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Abstract
We present a new concept for strengthening ceamics by utilizing a graded structure with a low elastic
modulus at both top and bottom surfaces sandwiching a high-modulus interior. Closed-form
equations have been developed for stress analysis of simply supported graded sandwich beams
subject to transverse center loads. Theory predicts that suitable modulus gradients at the ceramic
surface can effectively reduce and spread the maximum bending stress from the surface into the
interior. The magnitude of such stress dissipation is governed by the thickness ratio of the beam to
the graded layers. We test our concept by infiltrating both top and bottom surfaces of a strong class
of zirconia ceramic with an in-house prepared glass of similar coefficient of thermal expansion and
Poisson’s ratio to zirconia, producing a controlled modulus gradient at the surface without significant
long-range residual stresses. The resultant graded glass/zirconia/glass composite exhibits
significantly higher load-bearing capacity than homogeneous zirconia.
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1. INTRODUCTION
With the increasing demand for ceramics of high mechanical integrity, particularly in the
biomedical industry, there is particular interest in the development of surface strengthening
techniques. The traditional approaches used to strengthen ceramics and improve their
resistance to contact and/or flexural damage rely on inducing a layer of compressive residual
stresses at the ceramic surfaces by tempering [1], introducing second-phase particles [2] or
infiltrating glass with a lower coefficient of thermal expansion (CTE) into the ceramic surfaces
[3,4]. However, introduction of surface compressive stresses inevitably lead to the creation of
concomitant tensile stresses in the bulk ceramic, which can promote cracking [5]. Here we
offer an alternative approach to strengthening ceramics and to improving their contact damage
resistance by tailoring the surface elastic properties without introducing any compressive
stresses to the materials. The impetus for this approach comes from previous works by Suresh,
Nitin and their team [6–8]. These authors showed that when the contact surface of alumina or
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silicon nitride was infiltrated with aluminosilicate or oxynitride glass, respectively, having
similar CTEs and Poisson’s ratios to, but lower moduli than, the infiltrating surfaces, an
increase in elastic modulus from surface glass to a strong ceramic interior can be engineered
without introducing significant residual stresses. The graded glass/ceramic surfaces produced
in this manner offered much better resistance to contact [6] and sliding [8] damage than either
constituent ceramic or glass. We argue that this very same elastically graded surface can be
utilized to improve the flexural damage resistance, and thus the flexural strength, of ceramic.

For demonstration, we infiltrated both the top and bottom surfaces of a strong class of ceramic
—3 mol.% yttria-stabilized tetragonal zirconia polycrystal (Y-TZP)—with an in-house
prepared glass, which possesses a similar CTE and Poisson’s ratio to that of Y-TZP. The
resultant material possesses a graded glass/zirconia/glass (G/Z/G) structure (Fig. 1), where the
gradations of the glass content at the parallel zirconia surfaces mirror each other. Three-point
bending tests showed improved load-bearing capacity in G/Z/G beams compared to their
homogeneous Y-TZP counterparts.

The concept of functionally graded materials emerged from the demands of high-temperature
structural applications [9]. The initial design utilized a refractory ceramic on the high-
temperature side and a tough, strong metal on the low-temperature side, and the transition from
ceramic to metal is gradual through the structure thickness [9,10]. Since its inception, the
concept has found many applications, including thermal, wear and corrosion barriers, dental
and medical devices, aerospace and automotive components, etc. Several studies have been
carried out to analyze the response of functionally graded beams or plates to mechanical loads
[10–13]. However, there is no closed-form elasticity solution pertinent to the current structure
available in the open literature. The present study extends the composite beam theory to analyze
a symmetrically graded beam with low elastic modulus at both the top and bottom surfaces,
sandwiching a high-modulus interior. Explicit equations concerning stress distributions in
graded sandwich beams relative to homogeneous beams subject to transverse center loads are
developed. Essential predictions of the theory are confirmed by loading the rectangular beams
using a three-point bending arrangement. Dependence of stress distributions on the ratios of
beam thickness to the graded layers is examined. Design guidelines for optimizing the load-
bearing capacity of graded sandwich beams are presented.

