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Abstract: Support vector machines and kernel methods belong to the same class of machine learning algorithms that has 

recently become prominent in both computational biology and chemistry, although both fields have largely ignored each 

other. These methods are based on a sound mathematical and computationally efficient framework that implicitly embeds 

the data of interest, respectively proteins and small molecules, in high-dimensional feature spaces where various 

classification or regression tasks can be performed with linear algorithms. In this review, we present the main ideas under-

lying these approaches, survey how both the “biological” and the “chemical” spaces have been separately constructed us-

ing the same mathematical framework and tricks, and suggest different avenues to unify both spaces for the purpose of in 

silico chemogenomics. 

1. INTRODUCTION 

 Recent years have witnessed impressive progress in 
computational biology and chemistry, due in large part to the 
formulation of many problems as classification or regression 
problems and to the use of modern machine learning tech-
niques for the analysis of biological and chemical data. In 
computational biology, typical problems include the predic-
tion of various structural or functional properties of proteins 
from the description of their amino acid sequence, 3D struc-
ture or level of expression in various experimental conditions 
[1-4], while in computational chemistry the objects manipu-
lated are rather small molecules and the challenges are to 
predict various chemical or biological properties of these 
molecules related to their toxicity, pharmacokinetics or 
affinity for a drug target [5-7]. Both fields are confronted 
with similar challenges, including the difficulty to manipu-
late complex and structured data such as molecules, the 
computational and statistical burden to deal with large-
dimensional representations of these data, and the need to 
integrate heterogeneous description of the same objects, such 
as the 2D and the 3D structures of molecules. 

 Among the variety of tools available in statistics and 
machine learning [8-10], a recent class of algorithms, called 
kernel methods, lends itself particularly well to the study of 
these aspects [11-13]. The basic philosophy of kernel meth-
ods is that with the use of a certain type of similarity meas-
ure, called a kernel, the data are implicitly embedded in a 
possibly high-dimensional vector space, in which linear 
methods are used for various applications such as discrimi-
nation, regression, ranking, outlier detection or low-
dimensional visualization. The best-known kernel method is 
the support vector machine (SVM) [14-16], which has 
quickly gained popularity among the research communities 
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for its efficiency and relative ease of use, and can nowadays 
be considered as a standard algorithm for regression and 
supervised classification in both computational biology and 
chemistry [11, 17, 18]. 

 Choosing a kernel similarity function between proteins or 
small molecules is a prerequisite to the use of kernel meth-
ods, akin to choosing a set of descriptors to represent them. 
In fact, the inner product or Tanimoto coefficient between 
fingerprints of descriptors, widely used in chemoinformatics 
to assess the similarity of small molecules, are valid kernels 
that can be directly used by kernel methods. In that case, the 
SVM can be considered as just another multivariate method 
for regression or classification, that can be used in place of 
other methods such as partial least squares (PLS) or artificial 
neural networks (ANN). Interestingly, kernels can also be 
extended to more general measures of similarity, involving 
for example an infinite number of descriptors. In such cases, 
computational tricks are needed to compute the kernel with-
out explicitly computing nor storing the infinitely many 
descriptors. This extension allows kernel methods to perform 
multivariate analysis in infinite dimension, often at no addi-
tional computational cost compared to the finite-dimensional 
setting. This interesting property has been investigated by a 
number of researchers recently, who have proposed ingen-
ious kernel similarity functions to encode various properties 
of proteins and small molecules with a large or infinite num-
ber of descriptors [1,19-25]. These kernels have been suc-
cessfully applied to various problems in computational biol-
ogy and chemistry, such as gene function classification or 
toxicity prediction for small molecules. 

 Although progresses in computational biology and chem-
istry have largely ignored each other, the new field of che-
mogenomics is likely to benefit from both fields simultane-
ously [26-30]. In particular, a central challenge of in silico 
chemogenomics is to develop a coherent framework and 
computationally efficient algorithms to manipulate data from 
both the biological and chemical spaces simultaneously. For 



678   Combinatorial Chemistry & High Throughput Screening, 2008, Vol. 11, No. 8 Vert and Jacob 

example, an in silico screening of a series of potential 
ligands against a family of proteins requires to learn a func-
tion f(p,l) that predicts whether the ligand l can bind to the 
target protein p. In that case the basic objects to be manipu-
lated by machine learning methods are target-ligand pairs 
(p,l), instead of individual targets and ligand candidates. We 
argue in this review that the parallel development of kernel 
methods in computational biology and chemistry represents 
a timely and interesting opportunity to provide such a 
framework. Indeed, both fields have concentrated a lot of 
energy, through the design of descriptors and kernels, to 
construct various representations of the biological and 
chemical spaces, and kernel methods provide systematic 
tools to combine these different representations into a joint 
chemical and biological space where in silico chemogenom-
ics can take place. Although the idea of creating ad hoc rep-
resentations of target-ligand pairs for the purpose of che-
mogenomics is not new [31, 32], the use of kernels can pro-
vide additional flexibility and computational advantages over 
the explicit representation of target-ligand pairs as vectors of 
descriptors, as illustrated by several recent studies [32-36]. 

