
Golgi-derived CLASP-dependent Microtubules Control Golgi 
Organization and Polarized Trafficking in Motile Cells

Paul M. Miller1, Andrew W. Folkmann1, Ana R.R. Maia1,2, Nadia Efimova1, Andrey 
Efimov1,3, and Irina Kaverina1,*

1Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, 
TN 37232, USA

2Institute for Molecular and Cell Biology, University of Porto, Porto 4150-180, Portugal

3Now at Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 
37232, USA

Abstract

Microtubules are indispensable for Golgi complex assembly and maintenance that is an integral 

part of cytoplasm organization in interphase mammalian cells. Here, we show that two discrete 

microtubule subsets drive two distinct, yet simultaneous, stages of Golgi assembly. In addition to 

the radial centrosomal microtubule array, which positions the Golgi in the cell center, we identify 

a role for microtubules that form at the Golgi membranes in a manner dependent on microtubule 

regulators CLASPs. These Golgi-derived microtubules draw Golgi mini-stacks together in 

tangential fashion and are critical for establishing continuity and proper morphology of the Golgi 

complex.

We propose that specialized functions of these two microtubule arrays arise from their specific 

geometries. Further, we demonstrate that directional post-Golgi trafficking and cell migration 

depend on Golgi-associated CLASPs suggesting that correct organization of the Golgi complex by 

microtubules is essential for cell polarization and motility.

Introduction

The microtubule (MT) cytoskeleton is to a large extent responsible for dynamic architecture 

of the cytoplasm including global changes associated with cell cycle progression. In order to 

successfully adapt to dynamic conditions, cells often distribute the MT “work-load” to 

functional MTs subsets that are specific for interphase or mitosis [1–3]. MT subsets can be 

distinguished, for example, by their dynamic or motor binding properties. In particular, 

dynamic properties of mitotic MTs differ between kinetochore and astral MT subsets. 

Similarly, distinct front-oriented stable MT arrays establish polarity of motile interphase 

cells [4, 5]. Orientation and positioning of MTs within a cell, which are important for 

functional subset partition, to a large extent depend on the MT nucleation sites. For example, 
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MTs originating at the centrosomes and kinetochores build a mitotic spindle in cooperative 

fashion due to their distinct geometry and growth directionality [6].

MT subsets of distinct origin exit also in motile interphase cells. In particular, we have 

recently discovered a novel MT subset that is nucleated at the Golgi apparatus [7]. In 

contrast to radial centrosomal MTs, Golgi-derived MTs form a wide array extending toward 

the cell edge. This array specifically depends on MT-stabilizing proteins CLASPs (CLIP-

associated proteins), which coat Golgi-derived MTs and thus make them biochemically and 

dynamically dissimilar from the centrosomal array. Thus, the Golgi-derived MT subset is 

characterized by specific origin, orientation, and protein composition. Do distinct properties 

of Golgi-derived MTs confer specific functional abilities to this MT subset?

Interphase mammalian cells typically have an integrated, centrally located Golgi complex 

that serves as the major center for protein sorting. Upon mitotic exit, Golgi mini-stacks are 

formed by tightly regulated fusion of small Golgi membrane vesicles into cisternae that 

undergo subsequent stacking. Formation of mini-stacks is MT-independent and can be 

reconstituted in cell-free system [8] or in a MT-devoid cell at ER exits [9]. Next, these mini-

stacks utilize evolving interphase MT network and the minus-end directed MT motor dynein 

[10–13] to form a continuous Golgi ribbon. However, it is not clear how correct 

organization of the Golgi ribbon is achieved by dynein transport. Given that CLASP-

dependent MTs are closely associated with the Golgi membrane, their specific function may 

relate to the Golgi organization.

Here, we show that MTs growing from dispersed Golgi stacks exhibit a classical “search and 

capture” [14] scenario whereby mini-stacks cluster in the cell periphery. Furthermore, 

Golgi-derived and centrosomal MTs act in concert to organize individual Golgi stacks into a 

continuous ribbon structure that, in turn, supports the polarity of post-Golgi vesicular 

trafficking in migrating cells. Centrosomal MTs alone appear to be insufficient for proper 

Golgi ribbon formation though they actively support central Golgi positioning. Importantly, 

the distinction between centrosomal and Golgi-derived MT functions arises from their 

geometry and orientation within the cell. Our findings provide the first demonstration of the 

functional significance of Golgi-derived MTs and highlight the defining role of functionally 

distinct MT subpopulations in organization of cellular architecture.

Results

MTs assemble the Golgi ribbon in two stages

Individual Golgi mini-stack formation is MT-independent, while Golgi complex assembly 

requires MTs [11, 15]. To investigate in detail explicitly the MT-dependent assembly, we 

employed nocodazole washout assay. Full MT depolymerization in Human Retinal Pigment 

Epithelial (RPE1) cells by nocodazole treatment resulted in dispersal of Golgi mini-stacks 

(Fig. 1a,b). Live-cell imaging of Golgi re-assembly upon nocodazole washout (Fig. 1a; 

Movie 1) revealed that Golgi mini-stacks undergo initial clustering in the cell periphery 

(Fig. 1a). Quantitative analysis of both live imaging sequences and fixed immunostained 

samples revealed that Golgi particle size doubled at this time (Fig. 1d,e). Clusters then 

relocated to the cell center to complete Golgi ribbon assembly (Fig. 1a).
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Thus, MTs assemble the Golgi by two distinct mechanisms: one that does not involve 

relocation toward the centrosome and another that occurs in vicinity of the centrosome. We 

refer to these processes as the “G-stage” (for Golgi) and the “C-stage” of the Golgi assembly 

(for centrosome), respectively.

