
An Implementation of Bayesian Adaptive Regression Splines
(BARS) in C with S and R Wrappers

Garrick Wallstrom,
University of Pittsburgh

Jeffrey Liebner, and
Carnegie Mellon University

Robert E. Kass
Carnegie Mellon University

Abstract
BARS (DiMatteo, Genovese, and Kass 2001) uses the powerful reversible-jump MCMC engine to
perform spline-based generalized nonparametric regression. It has been shown to work well in terms
of having small mean-squared error in many examples (smaller than known competitors), as well as
producing visually-appealing fits that are smooth (filtering out high-frequency noise) while adapting
to sudden changes (retaining high-frequency signal). However, BARS is computationally intensive.
The original implementation in S was too slow to be practical in certain situations, and was found to
handle some data sets incorrectly. We have implemented BARS in C for the normal and Poisson
cases, the latter being important in neurophysiological and other point-process applications. The C
implementation includes all needed subroutines for fitting Poisson regression, manipulating B-
splines (using code created by Bates and Venables), and finding starting values for Poisson regression
(using code for density estimation created by Kooperberg). The code utilizes only freely-available
external libraries (LAPACK and BLAS) and is otherwise self-contained. We have also provided
wrappers so that BARS can be used easily within S or R.

Keywords
curve-fitting; free-knot splines; nonparametric regression; peri-stimulus time histogram; Poisson
process

1. Introduction
Figure 1 displays a normalized histogram (called a peri-stimulus time histogram, or PSTH, in
the neuroscience literature) of neuronal spiking events across time. This histogram may be
considered an estimate of a Poisson process intensity function. Overlaid on the histogram is a
Gaussian kernel density estimate (the dotted wiggly line) with bandwidth selected by unbiased
cross-validation (Venables and Ripley 2002), which smooths the histogram. From a
neurophysiological point of view, it is reasonable to expect the intensity function to vary slowly
throughout much of its domain, but perhaps rapidly in a relative short interval. In this situation,
the kernel density estimate oversmooths the rapid jump in the intensity, while undersmoothing
the portion involving slow variation. It would be preferable to use a method of estimating the
intensity function that adapts to functional variation across time.

Garrick Wallstrom, Department of Biomedical Informatics, University of Pittsburgh, Suite M-183 Parkvale Building, Pittsburgh, PA,
15213-3305, United States of America, E-mail: garrick@cbmi.pitt.edu.

NIH Public Access
Author Manuscript
J Stat Softw. Author manuscript; available in PMC 2009 September 22.

Published in final edited form as:
J Stat Softw. 2008 June 1; 26(1): 1–21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

For a Poisson process, when the events are put into small time bins, as in Figure 1, the data
form a sequence of Poisson-distributed counts and estimation of the Poisson process intensity
function becomes a Poisson regression problem. This problem motivated development of
BARS (Bayesian adaptive regression splines, DiMatteo et al. 2001), which uses regression
splines with knot sets determined adaptively via Markov chain Monte Carlo (MCMC). A
substantial literature has documented the effectiveness of spline-based nonparametric
regression and its generalizations, with the knots being determined empirically. See Hansen
and Kooperberg (2002) and the accompanying discussion. The fits by BARS (represented by
the thick smooth line) and another popular free-knot spline approach (thin line), logspline
(Stone, Hansen, Kooperberg, and Truong 1997), are displayed in Figure 1 and represent marked
improvements over the Gaussian kernel density estimate. DiMatteo et al. (2001) showed in
several examples that BARS could perform dramatically better than two closely-related
methods, which themselves were better in many examples than competitors such as wavelet-
based methods.

BARS has been used in variety of applications in neurophysiology, imaging, genetics, and
EEG analysis (see DiMatteo et al. 2001; Kass, Ventura, and Cai 2003; Kass and Wallstrom
2002; Zhang, Roeder, Wallstrom, and Devlin 2003; Wallstrom, Kass, Miller, Cohn, and Fox
2004). Furthermore, preliminary results have indicated that, with reasonable sample sizes,
posterior credible regions produced by BARS have very close to the correct frequentist
coverage probabilities. For example, simulating from a curve based on the firing-rate function
displayed in Figure 1, the coverage of the 95% posterior credible region for location of the
peak was 95.9%, with two-digit accuracy (simulation SE = .005, based on 7,600 simulated data
sets).

The original implementation of DiMatteo et al. (2001) was in S (Insightful Corp. 2003). It was
very slow, and also su ered from bugs that caused occasional very poor fits. We wished to
improve the implementation. In addition, in order to study frequentist coverage probabilities
we had to use a parallel array of multiple processors, and therefore needed self-contained code.
This article discusses a relatively fast, self-contained, and, we believe, careful BARS
implementation in C with S and R wrappers. We give an overview of BARS in Section 2 and
an overview of the code in Section 3. Section 4 describes the S and R wrappers and Section 5
gives pseudo-code for the C implementation.