2. STRESS IN COMPOSITE BEAMS
In this section, we develop the flexure formulas to quantitatively predict bending stresses in
sandwich beams with elastic gradients at both top and bottom surfaces. We demonstrate that
controlled gradients in elastic modulus at the surface can dissipate bending stresses and thus
increase the load-bearing capabilities of a beam.

2.1. Elastic modulus function in graded beams
We shall begin with the determination of the elastic modulus function in graded sandwich
beams. A schematic diagram of a cross-section of an elastically graded sandwich beam is shown
in Fig. 1. The beam consists of a uniform core with graded layers at both top and bottom
surfaces. The layers are bonded together securely so they act as a single solid. We assume that
the xy plane is the plane of symmetry and that xz plane is the neutral plane of the beam. The
neutral axis passes through the centroid of the cross-sectional area. h2 and h1 represent the half
thicknesses of the beam and its homogeneous core, respectively. h (= h2 − h1) is the thickness
of each graded layer. b is the width of the beam. For the homogeneous core, the Young’s
modulus Eb is uniform throughout the section. For the graded layers, the Young’s modulus
increases from Es at the surface to Eb at the graded layer/core interface.
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Previous studies [6,7,14] have shown that the elastic modulus in a glass–ceramic infiltrated
layer takes the form of power-law relation. Thus we can conveniently write the modulus
expression, Eg, as a function of depth beneath the surface:

(1)

where y is the distance from the neutral axis and varies from h1 to h2. n is a dimensionless
constant. m is a scale factor which can be derived by rearranging Eq. (1)

(2)

At y = h1, h2 − y = h and Eg = Eb, we obtain:

(3)

Thus Eq. 1 can be written in a generic form:

(4)

2.2 Stresses associated with bending
Our analysis here is based on the theory for bending of composite beams, i.e. beams of more
than one material. The strains in the graded sandwich beam are determined from the basic
axiom that cross-sections remain planar during bending. This axiom is valid for pure bending
regardless of the nature of the material. Therefore, the longitudinal strains εx vary linearly from
top to bottom of the beam [15]:

(5)

where y is the distance from the neutral axis, ρ is the radius of the curvature and κ is the
curvature.

The normal stresses acting on the cross-section can be obtained from the strains by using the
stress–strain relationships. Let us assume that both graded layers and the uniform core behave
in a linearly elastic manner so that Hooke’s law for uniaxial stress is valid. Then we express
the normal stresses at distance y from the neutral axis in terms of curvature:

(6a)
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(6b)

where σxgu is the stress in the uniform core, while σxgg is the stress in graded layer.

2.3. Moment–curvature relation
The maximum bending moment M for a three-point bending test is [15]:

(7)

where F is the applied load and L is the span between bearers.

The moment–curvature relationship for the graded sandwich beam may be determined from
the condition that the moment resultant of the bending stress is equal to the bending moment
M acting at the cross-section [15]:

(8)

where b is the width of the specimen.

For convenience, we let:

(9a)

(9b)

(9c)

The curvature in terms of the bending moment is then:
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(10)

With the moment–curvature relation in place, we are now in a position to derive explicit
formulas for bending stresses along the load axis of a graded sandwich beam. By substituting
the expression for curvature (Eq. (10)) into Eqs. (6a) and (6b), we obtain the normal stresses
(or bending stresses) σxgu in the uniform core and σxgg in the graded surface layers:

(11a)

(11b)

where Igu, Igg1 and Igg2 are given in Eqs. (9a)–(9c).

For the limiting case of homogeneous beams, Es = Eb, h1 = h2, Eq. (8) reduces to a familiar
form:

(12)

Let

(13)

The normal stresses in a homogeneous beam can be written in direct analogy to Eq. (11):

(14)