CLASPs are required for initial Golgi clustering

We next addressed the roles of Golgi-derived versus centrosomal MTs in the two-stage 

process of Golgi assembly. Since CLASPs are essential for Golgi-associated MT nucleation, 

siRNA targeting of CLASPs (Fig. 1c) explicitly removes the Golgi-derived but not 

centrosomal MT subset [7]. Hence, we analyzed the process of Golgi assembly in CLASP-

depleted cells (Fig 1b,d). Here and below, cells treated with two independent targeting 

sequences for CLASP1 and CLASP2 were compared to cells treated with non-targeting 

siRNA oligonucleotides (NT control). After nocodazole washout, Golgi mini-stacks did not 

form larger cytosolic clusters (G-stage) (Fig. 1b; Movie 1). Instead, unaltered mini-stacks 

relocated toward the cell center and gathered around the centrosome (C-stage), although 

they failed to form a well-organized Golgi ribbon (Fig. 1b).

Accordingly, Golgi particle size analysis based on both live imaging data and 

immunostainings revealed that Golgi particle area in CLASP-depleted cells remained 

constant by 20 minutes (Fig. 1e), and final average mini-stack area in CLASP-depleted cells 

was substantially lower than in control cells (Fig. 1d,e; Fig. S1). These observations indicate 

that CLASPs are essential for the G-stage of Golgi assembly, and that the C-stage alone is 

not sufficient for the proper Golgi ribbon assembly.

Two-stage Golgi assembly occurs upon mitotic exit

Next we visualized Golgi assembly in untreated cells after mitotic exit (Fig. 2; Movie 2). In 

mCherryRab6- or GFP-GM130-expressing cells exiting mitosis, the average size of detected 

Golgi mini-stacks (0.34±0.01μm) did not differ from the size of mini-stacks in nocodazole-

treated cells (0.35±0.02μm), indicating that these mini-stacks were likely assembled in MT-

independent manner by fusion and stacking of membranes brought together by simple 

diffusion [8]. During subsequent Golgi assembly, distinct G- and C- stages were easily 

distinguishable by analysis of the Golgi particle size increase (Fig. 2b). Mini-stack 

clustering in G-stage often occurred at the cell periphery away from the centrosome (Fig. 

2c), suggestive of the role of Golgi-derived MTs that were detected at the periphery of cells 

exiting mitosis (Fig. S2). The Golgi assembled faster, and temporal separation between G- 

and C-stages was less distinct than in nocodazole washout assay. Possibly, the efforts of 

centrosomal and Golgi-derived MTs were better coordinated in a rounded mitotic cell than 

in a spread cell. Because CLASPs are indispensable for mitosis, we did not directly test their 

role in post-mitotic assembly; our nocodazole washout results, however, suggest that G-

stage Golgi clustering in this scenario is likely CLASP-dependent.

Cooperation of Golgi-derived and centrosomal MTs drive two stages of Golgi assembly

To determine whether CLASPs support Golgi mini-stack clustering at the cell periphery via 

Golgi-derived MT formation, we directly followed MT involvement in this process. RPE1 

cells were co-transfected with variable Golgi stack markers and 3GFP-EMTB to label MTs 
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[16]. As expected, nocodazole washout assay in NT-control cells revealed MT nucleation at 

individual Golgi mini-stacks as well as at the centrosome (Fig. 3a, c–d; Movie 3). To avoid 

overlap between G-stage and C-stage, we specifically followed G-stage clustering events at 

the cell periphery before centrosomal MTs extended into this area. As MTs formed at Golgi 

mini-stacks polymerized toward nearby mini-stacks, the latter ones were transported into 

close proximity of the former that allowed subsequent mini-stack linking. Transport of mini-

stacks during the G-stage occurred in random directions, often tangential relative to radial 

centrosomal array.

In contrast, CLASP-depleted cells failed to show MT nucleation at Golgi mini-stacks [7] 

while centrosomal MT nucleation remained functional (Fig. 3b). Early clustering of mini-

stacks at the cell periphery was not detected. However, centrosomal MTs transported Golgi 

mini-stacks into close proximity of each other and supported their clustering in the central 

cell area (Fig. 3e–f; Movie 3). In these cells, mini-stack clustering occurred in a radial 

manner consistent with radial architecture of the centrosomal MT array. Thus, centrosomal 

MTs are responsible for the C-stage of Golgi assembly including gathering mini-stacks at 

the cell center and their limited linking along the radial axis.

MT orientation within arrays regulates Golgi organization

Because MT orientation appeared important for Golgi stack clustering in nocodazole 

washout assays, we further addressed the role of MT orientation in Golgi organization. MT 

directionality was detected as described in Efimov et al [7]. In brief, RPE1 cells were 

transfected with GFP-EB3 to mark MT plus-tips and mCherry-GT to label the Golgi, and 

time-lapse video sequences were recorded. Distinct centrosomal MT and Golgi-derived MT 

arrays were detected in NT-control cells (Fig. 4a,a”). Interestingly, while centrosomal MTs 

showed clear radial geometry, MTs formed at the Golgi were predominantly tangential. 

Golgi ribbons (Fig. 4a') were aligned along Golgi-derived MT tracks suggesting that they 

were primarily formed via tangential mini-stack linking and fusion (Fig. 4a).

In contrast, CLASP-depleted cells contained only radial MT tracks emanating from the 

centrosome (Fig. 4b,b”), while the Golgi (Fig. 4b') formed a poorly organized assembly 

distributed around the centrosome. Apparently, a radial MT array does not allow for 

tangential linking and fusion of Golgi mini-stacks in these cells. These data indicate that 

CLASP-dependent Golgi-derived MTs are required for tangential Golgi stack linking within 

the Golgi ribbon.

Dynein is required for both G-stage and C-stage of Golgi assembly

Since dynein is required to maintain an organized Golgi complex [11], we addressed 

whether it is involved in G-stage and/or C-stages of Golgi assembly. Nocodazole washout 

assays in RPE1 cells co-expressing Golgi markers and GFP-EB3 revealed that mini-stacks 

during G-stage moved in a minus-end directed manner (Fig. 4c). To test whether this 

movement is driven by dynein, dynein activity was inhibited by either p50 dynamitin [17, 

18] or the CC1 domain of p150Glued [19] over-expression (Fig. 4d,f). Golgi particle size 

was analyzed in live cell imaging sequences (Fig. 4e) and in fixed immunostained cells (Fig. 