2. Overview of BARS
Consider the problem of making inferences about a function f(t), where t lies in an interval
[A, B], based on data y = y1, . . . , yn obtained at t = t1, . . . , tn, with each Yj assumed to depend
probabilistically on f(tj) (and, following the usual convention, yj represents the observed value
of the random variable Yj). To solve this problem BARS fits the spline-based generalized
nonparametric regression model for data Yj depending on a variable t,

(1)

with f being a linear combination of splines having unknown sets of knot locations. Model (1)
includes a vector of nuisance parameters ζ to indicate generality, though in the Poisson case
there are no nuisance parameters. Writing f(t) in terms of basis functions bξ,h(t) as f(t) = Σh
bξ,h(t)βξ,h the function evaluations f(t1), . . . , f(tn) may be collected into a vector (f(t1), . . . , f
(tn))⊺ = Xξβξ, where Xξ is the design matrix and βξ is the coefficient vector. For a given knot
set ξ = (ξ1, . . . , ξk) model (1) poses a relatively easy estimation problem; for exponential-
family responses (such as Poisson) it becomes a generalized linear model. Selecting the interval

Wallstrom et al. Page 2

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

[A, B] can be difficult in some problems due to spline boundary conditions (see Hansen and
Kooperberg 2002, and the accompanying discussion), but in many problems such as the
neuronal spiking problem, it is rarely an issue because data are often available outside of the
time interval of interest, [A, B]. The hard part of the problem is determining the knot set ξ, and
using the data to do so provides the ability to fit a wide range of functions (as reviewed by
Hansen and Kooperberg 2002). BARS is an MCMC-based algorithm that samples from a
suitable approximate posterior distribution on the knot set ξ. This, in turn, produces samples
from the posterior on the space of splines. In practice, cubic splines and the natural spline basis
have been used in most applications. BARS could be viewed as a powerful engine for searching
for an “optimal” knot set, but because it generates a posterior on the space of splines it produces
an improved spline estimate based on model averaging (e.g., Kass and Raftery 1995) and it
also provides uncertainty assessments.

2.1. MCMC in BARS
Key features of the MCMC implementation of BARS include (i) a reversible-jump chain on
ξ after integrating the marginal density

(2)

(where y = (y1, . . . , yn)), the integration being performed exactly for normal data and
approximately, by Laplace’s method, otherwise, (ii) continuous proposals for ξ, and (iii) a
locality heuristic for the proposals that attempts to place potential new knots near existing
knots. For notational convenience here we are supressing the dependence of the knot set ξ on
the number of knots k but BARS explores the space of generalized regression models defined
by ξ and k and the prior on k can, in some cases, control the algorithm in important ways (see
DiMatteo et al. 2001; Hansen and Kooperberg 2002; Kass and Wallstrom 2002).

The essential idea of using reversible-jump MCMC to select knots was suggested by Denison,
Mallick, and Smith (1998), following the lead of Green (1995), who discussed the special case
of change-point problems. However, aspects of BARS outlined in (i)-(iii) distinguish it from
(and improve upon) the method of Denison et al. (1998) (see Kass and Wallstrom 2002). The
first implementation feature, item (i) above, introduces an analytical step within the MCMC
partly to simplify the problem of satisfying detailed balance and partly for the sake of MCMC
efficiency (which is generally increased when parameters are integrated; see Liu, Wong, and
Kong 1994). In addition, BARS takes advantage of the high accuracy of Laplace’s method in
this context. In doing so the “unit-information” prior discussed by Kass and Wasserman
(1995) and Pauler (1998) has been used (as π in (2)), and this gives the interpretation that the
algorithm is essentially using BIC to define a Markov chain on the knot sets. The importance
of performing the integral (2), at least approximately, has been stressed by Kass and Wallstrom
(2002). Continuous proposals and the locality heuristic (items (ii) and (iii)) together allow knots
to be placed close to one another, which is advantageous when there is a sudden jump in the
function.

For each draw ξ(g) from the posterior distribution of ξ, a draw is obtained from the
conditional posterior of βξ, conditionally on ξ(g). The conditional posterior of βξ often may be
assumed normal, but in some cases the normal approximation is not very good. DiMatteo et
al. (2001) described an importance reweighting scheme to improve upon the normal
approximation. In the code discussed here, if the normal approximation seems poor, we instead
use a conditional Metropolis update.

Wallstrom et al. Page 3

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

From we obtain fitted values for selected and these, in turn, may
be used to produce a draw ϕ(g) from the posterior distribution of any characteristic ϕ = ϕ(f)
(such as the value at which the maximum of f(t) occurs). Thus, the key output of BARS is the

set of vectors for MCMC iterates g = 1, . . . , G, each

 being a vector of fits along a grid that suitably covers the interval [A, B]. The
user may sample from the posterior distribution of any functional ϕ simply by evaluating

. For instance, a sample from the posterior distribution of the location of the

maximum of f(t) is obtained by finding the location of the maximum of for each g. This
latter computation is performed in a suitable post-processing environment such as S or R.
MCMC convergence may be assessed by standard methods (Gelman, Carlin, Stern, and Rubin
2004, Section 11.6) though this remains a topic of general research interest (Fan, Brooks, and
Gelman 2006).

2.2. Normal and Poisson implementations of BARS
We have implemented two versions of BARS. One implementation, barsN uses a normal
model in (1). The second, barsP uses a Poisson model. Our choices were based on the general
interest in ordinary curve-fitting (the normal case) and our deep and continuing interest in
fitting neuronal data (the Poisson case).