 We hope that this short review will contribute to the 
development of further research on the application of kernel 
methods in chemogenomics. For that purpose, we start by a 
quick description of the main ideas and definitions underly-
ing kernels and kernel methods in Section 2, before review-
ing the recent attempts to design specific kernels for proteins 
(Section 3) and small molecules (Section 4). Finally, we 
present recent attempts to adapt kernel methods to chemoge-
nomics in Section 5.  

2. KERNELS AND KERNEL METHODS 

 Many widely-used statistical and machine learning algo-
rithms, including for example PLS or ANN, are designed to 
manipulate vector data. Using these tools to manipulate and 
analyze proteins or small molecules therefore poses the prob-
lem of representing these data as vectors or, equivalently, 
defining a set of binary or real-valued descriptors for these 
data and stacking them to form a vector. The design of mo-
lecular descriptors to describe various features of proteins or 
small molecules has indeed been much investigated over the 
last decades, and many such descriptors are nowadays rou-
tinely used in combination with statistical methods to corre-
late the structures of molecules with their physicochemical 
or biological properties. The explicit computation of a finite 
number p of molecular descriptors to represent a molecule x 
by a vector (x) = ( 1(x),..., p(x)) nevertheless raises sev-
eral challenges, including the problem of choosing a set of 
descriptors sufficiently large to capture the relevant features 
for a given problem and sufficiently small to allow fast com-
putation and efficient storage. 

 Kernel methods, including SVM, are a class of algo-
rithms that follow a slightly different strategy to solve the 
problem of data representation [11-13]. Data do not need to 
be represented individually as vectors, they need instead to 
be compared to each other. More formally, instead of con-
verting each protein or small molecule x into a p-
dimensional vector (x) for further processing, kernel meth-
ods can manipulate data only through a function k(x,x’) that  
 

compares any two proteins (or small molecules) x and x’ and 
returns a real number. The function k is called a kernel, 
hence the name kernel methods. As a result, when a set of n 
proteins (or of n small molecules) x1,...,xn is given as input 
to a kernel method, the algorithm can only manipulate the 
data through the Gram matrix, which is the square n x n 
matrix K of all pairwise similarities, whose entry Ki,j is 
equal to k(xi,xj). 

 Only a certain class of functions k, however, can be used 
in combination with kernel methods. These kernels are often 
called positive definite kernels or more simply valid kernel. 
The technical conditions that a function k(x,x’) must fulfill to 
be a valid kernel are (i) to be symmetric, i.e., k(x,x’) = k(x’,x) 
for any pair of data x and x’, and (ii) to produce only Gram 
matrices with no negative eigenvalue. Although the second 
condition can sometimes be difficult to assess for a newly 
defined function k, mathematics textbook abound on exam-
ples of valid kernels and on systematic techniques to create 
them [37-39]. 

 In fact, many valid kernels have been widely used for a 
long time in chemoinformatics. For example, given any 
representation of a molecule x by a vector of p descriptors 

(x), the inner product between two vectors (x) and (x’) 
representing two molecules x and x’ is a valid kernel: 

k(x, x ') =< (x), (x ') >= i (x), i (x ')
i=1

p

         (1) 

 Another valid kernel is the Tanimoto coefficient between 
vectors of binary descriptors [40], which is commonly used 
to assess the similarity between molecules. When such ker-
nels are used, the vectors of descriptors (x) are explicitly 
computed prior to the computation of inner products or 
Tanimoto coefficients, and kernel methods like SVM are not 
fundamentally different from other methods such as PLS or 
ANN. 

