
Origin choice and petal loss in the flower garden of spiral wave tip
trajectories

Richard A. Gray,1,a� John P. Wikswo,2 and Niels F. Otani3
1Division of Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological
Health, Food and Drug Administration, Silver Spring, Maryland 20993, USA and Department of
Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
2Departments of Biomedical Engineering, Molecular Physiology and Biophysics, and Physics and Astronomy,
Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville,
Tennessee 37235, USA
3Department of Biomedical Sciences, Veterinary Research Tower, Cornell University, Ithaca,
New York 14853-6401, USA

�Received 12 November 2008; accepted 22 July 2009; published online 14 August 2009�

Rotating spiral waves have been observed in numerous biological and physical systems. These
spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves.
The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral
wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its
influence on the specific patterns of behavior remains a largely unexplored topic of research. Here
we use a two-state variable FitzHugh–Nagumo model to simulate stationary and meandering spiral
waves and examine the spatiotemporal representation of the system’s state variables in both the real
�i.e., physical� and state spaces. We show that mapping between these two spaces provides a
method to demarcate the spiral wave tip as the center of rotation of the solution to the underlying
nonlinear partial differential equations. This approach leads to the simplest tip trajectories by
eliminating portions resulting from the rotational component of the spiral wave. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3204256�

Spiral waves are the subject of intense investigation and
occur in various nonlinear media.1–7 The wave tip serves
as an organizing center that often appears to meander in
epicyclic patterns; each epicyclic “petal” typically repre-
sents one rotation of the meandering spiral. These pat-
terns are usually represented in a “flower garden”
arrangement8–12 and the associated dynamics have im-
portant implications, e.g., dangerous cardiac arrhythmias
are the result of the movement and stability of rapidly
rotating spiral waves propagating in the heart.13 The in-
stantaneous wave-tip location and its trajectory are iden-
tified by methodologies whose theoretical basis and limi-
tations have not been adequately addressed. Identifying
the tip based on the spiral wave solution of the underly-
ing equations eliminates one epicycle per spiral-wave ro-
tation, i.e., all petals were “plucked” from each flower we
“picked.” Just as Copernican astronomy eliminated the
epicyclic descriptions of planetary orbits of the Ptolemaic
system,14 so our model shows that extensively studied epi-
cycles of a meandering spiral-wave tip arise from inap-
propriate origin choice.

I. INTRODUCTION

Occasionally in science the complexity of an explanation
of a particular phenomenon is sensitive to the choice of a
reference point or coordinate system, and a choice of coor-

dinates that properly reflects the dynamics of the system sim-
plifies its description. A notable example is the heliocentric
Copernican replacement of Ptolemy’s geocentric model of
planetary motion—the choice of the sun as the origin ulti-
mately led to elliptic rather than epicyclic orbital
descriptions.14 Another example is wave propagation, in
which a moving coordinate system can reduce a partial dif-
ferential equation �PDE� that depends upon both space and
time to an ordinary differential equation. For a given system,
the challenge is to determine whether a properly chosen co-
ordinate transformation will simplify the explanation.

In nature, rotating spiral waves are found in galaxies,
storms, chemical systems, liquid crystal, slime molds, the
brain, and the heart.1,3–7,15–18 The tip of a spiral wave can
meander along open or closed trajectories whose dependence
on system parameters has been described in terms of a flower
garden composed of circles and complex epicyclic
trajectories.8–12 The motion of the tip is particularly impor-
tant in the heart, where the transition from a stable to a
drifting or meandering tip and then to spiral wave breakup
may correspond to the transition from stable to polymorphic
electrical arrhythmias and then to fibrillation and sudden car-
diac death.19,20 Given the importance of spiral wave dynam-
ics, it is important to characterize the tip motion accurately.
For example, a robust tip identification algorithm could be
used to quantify the number and location of spiral waves,
which is essential to characterizing complex spiral wave dy-
namics �e.g., cardiac fibrillation�13,21 and their termination
�e.g., defibrillation�.22 In this paper, we explore whether the
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reported flower gardens truly reflect the underlying dynam-
ics, or in fact are an artifact of the choice of coordinate
system and tip-identification parameters.