The two implementations differ not only through the change of likelihood, and the resulting
Laplace approximation to (2) implemented with BIC for the Poisson case, but also in the
selection of starting values for the MCMC algorithm. Starting values are very important: poor
choices of initial knot sets result in extremely long burn-in periods to achieve apparent
stationarity. In the Poisson case we have taken advantage of the closely-related algorithm
logspline (see Hansen and Kooperberg 2002) and have incorporated Charles Kooperberg’s C
implementation of it for density estimation.

Our ability to use Kooperberg’s implementation for density estimation rests on the duality of
fitting Poisson process intensity functions and fitting probability densities: the inhomogeneous
Poisson likelihood for an intensity function λ = λ(t) based on a sequence of event times t1,
t2, . . . , tn in an interval (0, T] is

Here the number of events N is a Poisson random variable with expectation .
Conditionally on the number of events N = n the probability density becomes

If we set

Wallstrom et al. Page 4

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

then it becomes clear that estimation of λ(t) amounts to estimation of the probability density f
(t), together with estimation of . We use N = n as an estimate of , and apply
logspline to estimate f(t). logspline returns a set of knots for a cubic spline, and these are used
as initial values for BARS in the Poisson case.

logspline is a carefully-implemented version of forward knot addition followed by backward
elimination of knots. In the normal case we have simply begun with a large set of knots
(defaulted to equally-spaced in the current version) and then performed backward elimination
using BIC, until BIC fails to increase as knots are eliminated. Because logspline is itself an
effective algorithm, we believe the Poisson version of our code is likely to be more efficient
than the normal version in the sense that short MCMC run lengths can be used with Poisson.
We have set the defaults for Poisson at 500 burn-in iterations and 2,000 run iterations, while
for the normal these have been set to 5,000 and 20,000.

We describe below the code and wrappers for the Poisson versions. The normal versions omit
statements involving logspline, and they also omit the regression step used to approximate the
integral in (2). In describing the Poisson regressions we take the Poisson parameter to be μ.
Thus, at time points t1, . . . , tn we have corresponding mean values μ1, . . . , μn. (In the neuronal
setting with m repeated trials, for the histogram bin centered at tj, the expected number of
spiking events is μj = mwλ(tj) where w is the bin width in seconds and λ(t) is in units of spiking
events per second.)

3. Overview of code
Our normal and Poisson BARS implementations proceed through the following general steps
(see Figure 3):

1. Read user-defined parameters.

2. Read data, and normalize function argument (e.g., time) to interval (0, 1).

3. Find initial knot set.

4. Run MCMC. For g = 1, . . . , Gb, where Gb is the number of burn-in iterations, do
steps (a) and (b) only; subsequently do all of (a)-(e):

a. Take knot step: addition, deletion, or relocation. This produces ξ(g).

b. Evaluate integral in (2), exactly in normal case, approximately in Poisson
case.

c. Generate β(g).

d. Using β(g), obtain fits and also BIC, loglikelihood, maximum, location of the
maximum, and number of interior knots.

e. Update modal knot set (if appropriate).

5. Obtain mean and modal estimates of function values, both on a grid and at all observed
argument values, and of the maximum and location of maximum.

6. Obtain confidence intervals for the maximum and location of maximum.

7. Write the results.

Wallstrom et al. Page 5

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

We next elaboarate on each of these steps. At the end of this section we discuss briefly the
additional publicly-available subroutines that are used by BARS.

3.1. User-defined parameters
The user may set various parameters by specifying their values in the optional parameters file.
The following parameters are allowed.

burn-in_iterations: The number of burn-in MCMC iterations. Default value = 0.

sample_iterations: The number of sample MCMC iterations. Default value = 2000.

Use_Logspline: true or false to indicate whether Logspline is used for the initial knots. If
Logspline is not used, evenly spaced knots are used. Default value = true.

initial_number_of_knots: The number of initial interior knots used. This only has an affect if
Logspline is not used. Default value = 3.

beta_iterations: Number of iterations for the independence chain on beta for a particular set of
knots. It only runs a chain if the initial beta variate is suspect. In this case, the independence
chain is run starting from the mle and only the last variate is used. If no beta candidates were
accepted, no beta is used although the knot set is not rejected. Default value = 3.

beta_threshhold: Threshhold for determining whether the initial beta variate is suspect. It is
suspect if the log acceptance probability is less than the threshhold. Default value = -10.0.

prior_form: This is the prior on the number of knots k. Possible values: Uniform, Poisson, User
(for user-defined). Default value = Uniform. Uniform refers to a uniform distribution on the
interval (L, U). For User, see discussion following list of parameters.

Uniform_parameter_L: Default value = 1.

Uniform_parameter_U: Default value = MAXKNOTS = 60.

Poisson_parameter_lambda: Default value = 6.0.