4f). Golgi particle size did not change throughout nocodazole washout indicating that neither 
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G-stage nor C-stage of stack clustering occurs in the absence of dynein-dependent transport 

(Fig. 4d). At the same time, plus-end motors remained functional and MTs were available 

for trafficking as evident from the transport of Golgi mini-stacks toward the cell periphery 

(Fig. 4d).

CLASP-dependent MTs control Golgi-ribbon morphology

Our data support a model wherein Golgi-derived MTs play a distinct and essential role in 

Golgi organization (Fig. 4g). Indeed, while in NT-control cells a classic Golgi ribbon 

associated with Golgi-derived MT array was observed (Fig. 5a,e), in CLASP-depleted cells 

(Fig. 5b,c,f) MTs formed a radial array and the Golgi showed circular morphology (Fig. 5f). 

The Golgi shape was reverted back to a ribbon by expression of a non-silenceable GFP-

CLASP2α rescue construct in CLASP-depleted cells (Fig. 5d). Dependence of the circular 

Golgi phenotype on the Golgi-associated CLASP fraction was confirmed by over-expressing 

GFP-tagged C-terminus of CLASP2 that competes full-length CLASPs off the Golgi (Fig. 

S3). Similar to CLASP-knockdown, cells over-expressing GFP-CLASP2C had circular 

Golgi complex (Fig. 5g).

To quantify this phenomenon, Golgi circularity index was calculated in relation to CLASP 

intensity at the Golgi. In order to directly correlate CLASPs presence with observed 

phenotypes, cells transfected with CLASP siRNA and NT control siRNA were co-plated in 

a proportion of 1:1. In this mixed cell population, the Golgi outlines were identified by 

GM130 immunostaining. Golgi outline circularity indexes showed striking negative 

dependence on intensities of the immunostained CLASPs within this area (Fig. 5h). 

Accordingly, the Golgi circularity enhanced as full length CLASP2 was removed from the 

Golgi by GFP-CLASP2C expression (Fig. 5i) whereas GFP-only expression had no effect 

(Fig. S4). These results indicate that Golgi-localized CLASPs maintain polarized functional 

Golgi organization [20], probably through Golgi-derived MT nucleation.

CLASP-dependent MTs control Golgi ribbon continuity

If without Golgi-derived MTs Golgi mini-stack linking is incomplete, membrane fusion 

required for functional Golgi complex continuity would likely be defective. We performed 

3-dimensional Golgi fragmentation analysis on cells immunostained for TGN-46 (data not 

shown) and GM130 (Fig. S5). CLASP-knockdown cells contained significantly higher 

number of fragments as compared to NT-control (Fig. 6a,e). Rescue experiments returned 

Golgi fragment number back to control levels (Fig. 6a,e). Golgi continuity was further 

examined by FRAP (Fluorescence Recovery After Photobleaching) to assess GT flow within 

the Golgi network. As expected, fast recovery in control cells (Fig. 6b,f) was typical for a 

continuous Golgi ribbon where Golgi enzymes freely re-distributed throughout the structure 

[21–23]. Incomplete fluorescence recovery of CLASP-knockdown cells (Fig. 6c–d,f) 

indicated that Golgi enzyme mobility between stacks was significantly restricted.

Together, these data reveal that the Golgi is highly fragmented in CLASP-knockdown cells 

indicative of impaired membrane fusion, which is likely a result of missing tangential 

linking by Golgi-derived MTs.
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Directional trafficking defects in cells lacking Golgi-derived MTs

One logical function of a properly organized Golgi ribbon is support of directional post-

Golgi trafficking. Because CLASP-dependent MTs organize the Golgi ribbon, we examined 

their role in the process of polarized post-Golgi trafficking by monitoring secreted 

fluorescently tagged Neuropeptide-Y (NPY) [24, 25]. Individual NPY-containing vesicles 

(Fig. 7a,b) were tracked from the Golgi to the plasma membrane, vesicle tracks were created 

(Fig. 7a',b') and their directionality was quantified in four cell quadrants (Fig. S6). While 

NT-control cells exhibited polarized trafficking toward the leading edge (Fig. 7a',c,d), cells 

after CLASP depletion (Fig. 7b',c, d) or removal from the Golgi by GFP-CLASP2C over-

expression (Fig. 7c, d) exhibited randomized symmetric trafficking patterns. VSVG 

trafficking assays (data not shown) show no differences in overall trafficking to the plasma 

membrane upon CLASP knockdown indicating that directionality but not efficiency of post-

Golgi trafficking depends on Golgi-associated MTs. At the same time, overall MT network 

also becomes symmetric upon CLASP depletion (Fig. S7), correlating with the fact that 

directional Golgi-originated MT array is missing in CLASP depleted cells [7] (Fig. 4b).

Migration defects in cells lacking Golgi-derived MTs

Golgi ribbon integrity [26] and asymmetry of post-Golgi transport [27] are thought to play 

an important role in polarized cell motility along with other potential functions of front-

oriented MT arrays [28, 29]. To test for potential migration defects, single NT-control, 

CLASP-depleted, and GFP-CLASP2C over-expressing cells were monitored by DIC 

microscopy. CLASP-depleted cells were analyzed only if post-recording immunostaining 

confirmed non-detectable CLASP levels. NT-control cells migrated in directionally 

persistent fashion (Fig 8a,e; Movie 4). CLASP-depleted (Fig. 8b–d; Movie 4) cells exhibited 

random migration, consistent with previous findings [30]. Similar random migration of 

GFP-CLASP2C over-expressing cells (Fig. 8d,e) suggested that specifically Golgi-

associated CLASPs were involved in migratory persistence.