A. Identifying spiral wave tip trajectories

Over the years, numerous investigators have identified
the tip of spiral waves using a variety of algorithms.23 A
common method to determine tip location is to compute
where the isocontours of two-state variables intersect.9,12,24,25

This method allows for the identification of the wave tip at
each instant of time but suffers from the lack of clear criteria
for selecting the particular isocontours and the need to know
the spatiotemporal behavior of two-state variables. A similar
method involves choosing a particular isocontour value of
one state variable and finding the point on that contour which
exhibits a zero time derivative.26 Alternatively, the site of
maximal wave-front curvature on a particular isocontour can
be used to track tip movement.10 Both of these approaches
alleviate the need for two-state variables �since a single iso-
contour, e.g., transmembrane potential isocontour, is used�
but again require the choice of a particular isopotential. Re-
cently, there has been a growing interest in the use of a “state
space phase variable” �which requires the choice of an “ori-
gin” in state space� to represent spiral wave dynamics and
compute topological charge in physical space to allow effi-
cient localization of the phase singularities about which spi-
ral waves rotate.13,27,28 The equivalence of the phase and
zero-time-derivative approaches has been demonstrated
experimentally.29 It is critical to realize that an arbitrary
choice of an origin or isocontour value is embedded within
each of these techniques. Hence the same technique will pro-
duce different tip trajectories depending upon the choice of
origin or isocontour,30,31 and comparison between techniques
can be confounded by the different criteria used for tip iden-
tification. One might conclude that no uniquely identifiable
point truly represents the tip of the spiral wave. This would
bring into question the study of the flower gardens of trajec-
tories, each of which has been cultivated using a particular
choice of tip-identification parameters.

II. SIMULATION OF SPIRAL WAVES

We use the classic two-state variable FitzHugh–Nagumo
PDE model to simulate stationary and meandering spiral
waves,

�V

�t
=

1

�
�V −

V3

3
− W� + D�2V ,

�1�
�W

�t
= ��V + � − �W� ,

where V is the fast variable, W represents the slow variable,
D is the diffusion coefficient, and �, �, and � are model
parameters. A snapshot of the fast variable V�x ,y� and the
time course of both V and W at one site are shown in Fig. 1
for one simulation. This model has been used in previous
studies of spiral wave tip trajectories.9,12 A flower garden
plot of trajectories for this model as a function of parameters
� and � is shown in Fig. 2. The two-state variable phase

method30 was used to compute the trajectories with the ori-
gin as �V�=0, W�=0�; specifically, a phase variable � was
computed at each site �x ,y� according to

��x,y,t� = arctan�W�x,y,t� − W�,V�x,y,t� − V�� , �2�

where t represents time. This phase variable represents the
angular dynamics in state space, i.e., �V ,W�, in reference to
the state space origin �V� ,W��. Phase singularities represent
the spatial location of the spiral wave tip and are easily iden-
tified in physical space �x ,y� as sites where the line integral

FIG. 1. FitzHugh–Nagumo model. �Top� Snapshot of the spatial distribution
of the fast variable in physical space, i.e., V�x ,y�. The greyscale color key is
shown in the bottom panel. �Bottom� Dynamics of state variables during one
beat, i.e., V�t� and W�t� at the site indicated by the number 1 in the top
panel.

FIG. 2. Flower garden �original origin choice�. The spiral wave tip trajec-
tories in physical space �x ,y� for the FitzHugh–Nagumo model �Eq. �1�� as
a function of parameters � and �. Phase was computed according to Eq. �2�
and the instantaneous wave tip was identified using Eq. �3�. The origin
choice in Eq. �2� was �V�=0, W�=0�.
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of � on a closed curve c around a site is nonzero, i.e.,

�
c

�� · d�� � 0. �3�

Iyer and Gray30 showed that the ability to localize phase
singularities is not sensitively dependent on the specific
choice of state space origin �V� ,W��, and Fenton et al.31

showed examples of a minimal effect of isocontour choice
on tip trajectories. Nevertheless, to the best of our knowl-
edge, there have been no published reports on the justifica-
tion of a specific choice of origin. In addition, extending all
tip finding methods to fibrillation data should only be done
with caution, and with a clear understanding of the algo-
rithm’s limitations and theoretical basis. For example �as we
show below� inappropriate origin choice can lead to an error
in the identification of the number and lifetime of spiral
waves.