For k ∼ Uniform(L, . . . , U)

• SET prior_form = Uniform

• SET Uniform_parameter_L = L

• SET Uniform_parameter_U = U

For k ∼ Poisson(M)

• SET prior_form = Poisson

• SET Poisson_parameter_lambda = M

proposal_parameter_tau: Parameter τ that controls the spread for the knot proposal distribution.
A candidate knot is generated by first selecting a current knot t, 0 < t < 1, and then selecting
candidate knot ∼ beta(tτ, (1-t)τ). Default value = 50.

reversible_jump_constant_c: Parameter that controls the probability of birth and death
candidates. It may be at most 0.5. Larger values increase the probability for birth death
candidates. Smaller values increase the probability for knot relocation. Default value = 0.40.

confidence_level: The confidence level for parameter intervals. Default value = 0.95.

Wallstrom et al. Page 6

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

number_of_grid_points: The number of evenly spaced points for the grid along which fitted
values will be obtained. Default value = 500.

verbose: true or false to indicate verbose output. Default value = false.

User-defined prior on number of knots—The prior on the number of knots k is defaulted
to a uniform distribution. However, as discussed by DiMatteo et al. (2001), Hansen and
Kooperberg (2002), Kass and Wallstrom (2002), this prior can serve usefully to control fitting.
A user may specify the prior by specifying its pdf values on a set of positive integers. This is
done in a file. For example, the file

2 0.05

3 0.15

4 0.30

5 0.30

6 0.10

7 0.10

indicates that P(k = 2) = 0.05, . . . , P(k = 7) = 0.10. All zero probabilities that appear between
the smallest k having non-zero probability and the largest k having non-zero probability are
changed to an ε > 0. The probabilities are then scaled to sum to one. Note that very low prior
probabilites may make it difficult for the chain to explore some posterior regions that have
high posterior probability. For example, consider P(k = 2) = P(k = 4) = 0.499999, P(k = 3) =
0.000002. The resulting chain would generally get stuck in either the k = 2 region of the
posterior, or the k = 4 region of the posterior.

3.2. Read data
The data take the form of (x, y) pairs where x = t in the notation of Section 2.

3.3. Find initial knot set
By default, as discussed in Section 2, in the Poisson case the initial knot set is found using
logspline. In the normal case evenly-spaced knots are placed and then backward elimination
is used. Currently, an option to use evenly-spaced knots is also included for the Poisson case.
(A planned improvement is to use every k-th value of tj in the data for both cases.)

3.4. Run MCMC
a. It is important to recognize that the Markov chain is on the knot sets ξ (after exact or

approximate integration of (2)). As described by DiMatteo et al. (2001), the algorithm
randomly selects as a proposal (in the Metropolis sense) either a new knot (a“birth”
step), removal of a knot (a“death” step), or a relocation of a knot. Birth and relocation
steps begin by randomly selecting a knot, with equal probabilities, from among all
knots in the current knot set. If the proposal involves a birth step, then a location for
the potential new knot is randomly selected by first randomly selecting an existing
knot and then drawing from a beta distribution centered at that knot. This beta
distribution is typically quite tight around its center (with spread controlled by an
optional user-defined parameter τ) in order to propose knots that are close to existing
knots (as mentioned in Section 2). The same beta distribution is used to propose a
knot relocation (the distribution being centered on the knot to be potentially relocated).
As usual, the proposal to add, delete, or relocate is evaluated, and possibly accepted,
via the Metropolis-Hastings ratio.

Wallstrom et al. Page 7

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

b. Approximation of the integral in (2), in the Poisson case, is accomplished via BIC.
This is obtained from the Poisson regression based on the proposed set of knots. This
regression also produces the MLE and observed information matrix, needed in (c).

c. In the normal case, is produced by a draw from the relevant multivariate normal
distribution of the posterior of βξ conditionally on ξ = ξ(g), obtained analytically. In
the Poisson case, for sufficiently large samples, the normal approximation to the
posterior based on the MLE and observed information may be used. The algorithm

always attempts to draw from this approximating normal distribution. However,
if the acceptance ratio is extremely small, a short MCMC run is used instead. We have
found this to be quite important because in many of our applications a Poisson mean
at some time t may be very small and thus may produce a highly skewed posterior
distribution.

d. After is drawn from the conditional posterior, fits may be obtained. In our
applications we are often interested in maxima and their locations. Therefore, by
default, we compute these.

e. If BIC for the newly-obtained, current ξ(g) is larger than BIC for all preceding knot

sets then the current ξ(g) is retained as the current modal knot set. The MLE (in
the normal case, the least-squares estimate) is also retained so that modal fits can be
produced for the final modal knot set.

3.5. Obtain estimates
Ater MCMC terminates, the iterations are used to find posterior mean and modal fits. The fits
are obtained both at all tj values and on a user-specified grid. In addition, the mean and modal
values of the function maximum and its location are computed.

3.6. Obtain posterior intervals
Based on the set of draws from the posteriors that are used to form estimates, quantiles are
computed via partial sorting. By default the .025 and .975 quantiles form the 95% posterior
(“credible”) intervals. Currently, confidence intervals are only obtained for the function
maximum and location of the maximum. Other intervals may be obtained easily from the draws
from the posterior in the output.

