelihood estimate (MLE) of b, and

this estimate can be used for future prediction. It is noted that

giM{0,1,2} is treated as a numeric value.

The LR model has the advantage that the main effect of each

SNP to the phenotypes has a linear and interpretable description.

The effect of each SNP can be naturally interpreted as the increase

of the log odds ratio in favor of being a case when the count of risk

allele changed by 1. One caveat of using LR model in GWAS is

that linkage disequilibrium dependency of input markers may

make the parameter estimation unstable. To address this issue, we

imposed a L‘2 regularization on the LR model building [38]. We

implemented our LR model based on the stepPlr package in R

developed by Park and Hastie [49].

The second classifier that we have applied is the support vector

machine (SVM) algorithm [26,50]. SVM is one of the most

popular supervised classifiers in the field of machine learning and

has been widely used in many bioinformatics applications. SVM

aims to find an optimal separating hyperplane between cases and

controls and this is achieved by two key factors: large margin

separation and kernel functions. The classification problem is

formulated by SVM as the optimization problem

max C
b,b0,jjbjj~1

subject to yi(b
T gzb0)i§C,i~1,:::,N

When the samples are linearly separable, the optimal hyperplane is

the one that creates the biggest margin C between the training points

for cases and controls. When the samples in feature space (g1,…, gp)

are not linearly separable, certain overlap can be allowed by

introducing the slack variable j~(j1,j2,:::,jN ) and the constraint is

modified as yi(b
T gzb0)i§C{ji Vi,ji§0,

XN

i~1
jiƒconstant.

More importantly, linear separability can be obtained in an

expanded input feature space h(g) by using kernel functions.

Specially for SVM, the explicit transformation h(g) is not

needed and only knowledge of the kernel function is required

K(g, g9) = ,h(g), h(g9)., which computes inner products in the

expanded feature space. Two popular kernel functions in the SVM

literature are

Polynomial kernel of degree d: K(g,g0)~(kzvg,g0w)d

Radial kernel: K(g,g0)~ exp ({jjg{g0jj2=2)

When k~0 and d~1, it is a special case of the polynomial kernel

called the linear kernel, which operates in the original input feature

space. Using non-linear kernel functions, SVM can produce

nonlinear boundaries to separate two classes of objects by

constructing equivalent linear boundaries in an expanded input

feature space. Such transformations usually increase accuracy

considerably on one hand, but on the other hand the transforma-

tions cause poor interpretability, namely, it is not clear how the

inputs affect the output even though high accuracy is obtained.

In the case of disease risk assessment, SVM constructs an

optimal linear boundary (prediction model) in an expanded input

feature space (in our case, transformed genotype calls for a

collection of SNPs). New features, or a transformation of input

features (SNP genotypes), can be derived by using the kernel

function [50], with the goal of making inputs linearly separable.

However, no biological interpretation can be attached to each

predictor variable (SNP) in the prediction model. We implemented

the SVM model using the machine learning package e1071 in R. It

is based on the popular SVM library LIBSVM [51]. For model

building, we used all default options including the radial kernel. To

assess the effect of data transformation implemented in the radial

kernel, we have also explored the use of the linear kernel and

compared their predictive performance.

SNP data processing and coding
For the case-control datasets, to reduce the potential concern on

stratification or batch effects, we applied highly stringent quality

control measures to select SNPs to use in the prediction models. We

applied several quality filters, including call rate .95%, minor allele

frequency.5% and Hardy-Weinberg equilibrium P-value .161023,

for the selection of SNPs. We used the EigenStrat algorithm [52] on

genotype data, and selected subsets of SNPs reaching pre-defined P-

value thresholds to build prediction models, including P,161028,

P,161027, P,161026, P,161025, P,161024 and P,161023.