Thus, random migration pattern was observed under the same conditions as the random 

trafficking (Fig. 7). In order to observe the trafficking pattern and cell edge protrusions in 

the same cell, we co-expressed NPY as a trafficking marker and RFP-cortactin [31] as a 

marker of protrusion activity (Fig. 8i,j). Cell migration and cortactin distribution were 

followed within 1 hour of migration (Fig. 8k,l). One minute NPY tracks were recorded at the 

beginning and at the end of the cortactin recording. NPY track distribution was compared to 

the relative length of cortactin-rich cell edge within the same quadrants (Fig. S6) throughout 

the recording. Persistence of cortactin accumulation over time at one cell side directly 

correlated with the load of vesicular trafficking to that side (Fig. 8f–h) in both NT control 

and CLASP-depleted cells, suggesting that vesicular trafficking is likely involved in 

protrusion site stabilization and may serve a mechanism whereby Golgi-associated CLASPs 

supports directionally persistent migration.

Discussion

The major MT function is spatial organization of the cytoplasm at particular time points. MT 

network properties, including specific nucleation sites, orientation, dynamics and molecular 
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motor affinity establish a fine-tunable machine for organelle positioning. The best-studied 

MT-driven positioning machine is the mitotic spindle. Chromosome location by a “search 

and capture” mechanism [14] involves variability of all above-listed parameters. Assembly 

of the Golgi complex described herein is driven by a similar arrangement though this 

machinery is not understood as clearly as mitosis. Yet, Golgi assembly by G- and C-stage 

mechanisms provides a strong analogy to modern understanding of the mitotic spindle, 

which is cooperatively built by centrosomal and kinetochore-derived MTs [6]. In both cases, 

correct organelle positioning is achieved by cooperation of two MT subsets bearing their 

own functions due to distinct sites of origin.

Upon nocodazole washout, Golgi undergoes two distinct, yet simultaneous, rearrangements. 

In G-stage, Golgi-derived MTs organize peripheral Golgi mini-stacks into larger clusters 

similar to melanosomes in pigment cells [32]. Simultaneously, the C-stage drives 

relocalizing stacks toward the cell center thought it appeared insufficient for correct Golgi 

assembly. Why is the unconventional, Golgi-based, nucleation mechanism so important for 

the Golgi assembly by MTs?

This question can be addressed from a purely geometric as well as from a biochemical point 

of view. One of the reasons for efficient mini-stack gathering by Golgi-derived MTs could 

be that the their anchoring sites are distributed evenly throughout the cytosol producing 

fusion templates of variable orientations. This geometry helps to overcome limitations of 

diffusion-based mini-stack association and leads to a rapid increase in Golgi particle size. As 

a result, the probability that centrosomal MTs will easily find and transport mini-stacks 

toward the cell center is significantly enhanced. This phenomenon likely enhances Golgi 

assembly rate and may be important for efficient cell cycle progression upon mitotic exit. In 

the assembled Golgi complex, tangential Golgi-derived MTs likely serve for lateral cross-

linking of mini-stacks. Such cross-linking is essential for cisternal fusion and functional 

continuity of the Golgi complex as evident from Golgi fragmentation and low enzyme 

mobility in CLASP-depleted cells (Fig. 6).

Besides geometric clues, it is possible that Golgi-derived MTs possess distinct biochemical 

properties, such as altered balance between plus-end directed and minus-end-directed motor 

affinity or regulation of proteins involved in membrane fusion. It is known that Golgi 

membrane fusion requires highly regulated molecular machinery [33, 34]. While our study 

does not address the biochemistry of fusion, it emphasizes that MT-driven mutual 

localization of membranes [12] is critical for this machinery to work. Multiple structural 

biology studies have proven the importance of proper mutual positioning of two entities for 

a chemically correct interaction to occur. Such correct positioning is as important on the 

level of organelles as on the level of single molecules and their domains. Golgi mini-stacks 

in the absence of MTs fragment throughout the cytosol though their membranes carry all 

molecules required for efficient fusion. Therefore, Golgi mini-stacks need to be brought into 

close proximity for fusion machinery to proceed. Practically, MTs can be compared to 

surface catalysts, which hold membranes together. Since the membrane fusion machinery is 

compartment-specific [35, 36], MTs may promote connection of homotypic cisternae (e.g. 

cis with cis, or trans with trans). To date, Golgi-derived MTs were suggested to bind either 

cis-Golgi through AKAP450 [37] or the TGN (trans-Golgi Network) through CLASPs [7]. 
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The latter possibility is supported by the recent finding that a CLASP-binding TGN protein 

(GCC185) is involved in lateral mini-stack cross-linking [38]. Nevertheless, whether Golgi-

derived MTs catalyze homotypic fusion remains to be investigated.

Altogether, we propose that a properly organized Golgi ribbon arises from a concerted effort 

of G-stage tangential cross-linking and C-stage radial gathering of stacks (Fig. 4g). 

According to this model, the distinct geometry of Golgi-derived and centrosomal MTs 

underlies requirement of both MT subpopulations for Golgi ribbon organization.

Another important function of Golgi-derived MTs is support of directional trafficking in 

motile cells, which may be utilized by two mechanisms (Fig. 8m). First, MT-dependent 

Golgi morphology may contribute to trafficking directionality if post-Golgi carriers 

predominantly bud off one side of the polarized Golgi. Second, vesicular transport may be 

polarized due to direction bias of these MTs toward the cell front [7]. Either way, the 

observed correlation between the CLASP effects on trafficking and protrusion stability (Fig. 

7) suggests that trafficking contributes to CLASP-dependent regulation of migration. 

Importance of polarized Golgi organization for directional cell motility has been recently 

supported by data arising from the Golgi ribbon disruption by a number of alternative 

protein depletions [26]. Additionally, CLASPs function in MT capture at cortical sites [39] 

may be involved in regulation of migration. Notably, our results involving removal of 

CLASPs from the membrane (that may involve both Golgi and cortical site association [39]) 

indicate that CLASP functioning at the membrane and not CLASP MT-binding is important 

for directional migration. It is yet unclear how CLASP activities at the Golgi and at cortical 

sites are coordinated. One possibility is that Golgi-derived MTs that possess high CLASP 

affinity as they form [7] represent the same population of microtubules that are later 

associated with CLASP at the cell periphery [40] and anchored at the cortical sites [39]. 