2.4. Dissipation of stresses in graded structures
The quantities of greatest interest are the magnitude and position of the maximum normal stress
in a graded sandwich beam, which can be computed using the flexure formulas derived in Eq.
(11). Subsequently, by comparing the maximum stress in a graded beam with a homogeneous
beam subject to three-point bending under a prescribed load, we are able to determine the
degree of stress dissipation resulting from the modulus gradients. The prescribed load utilized
here is approximately 90% of the fracture loads for homogeneous beams. It is important to
note that the bending stresses σxgu in the uniform core and σxgg in the graded surface layers are
described by linear (Eq. (11a)) and nonlinear (Eq. (11b)) functions, respectively. The linear
function suggests that the maximum bending stress σxgu-max in the uniform core occurs at the
graded layer/core interface. The nonlinear function suggests that the maximum bending stress
σxgg-max in a graded layer can occur at any thickness, ranging from immediately beneath the
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surface to the graded layer/uniform core interface. In cases where σxgg-max occurs at the graded
layer/core interface, i.e. y = h1, Eq. (11b) reduces to Eq. (11a), we have σxgg-max = σxgu-max.

Further, bending stresses ratio at the surface of a graded beam relative to that of its
homogeneous counterpart can be obtained by limiting Eq. (11b) and Eq. (14) to y = h2.

(15)

3. MATERIALS AND METHODS
3.1. Materials

A model composite beam with a controlled gradient of elastic modulus at both top and bottom
surfaces was chosen for investigation. Specimens were fabricated using a glass–ceramic
infiltration method described in detail in Ref. [14]. In this method, an in-house developed glass
composition, which has a similar CTE and Poisson’s ratio to that of Y-TZP, was employed to
infiltrate both the top and bottom surfaces of a presintered Y-TZP beam (1400°C for 1 h). The
main composition (>1 wt.%) of the infiltrating glass contained: SiO2 (65.5 wt.%), Al2O3 (11.7
wt.%), K2O (10.0 wt.%), Na2O (7.3 wt.%), CaO (3.0 wt.%) and Tb4O7 (1.9 wt.%). The CTE
and Poisson’s ratio of the selected glass composition were 10.4 × 10−6 °C−1 (from 25 to 450°
C) and 0.28, while the CTE and Poisson’s ratio of Y-TZP were 10.5 ×10−6 °C−1 (from 25 to
450°C) and 0.3, respectively.

Glass infiltration and densification of Y-TZP were carried out simultaneously at 1450°C for 2
h in a high-temperature box furnace in air. A heating and cooling rate of 900°C h−1 was
employed. The resultant structure consists of a thin, outer surface residual glass layer followed
by a graded glass–zirconia layer at both the top and bottom surfaces, sandwiching a high-
modulus Y-TZP core. The outer surface residual glass was gently ground away from both the
top and bottom surfaces of G/Z/G using 6 μm and then 1 μm diamond suspensions.
Homogeneous Y-TZP control beams were sintered at 1450°C for 2 h and polished to 1 μm
surface finish.

Microstructures of G/Z/G specimens were examined by scanning electron microscopy (SEM)
in backscattered electron (BSE) imaging mode. Specimens were sectioned using a water-
cooled low-speed diamond saw. The cross-sections were polished with successive grits to 1
μm finish and carbon coated to prevent charge accumulation. The accelerating voltage used
was 10 kV.

3.2. Mechanical testing
The elastic modulus of the graded composite, Eg, at any depth below the surface was determined
using nanoindentation, carried out on a 3D Omni Probe TriboIndenter* (Hysitron, Minneapolis,
MN) with a Berkovich indenter. Indentations were made on the polished (1 μm finish) cross-
sections of G/Z/G, from the surface-graded glass–zirconia layer to the Y-TZP interior with a
step size of 3 μm. To ensure the distance between any two indents was greater than the
dimension of two indentation impressions, we conducted a line mapping in a direction diagonal

*Certain commercial equipment, instruments, or materials are identified in this paper to specify adequately the experimental procedure.
Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are necessarily the best available for the purpose.
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to the specimen surface normal; the indenter traveled 15 μm parallel to the surface and 3 μm
perpendicular to the surface before making the next indent. The tip area function and the
machine compliance were determined using fused silica samples. A maximum indentation load
of 40 mN and a loading and unloading rate of 5 mN s−1 were employed. At this peak load, the
indenter penetrated ~0.4 μm into the dense Y-TZP and even deeper in the glass–zirconia region.
Such penetration depths resulted in indentation impressions with lateral dimensions of ~3–4
μm. Considering the average grain size of Y-TZP is ~0.5 μm, a lateral indentation impression
of 3 μm would probe 15–20 grains in a dense Y-TZP region or over five adjacent grains in the
graded layer. The reduced modulus, Er, for each indentation was determined from the initial
unloading slope of the load–displacement curve [16,17]. Modulus of the material, E, was
computed using the relation proposed by Oliver and Pharr [16]:

where v is the Poisson’s ratio of the ceramic material, and Ei and vi are the elastic modulus and
Poisson’s ratio, respectively, of the diamond indenter. Here we use v = 0.3 for Y-TZP and for
graded glass–zirconia composite, Ei = 1040 GPa and vi = 0.07 for the diamond indenter [16].