 Interestingly, it can be shown that, conversely, any valid 
kernel k(x, x’) can be written as an inner product (1), for 
some vector representation (x) [37]. This apparently estab-
lishes an equivalence between the use of valid kernels, on 
the one hand, and the use of explicit vector representations, 
on the other hand. In the converse statement, however, the 
vector (x) are not necessarily of finite dimension, they can 
also involve an infinite number of descriptors. In that case, 
there is obviously no hope to compute the infinitely many 
descriptors explicitly and store them in a computer, and a 
computational trick must be found to compute directly the 
kernel k(x, x’) without computing (x) and (x’). We re-
view several examples of such kernels in the next two sec-
tions. As a result, the kernel approach can be seen as a gen-
eralization of the descriptor vector approach, where the 
number of descriptors can be finite or infinite (Fig. 1). Valid 
kernels therefore always define a vector space structure over 
the set of molecules to be manipulated. 

 This structure can either be defined explicitly, when mo-
lecular descriptors are computed in order to evaluate the 
kernel similarity through inner products of Tanimoto 
coefficients between fingerprints, or implicitly, when a valid 
kernel function k(x,x’) is directly computed to compare two 
molecules x and x. Yet this implicit construction is sufficient  
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Fig. (1). Defining a kernel over a space X, such as the space of all 

small molecules or the space of all proteins, is equivalent to em-

bedding X in a vector space F of finite or infinite dimension through 

a mapping :X  F. The kernel between two points in X is equal 

to the inner products of their images in F, as shown in (1). 

to perform various data processing and manipulation in the 
vector space. As a simple illustration let us consider the 
problem of computing the distance between two feature 
vectors (x) and (x’) corresponding to two molecules x 
and x’, as illustrated in Fig. (2). A simple computation shows 
that: 

(x) (x ')
2

=< (x), (x) > + < (x '), (x ') > 2 < (x), (x ') >

= k(x, x) + k(x ', x ') 2k(x, x ')
 (2) 

where k is the kernel associated to the vector  through (1). 
This equation shows that in order to compute the distance 
between points in the feature space, one does not necessarily 
need to first compute explicitly the vectors themselves, and 
can rely instead on the corresponding kernel. This trick, 
known as the kernel trick, can be applied to any algorithm 
for vectors that can be expressed in terms of inner products: 
replacing each inner product by the respective kernel evalua-
tion allows the execution of the algorithm implicitly in the 
feature space defined by a valid kernel. A surprising variety 
of methods, collectively known as kernel methods, can 
benefit from this trick. Besides the evaluation of distances 
using (2), one can mention for example dimensionality re-
duction with principal component analysis (PCA) [41], re-
gression and pattern recognition with Gaussian process [42, 
43], PLS [44], SVM [14, 15], or outlier detection with one-
class SVM [45]. We refer the reader to various textbooks 
and survey articles for more details on these algorithms [11-
13]. 

 

 

 

 

 

 

 

Fig. (2). We can define the distance between two objects x1 and x2, 

such as two small molecules or proteins, as the Euclidean distance 

between their images (x1) and (x2). If the mapping  is defined 

by a valid kernel k, then this distance can be computed easily with-

out computing (x1) and (x2), as shown in (2). This kernel trick 

can be extended to a variety of linear algorithms that only manipu-

late the data through inner products. 

 In summary, the definition of a positive definite kernel 
for certain types of data defines explicitly or implicitly a 
mapping of the data to a vector space, possibly of high or 
infinite dimension. Yet a variety of data processing and 
analysis algorithm can be performed in this feature space 
thanks to the kernel trick, without the need to compute and 
store the vector representing the objects. In the next two 
sections, we review some recent work focusing on the 
definition of valid kernels for proteins and small molecules, 
respectively, to illustrate the possibilities offered by kernels 
to define implicitly “biological” and “chemical” spaces.  

3. THE BIOLOGICAL SPACE: KERNELS FOR 

PROTEINS 

 Bioinformatics has historically been one of the first ap-
plication domain for SVM and kernel methods [11], and has 
triggered a lot of research focused on the design of valid 
kernels for non-vectorial object, such as proteins. The sim-
plest representation of a protein is the sequence of amino 
acids it contains, which mathematically is a string in an al-
phabet of 20 letters. Alternatively, when available or pre-
dicted, one can represent a protein by its 3D structure, which 
is likely to contain more relevant information related to 
physical interactions with other proteins or ligands. As 
summarized in Table 1, three main strategies have been 
followed to define kernels between proteins: (i) computing 
an inner product with descriptors explicitly defined, (ii) de-
riving a kernel from a probabilistic model, and (iii) adapting 
widely used measures of similarity between biological se-
quences or 3D structures. We now review in more details 
these different strategies, starting with kernels defined for 
amino acid or nucleotide sequences. 