Thus, we propose that Golgi-derived MTs facilitate directional persistence of cell migration, 

on one hand, through Golgi-ribbon organization and polarized trafficking, and, on the other 

hand, by establishment of a directional array of CLASP-rich MTs extending toward the cell 

front.

Methods

Cells

Immortalized human retinal pigment epithelial cells hTert-RPE1 (Clontech) were 

maintained in DMEM/F12 with 10% fetal bovine serum (FBS). GFP-tubulin expressing 

LLC-PK1 stable line (renal epithelial cell line derived from porcine kidney, gift of P. 

Wadsworth, Amherst, MA) were cultured in a mixture of Opti-MEM and F10 (1:1) 

supplemented with 10% of fetal bovine serum. Cells were grown in 5% CO2 at 37°C. Cells 

were plated on fibronectin-coated glass coverslips 24 hours before experiments.

Treatments

For MT depolymerization and Golgi dispersal, nocodazole (2.5μg/ml) was added to culture 

media for 2 hours. For Golgi reassembly experiments, cells were rinsed five times with ice-

cold medium to remove nocodazole and then moved to a dish with warm (37°C) medium 
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(time 0 for Golgi reassembly). For live imaging of Golgi reassembly, cells were washed 

with cold medium directly at the microscope stage after initial recording of cells in 

nocodazole. Temperature was slowly raised to 37°C by the heated stage. For dynein 

inhibition cells were transfected with 1.5μg of GFP-p50 or RFP-RCC1 (gift from T.A. 

Schroer, Baltimore, MD).

siRNA and Expression Constructs

Two alternative combinations of mixed siRNA oligos against CLASP1 and CLASP2 [41] 

were transfected using HiPerFect (Qiagen) according to the manufacturer's protocol. 

Combination 1: CLASP1 siRNA targeted sequence 5'-GGATGATTTACAAGACTGG-3'; 

CLASP2 siRNA targeted sequence 5'-GACATACATGGGTCTTAGA-3'. Combination 2: 

CLASP1 siRNA targeted sequence 5'-GCCATTATGCCAACTATCT-3'; CLASP2 siRNA 

targeted sequence 5'-GTTCAGAAAGCCCTTGATG-3'. Experiments were conducted 72 

hours post-transfection as at this time minimal protein levels were detected. Nontargeting 

siRNA (Dharmacon) was used for controls. Empty pEGFP-C1 vector (Clontech) served as a 

control for circularity quantifications. mCherry plasmid was provided by Dr. R. Tsien (San 

Diego, CA). YFP-GT (YFPGalactosyltransferase; Clontech), mCherry-GT (modified from 

Clontech), GFP-GM130 (gift from C. Sütterling, Irving, CA), and Cherry-Rab6 (gift from 

A. Akhmanova, Rotterdam, The Netherlands) were used for Golgi visualization. EGFP-EB3 

(gift from A. Akhmanova, Rotterdam, The Netherlands), mCherry-EB3 (gift from J.V. 

Small, Vienna, Austria), 3xGFP-EMTB (gift from J.C. Bulinski, New York, NY) were used 

for MT plus tip and MT visualization. GFP-CLASP1α, GFP-CLASP2α, RFP-CLASP2, 

GFP-CLASP2-C, and the nonsilenceable rescue construct GFP-CLASP2α are described in 

Mimori-Kiyosue et al (2005). GFP-Centrin (gift from M. Bornens, Paris, France) was used 

to mark the centrosome. RFP- and Venus-NPY constructs were provided by Atsushi 

Miyawaki (Saitama, Japan). Cell polarity marker RFP-cortactin was provided by Marko 

Kaksonen, UC Berkeley. RPE1 cells were transfected with Fugene6 (Roche), and LLC-PK1 

cells with Effectene (Qiagen) according to manufacturer's protocols.

Antibodies and Immunofluorescence Details

Rabbit polyclonal antibodies against CLASP2 VU-83 are described in Efimov et al. [7]. 

Rabbit polyclonal antibodies against CLASP1 were provided by Dr. F. Severin (Dresden). A 

mouse polyclonal antibody against Actin (NeoMarkers) was used. For Golgi compartment 

identification, a mouse monoclonal antibody against GM130 (Transduction Laboratories) 

and a sheep polyclonal antibody against TGN46 (Serotec) were used. MTs were stained with 

a rat monoclonal YL1/2 antibody (Abcam). Cells were fixed in cold methanol (10' at −20°C) 

for CLASPs stainings. For MT staining and Golgi reconstruction cells were fixed (15' at 

room temp.) in 2% paraformaldehyde, 0.1% Glutaraldehyde, 0.5% Saponin in cytoskeleton 

buffer (10 mM MES, 150 mM NaCL, 5 mM EGTA, 5 mM glucose, and 5 mM MgCL2, pH 

6.1). Alexa488 and Alexa568-conjugated highly cross-absorbed goat anti-mouse IgG 

antibodies, Alexa568-conjugated goat anti-rat IgG antibodies, and Alexa568 donkey anti-

sheep IgG (Molecular Probes) were used as secondary antibodies.
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Fluorescence Recovery after Photobleaching

RPE1 cells treated with non-targeting or CLASPs siRNA were transfected with YFP-GT or 

mCherry-GT and photobleached for 7 seconds with a 10mW DPSS laser 85YCA010 

(Melles Griot) by focusing the laser light on the selected Golgi area with a custom-made 

lens (Nikon) placed in position of the filter cube. Single-channel movies were recorded 

using wide-field microscopy for 5 minutes (3 seconds/frame) after bleaching.