3.7. Write results
Results are written into a series of files
sampled_knots_file: The name of the output file for the sampled knot locations. Format is
[iteration number] [number of interior knots] [knots . . .] Note that the number of entries per
line will vary. Use none to indicate no file. Default value = none.

sampled_mu_file: The name of the output file for sampled fitted values (μ) at the observed
argument points t1, . . . , tn. Use none to indicate no file. Default value = samp_mu.

sampled_mu-grid_file: The name of the output file for sampled fitted values (μ) on the evenly
spaced grid points. Use none to indicate no file. Default value = none.

sampled_params_file: The name of the output file for sampled values of various parameters.
The parameters given are iteration number, BIC, log likelihood, location of peak, height at
peak, number of interior knots. Use none to indicate no file. Default value = samp_params.

Wallstrom et al. Page 8

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

summary_mu_file: The name of the output file for summary fitted values (μ) at the observed
argument points t1, . . . , tn. Three rows are given with the t values, posterior mean, and posterior
mode, respectively. Use none to indicate no file. Default value = summ_mu.

summary_mu-grid_file: The name of the output file for summary fitted values (μ) on the
evenly spaced grid points. Three rows are given with the t values, posterior mean, and posterior
mode, respectively. Use none to indicate no file. Default value = none.

summary_params_file: The name of the output file for summary values of certain parameters.
The first row is for the location of the peak, and the second is for the height, and the third is
for the number of interior knots. The first two columns are quantiles giving a confidence
interval for the specified confidence level (see parameter confidence_level). The third column
is the posterior mean, and the fourth is the posterior mode. Use none to indicate no file. Default
value = summ_params.

3.8. External subroutines for BARS
In addition to incorporating the logspline code, we have used routines for manipulating B-
splines written by Bates and Venables (included in the release of R, see R Development Core
Team 2006) and for random number generation obtained from Ranlib (Brown and Lovato
1996). These are part of the BARS code.

BARS also calls linear algebra subroutines from LAPACK and BLAS. These are available at
http://www.netlib.org/lapack/ and http://www.netlib.org/blas/, respectively. They must be
installed prior to compiling BARS. Information about these packages may be found in
Anderson, Bai, Bischof, Blackford, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling,
McKenney, and Sorensen (1999); Dongarra, Croz, Hammarling, and Du (1990b,a).

4. R and S wrappers
Prior to using this wrapper, one must build a chapter using the file barsP.c. The shared library
must be made available with the dyn.open(“S.so”) command. Also, the barsP.c program must
be properly compiled, with the compiled program saved as barsP.out.

Note that due to the large amount of output generated by the program, it is desirable to save
the results of the program into a variable, for example:out_barsP.fun(x, y,)

The wrapper performs the operation by writing the data and settings into the files bars_points
and bars_params, respectively.

Following is the complete function call, including a description of its input and output.

barsP.fun(x, y, initial, iknots, prior, priorparam, burnin, sims, tau, c, fits, peak, conf, trials,
bins)

• Required Input

- Variables

x: a vector of the independent variable, in increasing order

y: a vector of the dependent variable, in the form of count data

• Optional Input

- Initial knots settings

Wallstrom et al. Page 9

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.netlib.org/lapack/
http://www.netlib.org/blas/

initial: logspline, or even or equal for evenly spaced initial knots. Default value
= logspline.

iknots: the initial number of knots for the spline if using evenly spaced knots.
Default value = 3.

- Settings on prior for knots

prior: the type of prior being used for the knots. The only acceptable answers are
Poisson, uniform, and user. Default value = uniform.

priorparam: the parameter for the prior

* if using Poisson, the choice for lambda = mean

* if using uniform, a vector of length 2 which includes the minimum
number of knots followed by the maximum number of knots. Default
value = c(1,60).

* if using user, a matrix with 2 columns. The first column should be the
number of knots and the second column should be the probability of
obtaining this number of knots.

- MCMC settings

burnin: the desired length of the burn-in for the MCMC chain. Default value =
200.

sims: the number of simulations desired for the MCMC chain. Default value =
2000.

tau: parameter τ that controls the spread for the knot proposal distribution. Default
value = 50.0.

c: parameter that controls the probability of birth and death candidates. Default
value = 0.4.

- Output settings

fits: if T, the program will return the fitted values for each x-value for each run
of the simulation. Default value = T. Please note that if the number of data points
and/or simulations is large, there may be a lengthy delay as the necessary data is
read.

peak: if T, the program will return the location and height of the highest point on
the fitted curve. Default value = F.

conf: for use with peak. Sets the probability for the credible intervals for the
location and height of the peak. Default value = 0.95 for 95% credible intervals.

- Other settings

trials: the number of trials that are concatenated in the data. Default value = 1.

bins: the number of bins the x-axis is divided into - used to handle unbinned data
and calculate posterior modes. Default value = 150.

• Output

postmeans: vector of the posterior means evaluated at the x values

postmodes: vector of the posterior modes evaluated at the x values

Wallstrom et al. Page 10

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

sims: vector of each simulation number, beginning at burnin + 1 and ending at
burnin + sims

no.knots: vector of the number of knots used at each iteration, excluding burning
iterations

sampknots: matrix containing the position of the knots at each iteration. Length
of the matrix is equal to the number of iterations, excluding burnin iterations,
with the width of the matrix equal to the maximum number of knots at any
iteration. NAs are used to fill in the matrix at iteration numbers that have less
than the maximum number of knots.

sampBICs: vector of the calculated BIC at each iteration, excluding burning
iterations

sampllikes: vector of the calculated loglikelihood at each iteration, excluding
burning iterations

• Optional Output

- Optional output if fits = T

sampfits: matrix of fits for each iteration, excluding burning iterations, with the
rows of the matrix corresponding to the individual iteration. The columns
represent the fits at each value of x.