III. THEORY

Here we provide a rationale for choosing a specific state
space origin for the definition of � and hence phase singular-
ity localization. Our goal here is essentially to track the in-
stantaneous center of rotation of a spiral wave. In order to do
this, we need to separate the problem into two parts: spiral
wave rotation around this center point and translational mo-
tion of this center point. This problem is similar to the classic
characterization of the rolling motion of a wheel on a plane
in which the trajectory of the center of mass follows a
straight line but any other point traces out a nonlinear path
called a cycloid.

A rotating spiral wave represents one solution to the gen-
eral nonlinear, reaction-diffusion PDE of the form

�u�

�t
= f��u�� + D� �2u� , �4�

where u� is a vector representing the time and space depen-
dent state variables, f� represents the nonlinear space-clamped
kinetic equations for the variables, and D� is the diffusion
tensor.

Let us consider a stable, rigidly rotating spiral wave so-
lution to Eq. �4�. The reader is encouraged to view Fig. 3
while reading the following text. Such a spiral wave exhibits
rotational symmetry around the center of rotation. We will
identify the center of rotation in physical space as �x� ,y��. At
each site �x ,y� the state variables will be periodic in time
with a period equal to the time for one complete rotation of
the spiral wave �Ts� except at site �x� ,y�� where no oscilla-
tions occur due to rotational symmetry at the center of rota-
tion. We suggest that the value of the state variables at
�x� ,y�� defined as u�� represents the best choice of the state
space origin for the definition of � �see Eq. �2�� and hence
phase singularity localization. This point in state space
�u��= �V� ,W�� for Eq. �1�� thus represents the only point
where � is undefined �see Eq. �2��. Typical definitions for the
spiral wave tip will, in general, result in closed-loop tip tra-
jectories that are essentially circular for one rotation delin-
eating a spatially two-dimensional �2-D� region called the
spiral wave “core.” However, if the point �x� ,y�� is chosen

for the definition of tip identification, then the tip will be
stationary relative to the spiral wave rotation, and the tip
trajectory during one rotation will be a point, i.e., spatially
zero-dimensional �0-D�. A common technique to identify the
core is to integrate the variables over one or more rotations
and threshold the result.32 If we integrate the state variables
over an integer multiple of Ts then the resulting integral
yields a surface with a unique minimum at �x� ,y��, as shown
in Figs. 3�c� and 3�d�. This dimensionality difference be-
tween the spiral wave core �2-D� and tip �0-D� is very im-
portant because the tip can be identified at a time scale less
than one rotation but the core cannot.13

Equation �4�, in general, does not have an analytical so-
lution because of the nonlinearity of f�. Following the ap-
proach of Barkley,33 one can seek rotationally symmetric spi-
ral wave solutions �with angular velocity �s=2�Ts� of Eq.
�4� in a polar coordinate system

− �s
�u�

��
= f��u�� + D� �2u�

�r2 +
1

r

�u�

�r
+

1

r2

�2u�

��2	 , �5�

where �r ,�� represent polar coordinates in physical space.
Equation �5� is a nonlinear eigenvalue problem that can be
solved for u� �a rigidly rotating spiral wave solution of all the
state variables� and �s �the corresponding rotation fre-
quency�; an associated linear eigenvalue problem can also be
solved to determine the stability of these rotating spiral
waves.12,33 Importantly, the state at the center of this rotating
spiral wave solution u��
u�r=0 can be computed numerically
whether the spiral wave is stationary or not! We propose that
the separation of rotational and translational motion can be
carried out by defining the instantaneous center of rotation to
be that point which has value u�� in the steady state �Eq. �5��
and that u�� represents the best choice of state space origin for
representing � �see Eq. �2�� and localizing spiral wave tip
trajectories �see Eq. �3��.

As long as the translational motion of the spiral wave
center is “slow,” the environment in which the spiral wave
rotates is similar to the steady state environment associated
with Eq. �5� and may be considered a perturbation to it.
Since the center of rotation is unambiguously defined in the
steady state situation, and since u���t� at that point contains no
oscillations, we hypothesize that the analogous choice in the
slowly translating case is also unambiguous, and similarly
should have no oscillatory component at the rotation fre-
quency, to some order in the perturbation. Our method is
based on a mathematical approach that is strictly valid only
for stable, rigidly rotating spiral waves and is similar to Bar-
kley’s translation of the “laboratory” and “rotating coordi-
nate” frames.34 A more mathematically rigorous examination
of this topic is contained in Ref. 35.