Quantitative Analysis

Golgi assembly

Images from time points (nocodazole washout: 0, 20, 40, and 60 minutes; mitotic exit: 0, 8, 

and 20 minutes) were obtained from time-lapse movies of cells expressing either YFP-GT, 

mCherry-GT, or mCherry-Rab6 to label the Golgi. Images were processed by background 

subtraction and standardized entropy thresholding, then particle area was quantified using 

ImageJ analyze particles function.

MT plus end and NPY vesicle tracking analyses

For plus end and vesicle tracking, time-lapse recordings of RPE1 cells expressing 

fluorescently labeled MT tip marker EB3 (5 sec/frame) or NPY (Venus or RFP) to mark 

post-Golgi carriers (1 sec/frame) were processed by rolling-ball background correction. 

Then, a custom script in IPLab software created tracks by rolling average sequences over 4 

frames to precisely follow MT tips and vesicles. The manual tracking plugin of ImageJ 

software was used to follow tracks.

Circularity

To apply circularity measurements to the Golgi, a freehand selection option in ImageJ 

software was used to outline the Golgi based on GM130 staining. Circularity index values 

were assigned to Golgi outlines by ImageJ circularity plugin (http://rsb.info.nih.gov/ij/

plugins/circularity.html) where Circularity = 4pi(area/perimeter^2). A circularity value of 1 

corresponds to a perfect circle. Circularity index was previously used by Patel et al. [42] to 

analyze overall cell shape and by Thomas and Wieschaus [43] to measure microfilament 

ring circularity during cellularization.

3D Golgi analysis

Confocal z-slices (0.2μm) were analyzed for 3D continuity by ImageJ 3D objects counter 

plugin and ImageJ Volume Viewer plugin was used for 3D Golgi reconstruction.

Fluorescence recovery after photobleaching

Fluorescence intensity in bleached and non-bleached regions of the Golgi was measured 

using ImageJ software. Bleached areas were normalized to non-bleached areas both pre- and 

post-bleach in order to obtain fluorescence recovery values. Data represents percentage of 

fluorescence recovery in the bleached region.
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NPY quantification

Cells were divided into four quadrants (Fig. S6). A line was drawn down the cell connecting 

the center of the Golgi and the center of the nucleus. This line was then rotated both +/− 45° 

in order to create four 90° quadrants corresponding to the cell front (containing the Golgi), 

right, left, and rear. Tracking of post-Golgi cargos were assigned to each of these categories 

based upon which quadrant the track fused with the plasma membrane at the cell periphery.

Directional persistence of cell migration

Cell migration tracks were quantified by “Manual tracking” plugin of ImageJ using nuclei 

positions in DIC recordings of migrating single cells as reference points. Directional 

persistence was quantified as final distance of cell relocation divided by total migration 

track.

Cortactin quantification

Cells were divided into quadrants (Fig. S6). Cell outlines were generated by tracing around 

the entire cell to obtain a total perimeter measurement. A line was drawn to highlight 

cortactin rich regions of cell border and the total length of this line was quantified as a 

percentage of the total cell perimeter and assigned to the appropriate cell quadrant (same as 

for NPY quantification). Images from selected time points (0, 15, and 30 minutes) were 

calculated for each cell and combined to obtain a total average cortactin percentage per cell 

quadrant for each cell.

Image Acquisition and Processing

Fig. 1a–b: Wide-field fluorescent video frames, 15 seconds between frames, 200ms 

exposure, inverted images. Fig. 2a, c: Maximum intensity projection of time-lapse confocal 

slices (10, 1 micron slices), 1 minute between frames, 100ms exposure time. Fig. 3a–f: 

Maximum intensity projection of time-lapse confocal slices (10, 0.20 micron slices), 16 

seconds between frames, 200ms exposure time for red and green channels. Fig. 4a–c: Wide-

field fluorescent video frames, 5 seconds between frames, 200ms exposure time red and 

green channels (a–c); 15 seconds between frames, 200ms exposure time (d) inverted image. 

Fig. 5: Maximum intensity projection of confocal stacks (10, 0.20 micron spacing (a–d); 20, 

0.20 micron spacing (e–f); 10, 0.20 micron spacing (g)). Fig. 6b–d: Wide-field fluorescent 

video frames, 3 seconds between frames, 200ms exposure (b), 300ms exposure time (c–d). 

Fig. 7a–b: Wide-field fluorescent video frames, 1 second between frames, 40 ms exposure 

time. Fig. 8: False-colored DIC video frames (a–d), 1 minute between frames, 100ms 

exposure time; wide-field fluorescent video frames (i–j), 5 minutes between frames 

(cortactin), 200ms exposure time; 1 second between frames (NPY), 300ms exposure time. 

For images depicting cortactin (Fig. 8i–j) the image intensity in the cell center was 

artificially decreased for clarity with overlaid NPY tracks. This modification did not affect 

cell periphery intensity within 5μm from the cell edge (region of interest). The cell cortex, 

which is the area of interest used for quantification purposes, was not artificially altered. Fig. 

S1: Wide-field fluorescent images inverted. Fig. S2: Maximum intensity projection of time-

lapse confocal slices (10, 1 micron slices), 1 minute between frames, 200ms exposure (red), 

100ms exposure time (green). Fig. S3: False-colored snapshots of 3-Dimensional 
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reconstructions from confocal z-sections (control= 8 slices, CLASP si= 15 slices, CLASP 

rescue= 8 slices; all 0.20 micron slices). Fig. S6: Wide-field fluorescent image. Fig. S7a,c: 

Maximum intensity projection of confocal stacks (16, 0.20 micron slices). Brightness and 

contrast were adjusted individually for each fluorescent channel. For images showing Golgi 

particles and MTs, gamma settings were adjusted to make small structures visible. Images 

showing MT tip and NPY tracks are shown as maximum intensity projections for 

background-subtracted time-lapse stacks (Figs. 4a–b, 7a–b, 8i–j).

Quantifying MT asymmetry

Central cell area (30% total area centered at the cell centroid) is excluded from analysis 

because the brightness of central MTs often overrides otherwise significant differences in 

the rest of the cell and interferes with MT distribution analysis. Each cell was divided into 

radial quadrants and the average intensity (I) in each quadrant was quantified. This 

parameter correlates with the number of MTs in each quadrant. Degree of asymmetry is 

quantified as the ratio of the highest to lowest intensity.