- Optional output if peak = T

samplpeaks: vector of the x location of the highest point in the fitted curve for
each iteration, excluding burning iterations

samphpeaks: vector of the y value (height) of the highest point in the fitted curve
for each iteration, excluding burning iterations

peaklocationquantile: a credible interval for the x location of the highest peak;
width of the interval is dependent upon the setting chosen for conf

peaklocationmean: the mean x location for the highest peak

peaklocationmode: the mode x location for the highest peak

peakheightquantile: a credible interval for the y value (height) of the highest peak;
width of the interval is dependent upon the setting chosen for conf

peakheightmean: the mean y value (height) of the highest peak

peakheightmode: the mode y value (height) of the highest peak

5. Pseudo-code
5.1. Function: BARS for Poisson count data

• Read data: For Poisson count data, the data must take the form of pairs of bin midpoints
and Poisson counts. The number of replicated data sets is also required. In neuron
firing examples, this is the number of trials. In many other examples, the number of
replicated data sets may be set to one.

• Read user parameters: These include parameters that specify the form of the prior,
prior parameters, mcmc parameters, and parameters that specify output variables and
the destination files.

• Normalize data: The bin midpoints are normalized to lie between 0 and 1, inclusive.

Wallstrom et al. Page 11

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

• MCMC: See function description below.

• Write summary output of desired parameters.

• return

5.2. Function: MCMC
In the following, a modelM* contains information for an individual MCMC iteration. In
particular, it contains

- k*, the number of interior knots

- ξ*, the set of interior knots

- XD,*, the design basis, and XG,*, the grid basis. The design basis is based on the input
bin midpoints. The grid basis is based upon a grid of evenly spaced points, the number
of which is user defined.

- statistical model fitting information, including parameter estimates, error estimates,
and failure to fit.

- β* ∼ π(β|k*, ξ*, Data)

- μD,* = exp (XDβ*)

- μG,* = exp (XGβ*)

- The BIC and log likelihood for the full model with parameters (k*, ξ*, β*).

• Declare models Mcurr, Mcand, and Mtemp.

• Set initial knots in Mcurr. The initial knots may be user defined, equally spaced, or
obtained via logspline.

• Calculate birth and death probabilities for each possible value of k, using the user-
defined prior, as follows:

if (k >= MAXKNOTS)

birth probability = 0

else

birth probability = c min (1, π(k + 1)/π(k))

if (k <= 1)

death probability = 0

else

death probability = c min (1, π(k - 1)/π(k))

comment:

probability of knot relocation is 1 - (birth probability + death probability).

• Define μ(0), used to start each iterative fitting process.

• for i ← 0 to (n - 1)

•

Wallstrom et al. Page 12

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

• Form the natural spline design basis for Mcurr → XD,curr

• Fit the Poisson regression model for Mcurr. See function description below.

• if (fit of Mcurr failed)

Remove knots through backwards elimination until a subset is found such that 1) the model fit
does not fail, 2) the model has the greatest likelihood among the models with the same number
of knots in which the fit does not fail, and 3) the knot subset has positive prior probability. If
all models with a given number of knots fail to be fit, the model in which has the
smallest condition number is selected, and the procedure continues by trying to remove an
additional knot.

If backwards elimination fails to find a valid subset, the procedure tries to fit a model with the
minimum number of knots that have positive prior probability, with the knots equally spaced.
If the model fails to be fit, exit.

Set Mcurr to the resulting model.

maxBIC ← 0

total iterations ← burnin iterations + sampling iterations

for i ← 0 tototal iterations - 1

u ∼ U(0, 1)

if (u < birth probability)

s ∼ Discrete Uniform(ξcurr)

t ∼ beta(α = (sτ, β = (1 - s)τ)

ξcand ← (ξcurr ∪ {t}) ∖ {s}

kcand ← kcurr + 1

Form the natural spline design basis for Mcand → XD,cand

Fit the Poisson regression model for Mcand.

if (fit of Mcand failed) accept probability = 0

else

dens ← q(Mcand|Mcurr)kcurr = Σr∈ξcurrfbeta(t|α = rτ, β = (1 - r)τ)

accept probability = exp(ℓcand - ℓcurr + log(kcurr) - log(dens) - 0.5 log(n))

comment:ℓ* in the above equation is the profile likelihood, ℓ* = supβℓ(ξ*, k*, β)

else if (1 - u < death probability)

t ∼ Discrete Uniform(ξcurr)

ξcand ← ξcurr∖ {t}

Wallstrom et al. Page 13

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

kcand ← kcurr - 1

Form the natural spline design basis for Mcand → XD,cand

Fit the Poisson regression model for Mcand. See function description below.