IV. NUMERICAL METHODS

The eigenmode solver to compute the rigidly rotating
spiral wave solution u��r ,�� �including u��� and �s �the cor-
responding rotation frequency� is essentially the same as the
one first described by Barkley33 although with a slightly dif-
ferent implementation as described by Otani.12 Briefly, a
steady state rotating spiral wave solution was found using a
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FIG. 3. Spatiotemporal dynamics of a stable spiral. �a� Greyscale image snapshot of fast variable �V� depicts a spiral wave rotating counterclockwise. �b�
Surface plot of snapshot of V with z-axis representing the value of V. �c� Greyscale image of integral of V over one period; the darker regions indicate lower
integral values. �d� Surface plot of integral of V over one period. �e� Contour plot of snapshot of V zoomed in at the center of rotation, which is denoted by
an asterisk. �f� Trajectories in state space for the four sites on V=V�=25 contour �horizontal grey line� denoted by numbers 1–4. Since V is the fast variable
all trajectories are counterclockwise in state space. �g� Time series of the four sites labeled on �e�. The thick vertical gray line indicates the time of snapshot
in �e�.
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nonlinear eigenmode solver in polar coordinates given initial
guesses of both the spiral wave frequency and a spatial pat-
tern of u� . We determined u�� for the PDE in Eq. �1� for 20
parameter values ��=0.20,0.22,0.24,0.25,0.26 and �
=0.40,0.50,0.60,0.70� using the methodology described
previously.12,33 These values are presented in Table I for our
two-variable system u��= �V� ,W��.

We simulated stationary and nonstationary spiral waves
by integrating Eq. �1� using finite difference methods on a
uniform x-y grid. We used the values of D=0.003 and �=0.8
and varied both � and �. This PDE was solved on a
500�500 grid with no-flux boundary conditions via Euler
integration with grid spacing dx=dy=0.04 and time step
dt=0.0004.

V. RESULTS

The effect of the origin choice on spiral wave tip trajec-
tories is shown for �=0.22 and �=0.70 in Fig. 4. The vari-
able 	 represents the distance of the origin choice from u��; to
study the effect of the choice of the origin, 	 was chosen to
vary along the diagonal line V=W �see Fig. 4�d��. The spiral
wave tip trajectory was a strong function of 	; as 	 increased
from zero, one loop was formed per rotation and these loops
increased in size. In other words, one petal per rotation ap-
peared on the tip trajectory for “incorrect” choices of state
space origin �	�0�. The flower garden in Fig. 2 was repro-
duced using u�� as the origin choice and is shown in Fig. 5.
For all parameter choices of � and �, the choice of u�� as the
origin for the computation of phase ��� in Eq. �2� resulted in
a decrease in complexity of the spiral wave tip trajectories
�compare Figs. 5 and 2�. Circular trajectories became points
and looping patterns became lines.

The value of u�� depends on the parameter values of the
PDE. That is, changes in � and � alter the solution to Eq. �5�
and hence u�� at the center of rotation. The position of u�� in
state space is shown for each parameter set in Fig. 6; u�� is
represented as an asterisk and the elliptical curves represent
typical dynamics at one site of variables V and W in state
space �V ,W�.

VI. DISCUSSION

The advantage of using u�� in defining state space phase
��� in Eq. �2� is that it maps to the exact center of rotation for
the case that is arguably the best representative and most
characteristic of pure spiral wave rotation for the given sys-
tem, namely, rigid spiral wave rotation around a fixed point.
Thus, the point at which u��=u� is a natural candidate for the

definition of the spiral wave tip location—a Copernican
choice in an otherwise Ptolemeic situation. Our rationale is
consistent with the idea that spiral wave meandering is a
perturbation of the steady state solution to Eq. �5�.33

The spiral wave tip trajectories for the traditional choice
of origin �V=0 and W=0� are not the simplest, as shown in
Fig. 2. The value of the origin that produces the simplest
pattern corresponds to u��, as shown in Fig. 5, which in turn
depends on the parameter values of the PDE. That is,
changes in parameters that produce the observed varieties in
the garden also shift the solution to Eq. �5� at the center of

TABLE I. The values of the solution to Eq. �5� at the center of rotation, i.e., u��= �V� ,W�� for the FitzHugh–
Nagumo equation �Eq. �1��, as a function of the two model parameters � and �.