Statistical Analysis

Statistical significance was determined by Student's t-test (two-tailed unpaired). P-values < 

0.05 are shown.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The two-stage process of Golgi assembly requires CLASPs
(a–b) Video frames illustrating assembly of the Golgi marked by mCherry-tagged 

Galactosyltransferase (GT) in NT-control (a) and CLASP-depleted (siRNA combination #1, 

b) RPE1 cells recovering after nocodazole washout (noc rec). Time after nocodazole 

removal is shown. (c) Western blotting showing reduction of CLASP1 levels by ~75 % 

using siRNA combination #1 and by ~77 % using siRNA combination #2 and CLASP2 

levels by ~88 % using siRNA combination #1 and by ~74 % using siRNA combination #2. 

Actin, loading control. (d) Golgi particle size upon nocodazole washout analysis based on 

live cell imaging experiments in NT-control (n=7, 6 independent experiments) and CLASP-

depleted (n=7, 7 independent experiments) cells (as in a, b). Average fold size increase of 

Golgi particles relative to time 0 (nocodazole removal) is shown. Error bars, standard error. 

*P<0.01, **P<0.05, unpaired Student's t-test. (e) Average Golgi particle area (μm2) upon 

nocodazole washout based on GM130 immunolabeled fixed samples for of NT-control, 

CLASP siRNA combination #1, and CLASP siRNA combination #2 cells (as in Fig. S1). 

n=50 for each condition, 3 independent experiments. Error bars, standard error. *P<0.001, 

unpaired Student's t-test.
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Figure 2. Golgi assembly occurs in 2 stages upon mitotic exit
(a) Video frames illustrating post-mitotic Golgi assembly in mCherry-Rab6 expressing 

RPE1 cells. Time zero marks approximate onset of telophase. Boxed area is enlarged below. 

(b) Post-mitotic Golgi particle size based on live imaging experiments in NT-control (n=4, 4 

independent experiments) cells. Average fold increase of Golgi particles relative to time 

zero is shown. Error bars, standard error. *P<0.001, unpaired Student's t-test. (c) Enlarged 

box from (a) showing Golgi mini-stack (red) clustering (6–9', blue and yellow arrows 

indicate two separate clusters) prior to re-location toward the centrosome (10').
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Figure 3. Golgi mini-stacks clustering by Golgi-derived and centrosomal MTs
(a–b) Video frames illustrating MT formation in 3GFP-EMTB (green) and mCherry-Rab6 

(red) expressing RPE1 cells upon nocodazole washout. Time after nocodazole removal is 

shown. (a) Control cell, MTs at Golgi mini-stacks and the centrosome. (b) CLASP-depleted 

cell (siRNA combination #1), MTs at the centrosome. Areas in boxes are enlarged below. 

(c) enlarged box from (a) showing MT nucleation (chevron) at Golgi mini-stacks (red), 

binding of mini-stacks to MT (yellow arrow), and transport along MT (white arrow) 

resulting in clustering along Golgi-nucleated MT. mCherry-Rab6 (red), GFP-EB3 (green). 

Note transport of a mini stack toward cell periphery and subsequent tangential linking. (d) 

Mini-stack clustering from (c), mCherry-Rab6 alone. Blue arrow, mini-stack where MT 

nucleates. Yellow arrow, transported mini-stack. (e) Enlarged box from (b) showing 

centrosomal MTs growing (chevron), binding to 2 mini-stacks subsequently (blue and 

yellow arrows), and transport (white arrow) of the second mini-stack resulting in radial 

clustering in peri-centrosomal area. mCherry-Rab6 (red), GFP-EB3 (green). (f) Mini-stack 

clustering from (e), mCherry-Rab6 alone. Blue arrow, mini-stack proximal to the 

centrosome. Yellow arrow, transported mini-stack.
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Figure 4. Golgi assembly depends on directionality of two MT subsets and on dynein activity
(a–b) Overlaid GFP-EB3 (green) and mCherry-GT (red) video frames within 2.5 min. (a) 

EB3 tracks in a control cell illustrate radial centrosomal (yellow arrow) and tangential 

Golgi-associated (blue arrowhead) MT arrays. Box is enlarged in (a') for mCherry-GT and 

in (a”) for GFP-EB3. (b) Radial centrosomal (yellow arrow) EB3 tracks in CLASP-depleted 

cell (siRNA combination #1). Box is enlarged in (b') for mCherry-GT and in (b”) for GFP-

EB3. (c) Video frames illustrating minus-end directed mini-stack movement (yellow arrow) 

along Golgi-nucleated MTs upon nocodazole washout in mCherry-GT (red) and GFP-EB3 

(green) expressing NT control cells. MT plus end, asterisk. Time after nocodazole removal 

is shown. (d) Video frames illustrating nocodazole washout in cell over-expressing GFP-P50 

(not shown) and mCherry-GT (black). Mini-stacks move toward the cell periphery along 

forming MTs due to kinesin activity (asterisks). Time after nocodazole removal is shown. 