if (fit of Mcand failed) accept probability = 0

else

dens ← q(Mcurr|Mcand)kcand = Σr∈ξcandfbeta(t|α = rτ, β = (1 - r)τ)

accept probability = exp(ℓcand - ℓcurr + log(kcand) - log(kdens) - 0.5 log(n))

else

s ∼ Discrete Uniform(ξcurr)

t ∼ beta(α = sτ, β = (1 - s)τ)

ξcand ← (ξcurr ∪ {t}) ∖ {s}

kcand ← kcurr

Form the natural spline design basis for Mcand → XD,cand

Fit the Poisson regression model for Mcand

if (fit of Mcand failed) accept probability = 0

else

dens1 ← q(Mcand|Mcurr)kcurr = fbeta(t|α = sτ, β = (1 - s)τ)

dens2 ← q(Mcand|Mcand)kcand = fbeta(s|α = sτ, β = (1 - t)τ)

accept probability = exp(ℓcand - ℓcurr + log(dens1) - log(dens2))

u ∼ U(0, 1)

if (u < accept probability)

comment: Candidate model accepted. Swap Mcurr and Mcand.

Mtemp ← Mcurr

Mcurr ← Mcand

Mcand ← Mtemp

if (i >= burnin iterations)

comment: Beyond the burn-in period.

Generate Random coefficient Vector for Mcurr. See function description below.

Calculate BICcurr and ℓcurr for the full model using parameter values (kcurr, ξcurr, curr).

Wallstrom et al. Page 14

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

μD,curr ← exp(XD,currβcurr)

Form the natural spline grid basis for Mcurr → XG,curr

μG,curr ← exp(XG,currβcurr)

comment: Find mode and the mean function evaluated at the mode. In neuron firing examples,
it produces the location of the peak firing rate, and the peak firing rate.

Use μG, curr to form an interpolating spline.

Locate mode of interpolating spline → (xmode, μcurr (xmode))

Write desired parameters to a file.

Store desired parameters for later use.

comment: update posterior modal values, if appropriate

if ((BICcurr > maxBIC) or (i == burnin iterations))

maxBIC ← BICcurr

parameter modes ← current parameter values

• Use partial sorting to form confidence intervals of desired stored parameters.

• Calculate means of desired stored parameters.

• return

5.3. Function: Fit Poisson regression model
• input:

X, an n × p design matrix

y, a vector of observed counts

μ(0), a vector of starting values

• output:

β ̂, estimated coefficients

U, a p × p upper triangular matrix that contains information on the estimated
covariance matrix of β ̂

error, a boolean indicator of fit failure.

• μ ← μ(0)

• j ← 0

• ℓ0 ← 0

• error ← false

• repeat

j ← j + 1

z ← log μ + (y - μ)/μ.

Wallstrom et al. Page 15

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

W ← Diag (μ)

H ← WX. comment: Use known diagonal structure of W

J ← H⊺X

U ← Upper triangular matrix from the Cholesky decomposition of J = U⊺U if
Cholesky decomposition fails

error ← true

exit ← true

else

β ̂ ← Solution to Jβ = H⊺z. comment: Use Cholesky decomposition of Jif unable
to solve equation

error ← true

exit ← true

else

η ← Xβ̂

μ ← exp(η)

ℓj ← Σi (yiηi - μi)

exit ← (((|ℓj - ℓj-1| < ε) and (j > 1)) or (j > 20))

• until (exit)

• return

5.4. Function: Generate random coefficient vector
• Generates β posterior distribution π(β|k, ξ, Data) or from the N (β ̂, (X⊺WX)-1)

approximation, as follows. One β is generated from the normal approximation. If β
the appears to not be an outlier under the posterior distribution, the β variate is accepted
and returned. If the β does appear to be an outlier, the routine takes a user-defined
number of Metropolis-Hastings steps and returns the last sampled β. The β is identified
as an outlier if its log Metropolis-Hastings acceptance probability is below a user-
defined threshhold.

• Let π* denote the density for the normal approximation. Note that the Cholesky
decomposition of X⊺WX is already available from the last fitting iteration.

• input:

β ̂, the MLE of β.

U, a p × p upper triangular matrix that contains information on the estimated
covariance matrix of β ̂.

MHI, the number of Metropolis-Hastings iterations. This is a user-defined
parameter.

MHT, the threshhold used to determine whether (a) the initial β variate from the
normal approximation should be kept as the resulting variate, or (b) MHI
Metropolis-Hastings iterations are used. MHT is compared to the log of the
acceptance probability. MHT is a user-defined parameter.

• output:

Wallstrom et al. Page 16

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

error, a boolean indicator of failure

β, the random variate. Only defined if not error.

• βcurr ← β ̂

• fori ← 0 toMHI - 1

iter ← 0, error ← false, exit ← false

repeat

iter ← iter + 1

z ∼ N(0,I)

A ← Solution to U⊺A = z.

error ← (unable to solve equation)

exit ← ((noterror) or (iter ≥ 20))

until (exit)

if (error) exit

else

βcand ← + β ̂ + A

if ((i = 0) and (r > MHT))

comment: Accept the initial variate. No additional Metropolis-Hastings steps.

i ← MHI

u ← r - 1.0

else

u ← U(0, 1)

u ← log(u)

if (u < r)

comment: Accept the candidate β.