Three-point bending tests were carried out on graded sandwich and homogeneous zirconia
beams of dimensions approximately 1.2 ×4 ×25 mm3. These are the thinnest specimens which
meet the specifications for three-point bending test as recommended by the International
Organization for Standardization [18]. The span, L, between bearers was 20 mm. The test
specimen was supported by two hardened steel rods (r = 1 mm). The load was applied
perpendicular to the specimen’s surface through a hardened steel rod (r = 1 mm) at the midpoint
between the supports. A cross-head speed of 1 mm min−1 was utilized. The loads required to
break the specimens were recorded. Parallel studies were conducted on homogeneous Y-TZP
control beams of the same dimensions.

4. RESULTS
4.1 Elastic modulus profile

Fig. 2 is a BSE image of G/Z/G fabricated from presintered (1400°C for 1 h) Y-TZP beams
followed by glass infiltration/densification at 1450°C for 2 h. The total thickness of G/Z/G
beams was ~1.2 mm, including a graded glass–zirconia layer at both the top and bottom
surfaces, sandwiching a dense Y-TZP core. The graded layers contained a relatively high glass
content (dark phase) at the surface and gradually transformed to a dense Y-TZP interior (light
phase, owing to the high atomic weight of Y-TZP relative to the glass phase).

The dependence of Young’s modulus gradation on the depth (from both top and bottom
surfaces to interior) of G/Z/G is shown in Fig. 3. For the glass–zirconia graded layer (h ≈ 0.12
mm), the Young’s modulus varied from E = 74.6 GPa near the surface to E = 212.8 GPa near
the graded layer/Y-TZP interface. The Y-TZP core exhibited a Young’s modulus E = 240.8 ±
6.4 (mean ± SD, average of 50 indents from a G/Z/G sample). The Young’s modulus variation,
Eg, in the graded glass–zirconia layer is best described by a power-law relation shown in Eq.
(4), where Es = 74.6 GPa and Eb = 240.8 GPa are the elastic modulus at the surface and the
interface of graded layers and Y-TZP core; h = 0.12 mm is the thickness of the graded layer;
n = 0.32 is an empirically derived coefficient; h2 is the half thickness of the beam; y is the
distance from the neutral axis and varies from h2 to (h2 − h), thus (h2 − y) represents the depth
from surface.
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4.2 Three-point bend test data
Loads at the fracture point for polished homogeneous Y-TZP and graded G/Z/G beams are
shown in Fig. 4. Six specimens were fabricated for each material (homogeneous or graded).
Loads required to fracture G/Z/G beams (285 ± 26 N, mean ± SD) were ~28% higher than
those for homogeneous Y-TZP beams (223 ± 11 N). A two-sample t-test showed that it was
unlikely (P < 0.001) that a specimen as strong as G/Z/G could have been sampled from the
population of homogeneous Y-TZP.