(e) Fold increase of Golgi particle size upon nocodazole washout based on live cell imaging 

of control (n=7, 6 independent experiments) and GFP-P50 over-expressing (n=8, 7 

independent experiments) cells. Error bars, standard error. *P<0.001, unpaired Student's t-

test. (f) Average Golgi particle area (μm2) in nocodazole (time 0) and upon 60 min washout 

in fixed samples of control, GFP-P50 over-expressing, and RFP-CC1 over-expressing cells. 

n=50 for each condition, 4 independent experiments. Error bars, standard error. *P<0.001, 

**P<0.01 unpaired Student's t-test. (g) Role of Golgi-associated MTs in Golgi ribbon 

assembly (model).
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Figure 5. CLASPs at the Golgi determine ribbon morphology
(a) Control cells have a ribbon-like Golgi (GM130, green) when CLASPs (red, a') are 

present. (b–c) Golgi (green) morphology is circular when CLASPs (red, b', c') are depleted 

from cells. (d) Ribbon-like Golgi morphology (white arrow) is restored in CLASP-depleted 

cells expressing a nonsilenceable GFP-CLASP2C construct (d', false-colored red). The 

Golgi (GM-130, false-colored green) remains circular in non-expressing cells (hollow 

arrow). (e–f) Immunostainings of Golgi (GM130, green) and MTs (red). (e) Control cell 

showing ribbon-like Golgi in the presence of Golgi-associated MTs (white arrow). (f) 

CLASP-depleted cell (siRNA combination #2) showing circular Golgi morphology and 

radial centrosomal MT array (white arrow). (g) Ribbon-like Golgi (GM130, false-colored 

green, hollow yellow arrow) turns circular (yellow arrow) in cells over-expressing GFP-

CLASP2C (false-colored red). (h) Golgi circularity depends on CLASPs intensity at the 

Golgi. Average CLASP intensity at the Golgi in mixed-culture cell plotted against 

circularity index (n=50, 4 independent experiments). (i) Removal of full-length CLASP 

results in circular morphology. Average GFP-CLASP2C intensity (pink, lower x-axis) and 

GFP vector only intensity (blue, top x-axis) in the Golgi area plotted against circularity 

index (n=50, 3 independent experiments for each condition). Cells with similar overall 

expression levels are compared, in which GFP-CLASP2c intensity in the Golgi region is 4 to 

5 times higher than GFP due to specific accumulation of GFP-CLASP2C in the Golgi area 

(~1/5 of the cell area). GFP-CLASP2C but not GFP expression leads to circular Golgi 

morphology.
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Figure 6. Golgi fragmentation in CLASP-depleted cells results in diminished enzyme mobility 
within the Golgi complex
(a) Representative data from 3-dimensional objects counter analysis based of GM130 

immunostaining. Colored segments represent interconnected Golgi fragments. (b–d) Video 

frames illustrating fluorescence recovery after photobleaching in YFP-GT expressing cells. 

Time points shown are pre-bleach (0”), bleach, and 60 seconds post-bleach. Bleached 

regions are indicated by white circles. (b) NT-control. (c) CLASP depletion siRNA 

combination #1. (d) CLASP depletion siRNA combination #2. (e) Numbers of Golgi 

fragments in NT-ctl (blue), CLASPs-depletion #1 (red), CLASPs-depletion #2 (yellow), and 

CLASP rescue (green) cells. n=30, 5 independent experiments for each condition. Error 

bars, standard error. *P<0.001, unpaired Student's t-test. (f) Graph showing fluorescence 

recovery rates for NT-control (blue), CLASP siRNA combination #1 (red), and CLASP 

siRNA combination #2 (yellow). n=20 for each condition. NT-control = 4 independent 

experiments, CLASP si #1 and CLASP si #2 = 5 independent experiments.
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Figure 7. CLASP-dependent MTs polarize trafficking to the cell front
(a–b) Video frames showing post-Golgi trafficking in Venus-NPY expressing RPE1 cells. 

(a) NT-control. (b) CLASP-depleted cell. (a, b) Snapshot of NPY vesicles (a', b'). Overlaid 

Venus-NPY images within 2 minutes show directional trafficking toward the cell front 

(asterisks) in control cells (a') and symmetric trafficking (b') in CLASP-depleted cells. (c) 

Examples of particle tracking analysis. Particle movement tracks within 2 mins for NT-

control, CLASP siRNA combination #1, CLASP siRNA combination #2, and GFP-

CLASP2C over-expressing cells. (d) Graphs showing trafficking directionality in NT-

control (blue), CLASP siRNA combination #1 (purple), CLASP siRNA combination #2 

(yellow), and GFP-CLASP2C over-expressing (green) cells. Data represents average 

percentage of tracks corresponding to the cell front, right, rear, and left. n=30 for each 

condition, NT-control = 4 independent experiments, CLASP si #1 and CLASP si #2 = 6 

independent experiments, CLASP C-term = 3 independent experiments.
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Figure 8. CLASP-dependent MTs regulate directional cell migration
(a–d) False-colored DIC video frames showing single RPE1 cell migration over a time 

period of 4 hours. Purple indicates time 0, blue = 1hr, green = 2hrs, yellow =3hrs, and red 

=4hrs. (a) Control cells exhibit directionally persistent migration. CLASP-depleted cells (b–

c) and CLASP2C (d) over-expressing cells show random migration patterns. (e) Average 

directional persistence for NT-control (n=13, blue), CLASP siRNA combination #1 (n=12, 

pink) and #2 (n=17, red), and CLASP2C over-expressing (n=15, orange) cells each from 4 

independent experiments. Error bars, standard error. *P<0.001, unpaired Student's t-test. (f–

g) NPY trafficking (green) directionality and cortactin cell edge distribution (orange) in 

migrating NT-control (f) and CLASP-depleted (g) cells. Data represent average percentage 

per quadrant (Fig. S6) of track number within 1 min and cortactin-associated cell edge 

length over 30 min thereafter. n=5 from 4 independent experiments for each condition. (h) 

Direct correlation between NPY track number and cortactin-rich cell edge in NT-control 

(blue) and CLASP-depleted (red) cells. Each point represents correlation within one 

quadrant of an individual cell. (i–j) NPY tracks within 1 minute (green) overlaid with RFP-

cortactin (red (see “Image processing”)) at 30 minutes after track recording in NT-control (i) 

and CLASP-depleted (j) cells. Arrows, cortactin enrichment. Chevrons, regions lacking 

cortactin. (k–l) Cell outlines showing cell relocation and edge dynamics over 1 hour with 10 

minute interval. (k) NT-control, same as (i). (l) CLASP-depleted cell, same as (j). (m) 

Proposed mechanisms by which CLASP-dependent MTs polarize trafficking (model).
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