�

�

0.20 0.22 0.24 0.25 0.26

0.40 �
0.637,
0.296� �
0.644,
0.304� �
0.651,
0.313� �
0.654,
0.318� �
0.658,
0.323�
0.50 �
0.796,
0.370� �
0.806,
0.382� �
0.817,
0.396� �
0.823,
0.403� �
0.829,
0.411�
0.60 �
0.955,
0.444� �
0.970,
0.463� �
0.988,
0.486� �
1.00,
0.500� �1.01,
0.516�
0.70 �
1.11,
0.517� �
1.14,
0.548� �
1.18,
0.604� �
1.20,
0.623� �
1.20,
0.624�

FIG. 4. The spiral wave tip trajectories in the FitzHugh–Nagumo model
�Eq. �1�; �=0.22 and �=0.70� as a function of origin choice. �a� Phase was
computed according to Eq. �2� and the instantaneous wave tip was identified
using Eq. �3�. The height of the plot, i.e., the vertical axis, represents the
distance from u�� defined as 	=��V−V��2+ �W−W��2. �b� Spiral tip trajec-
tory for 	=0.75. �c� Spiral tip trajectory for 	=0.0. �d� Schematic diagram
illustrating choice of 	 along the diagonal in state space.
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rotation, as shown in Fig. 6. Our results demonstrate that if
the origin is adjusted in accordance with the parameter shift
for each plant in the garden, so as to maintain the correspon-
dence between the solution to Eq. �5� at the center of rotation
and the origin, then the garden reduces to a simpler set of
curves. We suggest that the origin choice of u�� is the best in
the sense that it separates the rotational and translational mo-
tions of the spiral wave. One may argue that the flower petals
illustrate each spiral wave rotation, and while this can be
true, it is not necessarily true. We can see no reason why the
spiral wave cannot complete multiple rotations during the
time it takes for the trajectory to trace out one complete
petal. Since time is parametrized in the tip trajectory plots, in
general, we do not know the speed of movement along the
trajectory nor Ts just from viewing the tip trajectories �al-

though the speed can easily be computed�. In our approach
we compute Ts via � and u�� and the corresponding trajecto-
ries represent only translational movement.

Not using the center of rotation to identify spiral wave
tip dynamics can give rise to errors in the identification of
the number and lifetime of spiral waves when multiple
waves are present, as shown in Fig. 7. An episode of fibril-
lation as recorded from the heart surface can be represented
by the number, location, and chirality of spiral waves at each
instant in time.13 We illustrate the tip trajectories of a hypo-
thetical stable figure-of-eight pair of spiral waves in Fig. 7
�in panel �a�, the tip is identified as the center of rotation and
thus the location of each spiral wave is stationary, while in
panel �b�, the tip is identified using traditional methods and
each trajectory exhibits a cycloid pattern�. Since the identi-
fication of phase singularities �see Eq. �3�� involves a spatial
line integral, the exact line integral determines the lower
limit �spatial resolution� on the localization of spiral wave
tips. For example, if at a given instant both spiral wave tips
are within the line integral of Eq. �3�, then no phase singu-
larities will be detected instead of two �one clockwise and
one counterclockwise�! This will result in the erroneous in-
ference that there is continuous birth and termination of two
counter-rotating spiral waves instead of a continuous pair of
stable counter-rotating spiral waves. Using the center of ro-
tation to identify spiral wave tips will result in the correct
interpretation.

The state space representation of phase ��� depends on
the choice of origin as previously stated. It should be appre-
ciated that u�� is, in general, not equal to a fixed point in the
space-clamped 0-D situation because the Laplacian term in
Eq. �1� is nonzero. In fact, u�� can be much different than the
steady state homogenous solution because of the topology of
state space, as shown in Figs. 8�a� and 8�b�. Trajectories in
state space will always be closed curves for stable spiral

FIG. 5. Flower garden �origin=u���. The spiral wave tip trajectories in physi-
cal space �x ,y� for the FitzHugh–Nagumo model �Eq. �1�� as a function of
parameters � and �. Phase was computed according to Eq. �2� and the
instantaneous wave tip was identified using Eq. �3�. The origin choice in Eq.
�2� was u�� in contrast to �0,0� in Fig. 2 for the same parameter values of �
and �.