 The first strategy to make a kernel is to define a set of 
descriptors to characterize various features of protein se-
quences, and to compute the inner products between the 
resulting vectors to obtain a kernel. As an example, Leslie et 
al. [48] uses as descriptors how many times each sequence 
of n letters occurs consecutively in the string, for a fixed 
integer n (a sequence of n contiguous letters is called a n-
mer). These descriptors could be relevant to detect homolo-
gous proteins, which are likely to contain similar proportions 
of the various n-mers, or to predict biological properties that 
depend on short motifs of amino acids, such as structural or 
binding motifs. Taking for instance n = 2, the DNA sequence 
x = AATCGCAACT is represented by the 16-dimensional 
vector (x) = (2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0), where 
the numbers are the counts of occurrences of each 2-mer AA, 
AC, . . ., TG, TT lexicographically ordered. The dimension of 

(x) is then 4
n 

for nucleotide sequences, and 20
n 

for amino 
acid sequences, which can be prohibitively large for, e.g., n 
= 5. Fortunately, Leslie et al. [48] show that a computational 
trick allows to compute the kernel between two sequences 
with a complexity in time and memory linear with respect to 
the sum of the length of the sequences, independently from 
the dimension of (x) [48, 64]. Several variants to this ker-
nel have also been proposed, including kernels based on 
counts of n-mers appearing with up to a few mismatches in 
the sequences [20], matching of n-mers with the possibility 
of gaps or substitution [49], or counts of n-mers derived 
from a profile instead of a single sequence [50,51]. Alterna-
tively one can first replace each amino acid by one or several 
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numerical features, such as physicochemical properties, and 
then extract features from the resulting variable-length nu-
merical time series using classical signal processing tech-
niques such as Fourier transforms [46] or autocorrelation 
analysis [47]. The resulting features can be explicitly com-
puted to form a vector, and any valid kernel for vector can 
then be used. These descriptors are interesting to encode 
information about the variations of physico-chemical proper-
ties along the sequence, e.g., to detect elements of the secon-
dary structure. Finally, another popular approach to design 
features and therefore kernels for biological sequences is to 
“project” them onto a fixed dictionary of sequences or mo-
tifs, using classical similarity measures, and to use the result-
ing vector of similarities as the feature vector. For example, 
Logan et al. [52] represent each sequence by a 10,000-
dimensional vector indicating the presence of 10,000 motifs 
of the BLOCKS database; similarly, Ben-Hur and Brutlag 
[53] use a vector that indicates the presence or absence of 
about 500,000 motifs in the eMOTIF database, requiring the 
use of a tree structure to compute efficiently the kernel with-
out explicitly storing the 500,000 features; and Liao and 
Noble [54] represent each sequence by a vector of sequence 
similarities with a fixed set of sequences. The choice of se-
quences or motifs to be included in the dictionary is crucial 
and may be problem dependent, as it allows, for example, 
the extraction of the occurrences of particular functional or 
structural motifs in the protein sequences. 

 A second strategy to design kernels for amino acid se-
quences has been to derive them from probabilistic models. 
Indeed, before the interest on string kernels grew, a number 
of ingenious probabilistic models had been defined to repre-
sent biological sequences or families of sequences, including 
for example Markov and hidden Markov models for protein 
sequences, or stochastic context-free grammars for RNA 
sequences [65]. Several authors have therefore explored the 
possibility to use such models to make kernels, starting with 
the seminal work of Jaakkola et al. [1] that introduced the 
Fisher kernel. This kernel uses a parametric probabilistic 
model to explicitly extract features from each sequence. The 
features for a sequence x are related to the influence of each 
parameter of the model on the probability of x. The resulting 
vector of features, known as the Fisher score vector in statis-
tics, has a fixed dimension equal to the number of parameters 
in the model, and therefore provides a principled way to map 
sequences of different length to a vector of fixed length. The 

Fisher kernel was generalized by the Tangent of Posterior 
(TOP) kernel [55]. Intuitively, the descriptors encoded in the 
Fisher and TOP kernel describe how each individual se-
quence differs from a model supposed to represent an “aver-
age” sequence, and the choice of the model and its parame-
ters influence therefore a lot the kernel. A second line of 
thought to make a kernel out of a parametric probabilistic 
model is to use the concept of mutual information (MI) ker-
nels [66]. Contrary to the Fisher kernel, MI kernels do not 
provide an explicit finitedimensional representation for each 
sequence. Instead the dimensions of the feature space are 
indexed by all possible values of the model parameters, and 
the feature (x) extracted from the sequence x for the pa-
rameter  is the probability of x under the model P , i.e., 