Additionally, only autosomal markers were used in our prediction
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model so that the model can be applied to both genders. Finally, we

removed SNPs from the training data that are not present in the

testing data (for example, SNPs not in HapMap or SNPs without

known dbSNP identifiers). Genotypes with missing values were

imputed by sampling from the allele frequency distribution. We

coded homozygous major allele, heterozygotes and homozygous

minor allele as 0, 1 and 2, respectively.

Performance evaluation
The simplest and most widely used method for estimating

prediction error may be K-fold cross-validation. However, due to

the data differential biases discussed in the paper, we caution that

cross-validation approach may severely inflate the true predictive

value. In K-fold cross-validation, the data is split into K roughly

equal-sized parts; for the kth part of the data, the classifier is

trained based on the other K-1 parts of the data and then used to

predict the kth part of the data. The process is iterated for k = 1, 2,

…, K and predictions for all data are obtained. The predictions are

then used for estimating prediction performance of the classifier.

Typical choices of K are 5 or 10. We do five-fold cross-validation

to compare performance of the two classifiers over the seven case-

control disease datasets. Specifically, we measure accuracy,

sensitivity and specificity defined as follows,

Accuracy: (TPzTN)=(TPzFNzTNzFP)

Sensitivity: TP=(TPzFN)

Specificity: TN=(TNzFP)

where TP, TN, FP and FN denote the number of true positives,

true negatives, false positives and false negatives, respectively. Note

that since prediction algorithms typically give quantitative

assessment, we used the default cutoff of zero point for the

sensitivity and specificity calculation.

In addition, we also evaluated the performance by the area

under receiver operator characteristic (ROC) curve scores (AUC

scores). ROC is a widely used means to evaluate the discrimination

ability of binary classification methods when the test results are

continuous measures. ROC curves display the relationship

between sensitivity (true positive rate) and 1-specificity (false

positive rate) across all possible threshold values that define the

positivity of a condition (in our case, whether a subject has T1D

diagnosis). The AUC scores may range from 0.5 to 1, with a

higher score indicating better discriminatory power.

Furthermore, to measure the performance of a prediction model

in clinical settings, we calculated the positive predictive value

(PPV) and negative predictive value (NPV), which incorporate the

disease prevalence in the testing population. These two values

were calculated as:

PPV~sensitivity � prevalence=

½sensitivity � prevalencez(1{specificity) � (1{prevalence)�

and

NPV~specificity � (1{prevalence)=

½(1{sensitivity) � prevalencezspecificity � (1{prevalence)�:

Supporting Information

Figure S1 Illustration on how positive predictive value (PPV)

and negative predictive value (NPV) vary with respect to disease

prevalence in a testing population. The figure is based on

sensitivity and specificity estimates from WTCCC-T1D data set

on CHOP-T1D data when P,161025 is used. The three vertical

lines represent three different scenarios of clinical testing, with

disease prevalence of 0.4%, 6%, and 13%, respectively.

Found at: doi:10.1371/journal.pgen.1000678.s001 (0.02 MB TIF)

Table S1 Prediction performance of the WTCCC-T1D trained

model on the CHOP/Montreal-T1D datasets.

Found at: doi:10.1371/journal.pgen.1000678.s002 (0.02 MB PDF)

Table S2 Prediction performance of the WTCCC-T1D trained

model on the GoKind-T1D datasets.

Found at: doi:10.1371/journal.pgen.1000678.s003 (0.02 MB PDF)

Table S3 Prediction performance of the CHOP/Montreal-T1D

trained model on the WTCCC-T1D datasets.

Found at: doi:10.1371/journal.pgen.1000678.s004 (0.02 MB PDF)

Table S4 Prediction performance of the CHOP/Montreal-T1D

trained model on the GoKind-T1D datasets.

Found at: doi:10.1371/journal.pgen.1000678.s005 (0.02 MB PDF)

Table S5 A list of 46 previously validated T1D susceptibility loci

reported in the meta-analysis by Barrett et al.

Found at: doi:10.1371/journal.pgen.1000678.s006 (0.12 MB PDF)
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