FIG. 6. The dynamics of state variables �V and W� in state space for one site during spiral wave rotation as a function of � and �. The locations of u�� �see
Table I� are shown as asterisks. For clarity, the axis labels are only shown in the top left plot. The origin �0,0� axes are indicated by dashed lines.
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waves; those near u�� will be elliptical, and those away from
the center will be nonelliptical. As shown in Fig. 8�c� the
shape of all state space trajectories will influence the effect
of nonideal origin choice and the ability to represent �.

In many experimental situations, at least two limitations
will preclude the use of our methodology. First, the underly-
ing PDE corresponding to the experimental system is rarely
known. Second, often the spatiotemporal dynamics of only
one variable is measured. This latter problem may be over-
come by using a “reconstructed state space,” V�t� and
V�t+��, in lieu of the actual state space in which case the
origin is �V� ,V��.13,36 Obviously, Eq. �2� incorporates only
two-state space variables, therefore systems with more than
two variables may pose unique problems for our methodol-
ogy. We have previously shown that the state space phase
method accurately tracks linear motion in an eight-
dimensional state space cardiac model.37 However, we wish
to emphasize that even cardiac fibrillation, which is a very
complex spatiotemporal phenomenon involving hundreds of
variables, is amenable to state space phase analysis using two
reconstructed state variables.13,22 Furthermore, V� can be es-
timated as the measured value of the observed variable at the
center of rotation of a spiral wave �ideally, a spiral wave
rotating for multiple beats without meander�. In practice the
error in localizing spiral wave tips �i.e., phase singularities�
will depend on the difference of origin choice from u�� and
the gradient of the fast variable near the center of rotation
such that this localization error will be approximately
�V�−u1

�� / ��V�.
We conclude that the flower gardens published in the

literature tell us more about an arbitrary parameter �i.e., the
choice of origin or isocontour� than the underlying spiral
wave dynamics. We provide a method to analyze the dynam-
ics of a system orbiting around its “natural” origin rather
than around a fixed arbitrary one.
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FIG. 7. �Color� Analytically derived
spatiotemporal spiral wave tip trajec-
tories for stable figure-of-eight reentry.
Position of spiral wave tip for clock-
wise �counterclockwise� rotating spiral
is shown in blue �red�. �a� The tip lo-
cation at each instant of time for each
spiral wave identified as the center of
rotation, i.e., �x ,y� site was �90,100�
for counterclockwise and �110,100�
for clockwise waves. �b� The tip
locations identified using traditional
methods which contain a rotational
component, i.e., �x ,y� site was �90
+10� cos��s�t�, 100+10� sin��s�t�� for
counterclockwise and �110
−10� cos��s�t�, 100+10� sin��s�t�� for
clockwise waves. See text for
discussion.

FIG. 8. State space dynamics. ��a� and �b�� Example nullclines for two-state
variable systems. The fast variable nullcline �black� corresponds to dV /dt
=0 and the slow variable nullcline �gray� corresponds to dW /dt=0. When
the Laplacian term is zero �e.g., spatially homogenous state variable pat-
terns� the fixed points of the system correspond to the intersection of the
nullclines. For example, in excitable systems, there is a stable solution to the
PDE �Eq. �4�� that represents all sites at a “quiescent” state that corresponds
to a stable fixed point �depicted as closed circles�. Depending on the shape
of the slow variable nullcline, there may be additional fixed points. For
example, �b� depicts three intersections of the nullclines including a margin-
ally stable fixed point �half-filled circle� and an unstable fixed point �open
circle�. The dashed lines indicate the effect of adding a constant value to the
fast variable equation which corresponds to the dynamics at u��. This addi-
tion causes a vertical shift in the fast variable nullcline and the result is
depicted as a dashed line. This shift may act to slightly perturb the quiescent
solution as in �a� or may act to fundamentally change the system fixed points
as in �b�, where the shift results in the elimination of two fixed points. �c�
The “bad” choice of origin illustrates nonunique � representation as indi-
cated by the three intersection points of the outermost trajectory by the gray
line originating at the origin.
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