(x) = P(x| ). The computation of this kernel involves a 
summation over all parameters, i.e., takes the form: 

k(x, x?) = P (x)P (x ')dμ( )  

where d  is a prior distribution on the parameter space. 
Hence for practical applications one must chose probabilistic 
models that allow the computation of the above integral. 
This was carried out by Cuturi and Vert [56] who presented 
a family of variable-length Markov models for strings and an 
algorithm to perform the integral over parameters and mod-
els at the same time, resulting in a string kernel with linear 
complexity in time and memory with respect to the total 
length of the sequences. There exists an information-
theoretic interpretation of mutual information kernels: they 
quantify how much information is shared between two se-
quences, in particular if the knowledge of a sequence can be 
helpful to compress another one. Finally, a third strategy to 
derive valid kernels from probabilistic models with latent 
variables, such as HMM, is to build a marginalized kernel 
[19]. Latent variables in probabilistic models often represent 
meaningful information, such as the local structure or func-
tion of a protein sequence. The basic idea behind marginal-
ized kernel is to first design a kernel over the latent and ob-
served variables, as if the latent ones were observed, and 
then to take the expectation of the kernel with respect to the 
conditional distribution of the latent variable given the se-
quences. As for the MI kernel, this kernel can only be com-
puted for judicious choices of random models. Several beau-
tiful examples of such kernels for various probabilistic mod-
els have been worked out, including hidden Markov models 

Table 1. A Typology of Kernels for Proteins 

 

Strategy Input Data Examples 

Sequence 
Physico-chemical kernels [46, 47] 

Spectrum, mismatch kernels [48-51] 

Pairwise motif kernel [52-54] Define a list of descriptors 

3D Structure Kernel based on 3D descriptors [3] 

Sequence 
Fisher, TOP kernels [1, 55] 

Mutual information kernels [56] 
Marginalized kernels [19, 57, 58] Derive a kernel from a generative model 

3D Structure Random walk kernels [59] 

Sequence Local alignment kernel [22, 60-63] 
Derive a kernel from a measure of similarity 

3D Structure Structure alignment kernel [25] 
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for sequences [19, 57] or stochastic context-free grammars 
for RNA sequences [58]. 

 A third strategy to define a kernel is to go back to the 
interpretation of kernels as “measure of similarity”, and try 
to adapt well-known measures of similarities between bio-
logical sequences to make valid kernels. This idea was pio-
neered by Haussler [60] who introduced the concept of con-
volution kernels for structured objects that can be decom-
posed into subparts, such as sequences that can be decom-
posed into subsequences concatenated to each other (see also 
[62]). Convolution kernels offer the possibility to combine 
several kernels adapted to each subpart of the sequences into 
a single kernel for the whole sequence. Besides proving the 
validity of convolution kernels, references Haussler [60] and 
Watkins [61] give several examples of convolution kernels 
relevant for biological sequences. This work is extended in 
references [22, 62] where a valid convolution kernel based 
on the alignment of two sequences is proposed. This kernel, 
named local alignment kernel, is a close relative of the 
widely used Smith-Waterman local alignment score [67], 
and gives excellent results on the problem of detecting re-
mote homologs of proteins. This work was later extended to 
alignment kernels for sequence profiles [63]. This strategy is 
particularly relevant when the kernel is used by a SVM to 
predict a property that is conserved across “similar” se-
quences. In particular, the local alignment score attempts to 
quantify a measure of evolutionary distance, and the local 
alignment kernel is therefore particularly adapted to predict 
biological properties conserved during evolution. 

 While kernels for sequences, that implicitly map proteins 
to a feature space through their primary structure, have by far 
attracted the largest attention so far, several groups have 
recently attempted to map protein 3D structures through the 
construction of kernels between structures. Dobson and Doig 
[3] explicitly represent each structure by a vector made of 
carefully chosen features, such as secondary structure con-
tent, amino acid propensities, surface properties, etc. Alter-
natively, Borgwardt et al. [59] use a representation based 
upon walks defined on a graph of secondary structural ele-
ments, while Qiu et al. [25] show that a kernel derived from 
a measure of structure superpositions is more efficient to 
relate the structure of a protein to its function. 