βcurr ← βcand

• beta ← βcurr.

• return

Acknowledgments
Support for the current work was provided by NIMH Program Project MH56193. The authors are grateful for helpful
comments from the referees.

Wallstrom et al. Page 17

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

References
Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.;

Hammarling, S.; McKenney, A.; Sorensen, D. LAPACK Users’ Guide. Vol. 3rd edition. Society for
Industrial and Applied Mathematics; Philadelphia, PA: 1999.

Baker CI, Behrmann M, Olson CR. Impact of Learning on Representation of Parts and Wholes in Monkey
Inferotemporal Cortex. Nature Neuroscience 2002;5(11):1210–1216.

Brown, BW.; Lovato, J. Library of C Routines for Random Number Generation. 1996. URL
http://www.stat.umn.edu/HELP/ranlib-docs/ranlib.c.chs

Denison DGT, Mallick BK, Smith AFM. Bayesian MARS. Statistics and Comping 1998;8:337–346.
DiMatteo I, Genovese CR, Kass RE. Bayesian Curve Fitting with Free-Knot Splines. Biometrika

2001;88:1055–1073.
Dongarra JJ, Croz JD, Hammarling S, Duff I. Algorithm 679: A Set of Level 3 Basic Linear Algebra

Subprograms: Model Implementation and Test Programs. ACM Transactions on Mathematical
Software 1990a;16(1):18–28.

Dongarra JJ, Croz JD, Hammarling S, Duff I. A Set of Level 3 Basic Linear Algebra Subprograms. ACM
Transactions on Mathematical Software 1990b;16(1):1–17.

Fan Y, Brooks P, Gelman A. Output Assessment for Monte Carlo Simulations via the Score Statistic.
Journal of Computational and Graphical Statistics 2006;15:178–206.

Gelman, A.; Carlin, J.; Stern, H.; Rubin, D. Bayesian Data Analysis. Vol. 2nd edition. Chapman & Hall/
CRC; Boca Raton: 2004.

Green PJ. Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination.
Biometrika 1995;82:711–732.

Hansen MH, Kooperberg C. Spline Adaptation in Extended Linear Models. Statistical Science
2002;17:2–51.

Insightful Corp. S-PLUS Version 6.2. Seattle, WA: 2003. URL http://www.insightful.com/
Kass RE, Raftery AE. Bayes Factors. Journal of the American Statistical Association 1995;90:773–795.
Kass RE, Ventura V, Cai C. Statistical Smoothing of Neuronal Data. Network: Computation in Neural

Systems 2003;14:5–15.
Kass RE, Wallstrom G. Invited Comment on “Spline Adaptation in Extended Linear Models” by Mark

H. Hansen and Charles Kooperberg. Statistical Science 2002;17:24–29.
Kass RE, Wasserman LA. A Reference Bayesian Test for Nested Hypotheses and its Relationship to the

Schwarz Criterion. Journal of the American Statistical Association 1995;90:928–934.
Liu JS, Wong WH, Kong A. Covariance Structure of the Gibbs Sampler with Applications to the

Comparisons of Estimators and Augmentation Schemes. Biometrika 1994;81:27–40.
Pauler DK. The Schwarz Criterion and Related Methods for Normal Linear Models. Biometrika

1998;85:13–27.
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing; Vienna, Austria: 2006. ISBN 3-900051-07-0, URL
http://www.R-project.org/

Stone CJ, Hansen M, Kooperberg C, Truong YK. The Use of Polynomial Splines and their Tensor
Products in Extended Linear Modeling. The Annals of Statistics 1997;25:1371–1470.

Venables, WN.; Ripley, BD. Modern Applied Statistics with S. Vol. 4th edition. Springer-Verlag; New
York: 2002.

Wallstrom GL, Kass RE, Miller A, Cohn JF, Fox NA. Automatic Correction of Ocular Artifact in the
EEG: A Comparison of Regression-Based and Component-Based Methods. International Journal of
Psychophysiology 2004;53:105–119. [PubMed: 15210288]

Zhang X, Roeder K, Wallstrom G, Devlin B. Integration of Association Statistics over Genomic Regions
Using Bayesian Adaptive Regression Splines. Human Genomics 2003;1:20–29. [PubMed:
15601530]

Wallstrom et al. Page 18

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.stat.umn.edu/HELP/ranlib-docs/ranlib.c.chs
http://www.insightful.com/
http://www.R-project.org/

Figure 1.
Histogram and fits using a Gaussian kernel density estimator (dotted line), logspline (thin line),
and BARS (thick line). Units are in spiking events per second, the usual units for intensity
functions based on neuronal spiking events. The data come from a neuron in inferotemporal
cortex recorded during 16 replications (in physiological jargon, 16 trials) of an experiment
described by Baker et al. (2002).

Wallstrom et al. Page 19

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
Diagram of our normal and Poisson BARS implementations. User-defined parameters and data
are input and used to create the initial knot set. In the Poisson case, logspline may be used to
create the initial knot set. The MCMC runs starting from the initial knot set and outputs sampled
parameter values, function estimates and confidence intervals.

Wallstrom et al. Page 20

J Stat Softw. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