 These kernels for proteins have been widely applied, 
often in combination with SVM, to various classification 
tasks in computational biology, including for example the 
prediction of structural or functional classes [1, 3, 25, 59, 62, 
68-70] or the prediction of the subcellular localization of 
proteins [4, 71, 72]. The performance reported in these stud-

ies is often state-of-the-art, which might be in large part due 
to the efficacy of algorithms like SVM to estimate 
classification or regression function. While each kernel for 
proteins corresponds to a particular embedding of the space 
of proteins in a vector space, it has been observed that the 
choice of the kernel, hence of the embedding, can have an 
important effect on the final performance of the algorithm. 
For example, in the context of remote protein homology 
detection, Vert et al. [62] compared different kernels and 
observed that the local alignment kernel was particularly 
efficient for this application. Besides the performance crite-
rion, different kernels can have different computational 
complexities which might become prohibitive if large 
datasets are to be processed. Hence in practical applications 
the choice of a particular kernel is often a trade-off between 
computational consideration and performance.  

4. THE CHEMICAL SPACE: KERNELS FOR SMALL 

MOLECULES 

 Kernel methods are also increasingly used in chemoin-
formatics for various analysis, regression or classification 
tasks with small molecules. As for proteins, the design of 
kernels for small molecules can follow different strategies. 
We now review the main recent contributions in this field, as 
summarized in Table 2. 

 The problem of explicitly representing and storing small 
molecules as finite-dimensional vectors has a long history in 
chemoinformatics, and a multitude of molecular descriptors 
have been proposed [83]. These descriptors include in par-
ticular physicochemical properties of the molecules, such as 
its solubility or logP, descriptors derived from the 2D struc-
ture of the molecule, such as fragment counts or structural 
fingerprints, or descriptors extracted from the 3D structure. 
All classical vector fingerprint and vector representations of 
molecules define an explicit “chemical space” where each 
molecule is represented by a finite-dimensional vector, and 
these vector representations can obviously be used as such to 
define kernels between molecules [73, 74]. 

 Alternatively, several groups have investigated different 
strategies to build implicit chemical spaces by defining ker-
nels between molecules that do not require the explicit com-
putation of vector representations. These attempts were pio-
neered simultaneously and independently by Kashima et al. 
[23, 75] and Gartner et al. [76] who proposed to represent 
the 2D structure of a molecule by an infinite-dimensional 
vector of linear fragment counts and showed how SVM can 
handle this representation with the kernel trick. Mahé et al. 
[77] extended these works by showing how irrelevant frag-

Table 2. A Typology of Kernels for Small Molecules 

 

Strategy Input Data Examples 

Use classical fingerprints of molecular descriptors 1D to 4D structure Tanimoto or inner products between fingerprints [40, 73, 74] 

2D structure 

Walk kernels [23, 75-77] 
Shortest-path fragment kernel [78] 

Subtree kernel [79, 80] 
Cyclic fragment kernel [81] 

Use an infinite number of descriptors and a computational trick 

3D Structure Pharmacophore kernel [24] 

Use a measure of similarity 2D structure Optimal alignment kernel [82] 
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ments can be filtered out and proposing a trick to increase 
the dimension of the feature space to make the fragments 
more specific while simultaneously increasing the speed of 
the kernel computation. Ralaivola et al. [40] also tested sev-
eral variants of these kernels, and showed in particular that 
the Tanimoto index, widely used in chemoinformatics, is a 
valid kernel. Borgwardt and Kriegel [78] investigated the 
possibility to restrict the fragment counts to shortest-path 
fragments. Several groups have also tried to extend the sub-
structures extracted from the molecular graphs beyond linear 
fragments and therefore to trade some increase in expres-
siveness against loss in computational efficiency [79]. For 
example, Horvath et al. [81] consider kernels based on cyclic 
fragments, while Ram and Gärtner [79] suggeste that tree 
fragments be considered instead of linear fragments, an idea 
that was later extended and validated by Mahé and Vert [80]. 
Finally, Fröhlich et al. [82] defined a kernel between mo-
lecular graphs by scoring an optimal matching between the 
atoms of two molecules to be compared; this kernel, how-
ever, is not a valid one [84]. 

 A few attempts to define kernels based on the 3D struc-
ture of molecules have also been proposed. Mahé et al. [24] 
design a kernel focused on the detection of 3D pharma-
cophores, while Swamidass et al. [85] consider similarity 
measures between histograms of pairwise distances between 
atom classes and Azencott et al. [74] use Delaunay tetra-
hedrization and other techniques from computational geome-
try to characterize the 3D structures of small molecules and 
make kernels. Finally, Azencott et al. [74] show how kernels 
can also handle multiple 3D conformations and demonstrates 
the relevance of this idea on several QSAR experiments. 

 Although the construction of valid kernels for molecules 
is a young discipline, it has witnessed impressive progresses 
in just a few years, triggered by potential application in 
chemoinformatics and drug design. Large avenues that could 
be relevant for kernel design remain however largely unex-
plored, such as the modeling of 3D surfaces, their electro-
staticity and polarity, or the dynamics of the structures. We 
expect fast progresses in this field in the coming years.  

5. TOWARDS IN SILICO CHEMOGENOMICS WITH 

KERNELS 

 Chemogenomics intends to screen the chemical universe, 
or at least subsets of this universe, against the therapeutic 
target universe [26-30, 86, 87]. While quantitative structure-
activity relationship (QSAR) analysis in chemoinformatics 
attempt to model the affinity of a family of molecules for a 
single target protein, chemogenomics can be thought of as a 
generalization where several targets are screened simultane-
ously. The screening process for each target can indeed be 
expected to benefit from the known data for other targets. In 
particular it is possible to make accurate prediction for tar-
gets with few known ligands or even no known ligand if 
more data is available for targets that are similar to the target 
of interest [30]. 

 The development of in silico chemoinformatics also 
needs tools to go beyond classical QSAR and classification 
methods. The problem of QSAR can be formulated as the 
problem of learning a function f(m) to predict the affinity of 
a molecule m to a given target. The function f can for exam-
ple be a linear function when m is represented by a vector 

(m). In the chemogenomics era, however, multiple targets 
are considered simultaneously and the problem is rather to 
infer a function f(m,p) to predict the affinity of a molecule m 
for a target protein p. In order to apply classical classification 
or regression tools, a vector representation (m,p) of the 
pair (m,p) must therefore be chosen. In other words, instead 
of simply working with the chemical or biological spaces 
alone, we must now consider their product space, i.e., the set 
of (m,p) pairs, and design machine learning algorithms in 
this product space. Several methods, referred to as target-
ligand approaches in reference [29], have started to emerge 
to formally combine the compounds and target universes. 

 We argue that kernel methods offer an attractive frame-
work for in silico chemogenomics, seen as the problem of 
inferring functions in the product chemical and biological 
space. Indeed, as surveyed in Sections 3 and 4, a variety of 
kernels capturing various features or proteins and small 
molecules have already been defined. Each of these kernels 
is equivalent to an explicit or implicit definition of the 
chemical or biological space as a possibly high-dimensional 
vector space. Now let us suppose that in these spaces, a pro-
tein p is represented by a vector P(p) corresponding to a 
kernel kP, while a small molecule m is represented by a vec-
tor M(m) corresponding to a kernel kM. Perhaps the most 
natural way to represent the pair (p,m) for the purpose of 
chemogenomics is to concatenate both vectors P(p) and 

M(m) into a single vector M(m,p) [32]. Interestingly, in 
terms of kernels, it is easy to show that the inner product in 
the joint space obtained by concatenating the vectors, which 
is usually called the tensor sum kernel and denoted kP  kM, 
is simply the sum of the inner products in both spaces taken 
separately, and therefore that the kernel for (p,m) is simply 
the sum of the protein kernel and of the molecule kernel 
[37]: 

kP  kM((p,m), (p’,m’) = kP(p,p’) + kM(m,m’) 

 A drawback of this sum is that if a linear algorithm is run 
on the concatenation of two vectors, it results in a linear 
function f(p,m) that decomposes as the sum of a protein-
specific function and a molecule-specific function, i.e., 
f(p,m)= fP(p) + fM(m). In particular, if the function f(p,m) is 
then used to rank molecules m for a fixed protein p, then the 
ranking only depends on the molecule-specific temr fM(m). A 
undesired consequence is that the ranking of molecules in 
then the same for all proteins. 

 More interestingly, correlations between the protein and 
the molecule descriptors can be introduced by considering, 
instead of the simple concatenation of vectors, the tensor 
product between vectors whose descriptors are all possible 
products between a protein descriptor and a molecule de-
scriptor. As a result, if a protein is characterized by dP de-
scriptors and a small molecule by dM descriptors, then their 
tensor product is characterized by dP  dM descriptors. In the 
case of binary descriptors that describe the presence or ab-
sence of particular features in the protein and the small 
molecule, a descriptor in the tensor product will be 1 if and 
only if the corresponding descriptors in the protein and in the 
small molecule are both equal to 1, hence this representation 
allows to encode the simultaneous presence of particular 
features in both the protein and the ligand. Unfortunately, 
this rich representation can hardly be computed for classical 
vectors of descriptors due to the explosion in the size of the 
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tensor product vector: for example, using a vector of molecu-
lar descriptors of size 1024 for small molecules, and repre-
senting a protein by the vector of counts of all 2-mers of 
amino acids in its sequence (dP = 20  20 = 400) results in 
more that 400 thousands descriptors in the tensor product. 
The kernel formulation has a very strong advantage here: 
indeed, it can be shown with classical algebra that the kernel 
associated with a tensor product, which is usually called the 
tensor product kernel and denoted kP  kM, is simply the 
product of individual kernels [37]: 

kP  kM((p,m), (p’,m’)) = kP(p,p’) kM(m,m’). 

 This shows that just multiplying any protein kernel with 
any small molecule kernel results in a valid kernel for pro-
tein-ligand pairs, which encodes a rich information about 
features jointly present in the protein and the molecule. 

 Recently, this useful property has been investigated by a 
few authors [33] who applied the tensor product kernel to 
two vectors of descriptors for proteins and molecules, in 
order to estimate a model to predict interactions between 
drug targets and small molecules from a collection of dispa-
rate HTS campaigns aimed at screening 24 biological tar-
gets. The molecular descriptors ranged from atom frequen-
cies and topological indexes to 3D surface area descriptors, 
while the protein descriptors encode information about the 
amino acids in the binding pocket. The study concluded that 
the tensor product combined with a SVM facilitates the im-
provement of the prediction accuracy over models trained for 
each target independently from each other. We [34] followed 
a similar approach in the context of epitope prediction for 
multiple MHC-I alleles, i.e. interaction between short pep-
tides and MHC-I molecules. In that case, the candidate epi-
topes (short peptides of 9 amino acids) were described by the 
amino acids present at each position, while different kernels 
for MHC-I molecules were tested, including kernels based 
on the primary sequence of the proteins, and kernels based 
on the presence of particular amino acids at key residues of 
the interaction pocket. It was observed that simultaneously 
learning predictors for the binding of short peptides to dif-
ferent alleles of the MHC-I, using a SVM in the product 
space defined by a tensor product kernel, resulted in 
significant improvement over the learning of predictors for 
different alleles independently. More recently, some attempts 
to systematically apply this strategy to large classes of thera-
peutic targets, including enzymes, G-protein coupled recep-
tors (GPCR), and ion channels have been published [35,36]. 
Combining again various descriptors for small molecules 
and protein targets with the tensor product kernel, the 
authors demonstrate that very accurate models for target-
ligand interactions can be inferred by sharing data across 
targets. In particular, they show that their model is able to 
infer correct ligands even for targets with no known ligand 
used during the training of SVM. This suggests that this 
ligand-based procedure could in principle contribute to the 
prediction of ligands for orphan drug targets, which is of 
tremendous interest for the pharmaceutical industry.  

6. CONCLUSION 

 Kernel methods have become prominent in both bioin-
formatics and chemoinformatics. In particular much effort  
 

has been spent on the construction of various kernel func-
tions for proteins and small molecules, which capture vari-
ous structural, evolutionary or physico-chemical properties 
of these molecules. Kernel methods provide state-of-the-art 
performance on many protein or small molecule 
classification or regression tasks, and offer a promising 
framework for the new field of in silico chemogenomics. In 
particular various operations on kernel functions allow the 
principled construction of kernels for target-ligand pairs, 
resulting in the systematic and implicit construction of a 
combined target-ligand space amenable to various data 
analysis by kernel methods. Given the large choice of exist-
ing protein and molecule kernels, operations on kernels, and 
kernel methods, we believe the burgeoning field of kernel 
methods for in silico chemogenomics offers a lot of opportu-
nities to accompany the current in vitro and in vivo che-
mogenomics wave. 

 The first attempts to apply these state-of-the-art machine 
learning algorithms to in silico chemogenomics are very 
encouraging, although it is still a bit early to assess their real 
impact on the drug discovery process. It is likely that new 
issues related to the particular data manipulated will arise, 
such as the fact that the set of known interactions involves 
only a very small number of molecules and proteins com-
pared to the huge size of the chemical and biological space, 
and that the negative results are usually not recorded in HTS 
campaigns although they may be useful to train in silico 
chemogenomics models. These and other challenges now 
need to be clearly identified and taken into account for the 
development and improvement of in silico models.  
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