4.3 Maximum bending stresses
To shed some light on stress dissipation in graded structures, we plot bending stresses as a
function of distance from the neutral axis for beams with various thicknesses (Fig. 5). Stress
distributions in homogeneous beams of various thicknesses are also plotted for reference. The
maximum loads used, for both graded and homogeneous structures of various thicknesses,
were about 90% of the fracture loads for homogeneous beams. It was assumed that graded G/
Z/G beams, regardless of thickness, were fabricated using the same condition, i.e. glass
infiltration of presintered (1400°C for 1 h) Y-TZP beams at 1450°C for 2 h. The thickness of
the graded layer remains constant irrespective of the beam thickness. Fig. 5 shows, for bending
of graded G/Z/G beams, that if we hold the thickness of the graded layers constant at h = 0.12
mm, the maximum bending stresses σxgg-max arise at the graded layer/core interface in beams
of total thicknesses greater than 1.2 mm (i.e. h2 > 0.6 mm). For beam thicknesses equal to or
less than 1.2 mm, the maximum bending stresses develop within the graded layer and become
closer to the surface as the beam thickness diminishes. In view of the above analysis, the
maximum stress σxgg-max in a graded structure can be determined as follows. For relatively
thick beams (2h2 > 1.2 mm), σxgg-max appears at the layer/core interface and can be determined
using Eq. (11b) and letting y = h1, which yields h2 – h1 = h. For thin beams (2h2 ≤ 1.2 mm),
σxgg-max can be obtained by plotting the σ–y function as shown in Fig. 5.

4.4 Dissipation of stresses in graded structures
Fig. 6 shows the maximum and surface stresses in the graded beams before flexural fracture,
normalized by the maximum stresses occurring at the surface of their homogeneous
counterparts, as a function of the beam thickness (2h2), normalized by the total graded layer
thickness (2h = 0.24 mm). Solid and gray curves represent the normalized maximum and
surface stresses, respectively, in graded beams of various thickness ratios. As can be seen in
Fig. 6, controlled gradients of the surface elastic property can effectively reduce the maximum
bending stress in a beam. However, the magnitude of the stress dissipation depends on the
thickness ratio of the beam and the graded layers. For small thickness ratios (i.e. h2/h < 2.5),
the maximum stress in a graded beam is approximately 81–82% of that in its homogeneous
counterpart. For intermediate thickness ratios (i.e. 2.5 ≤ h2/h ≤ 10), the maximum stress
increases relatively fast as the thickness ratio increases, from 82.4% of that in a homogeneous
beam for h2/h = 2.5 to 94.5% for h2/h = 10. For large thickness ratios (i.e. h2/h > 10), the
reduction in maximum stress due to elastic gradients becomes minimal and the difference in
maximum stresses between the graded and homogeneous beams becomes smaller as the
thickness ratio further increases. In addition, the elastic gradient also effectively reduces the
surface stresses in a graded beam. The magnitude of the surface stress reduction decreases
steadily with the increasing thickness ratio, from 43% of the homogeneous beam value for
h2/h = 1 to 34% for h2/h = 5 and to ~31% for h2/h > 33.

Fig. 7 plots the distance of the maximum stress from the graded structure surface, normalized
by the thickness of a graded layer (h = 0.12 mm), as a function of the thickness ratio. For h2/
h > 5, the maximum stress occurs at the graded layer/Y-TZP core interface. For h2/h ≤ 5, the
maximum stress begins to appear in the graded layer and becomes closer to the surface as the
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thickness ratio decreases, being located at 90% of the graded layer thickness beneath the surface
for h2/h = 5 to around 16% for h2/h = 1.

5. DISCUSSION
We have presented an analysis of bending stresses in sandwich beams with modulus gradients
at both top and bottom surfaces. Based on the current experimental results and published
literature [6,8], we propose a power-law relation to describe the elastic modulus gradient—
from a low modulus glass–Y-TZP surface to a higher modulus Y-TZP core. In functionally
graded materials, mechanical properties often vary with position in a power-law [6,8,19,20]
or linear [20,21] function. The elastic modulus function (Eq. (4)) derived here is a generalized
form, which can be used to describe elastic modulus gradients with a power-law or linear
profile. The scaling exponent n varies with material system and can be determined empirically.
For example, for the glass–zirconia system, n = 0.32, and for glass–alumina, n = 0.497 [6,8].
Explicit flexure formulas (Eqs. (11a) and (11b)) have been derived to compute bending stress
states along the load axis, acting on the cross-section of a graded sandwich beam. This was
done by solving the integrals of the moment–curvature relationship. Again these closed-form
flexure formulas for graded sandwich beams are presented in a generalized form for any given
n value. Such flexure formulas can be readily used to compute the bending stress distributions
in any sandwich beam with elastic modulus increasing from the surface to interior.

The dependence of bending stress distribution on the thickness ratio h2/h of a graded G/Z/G
beam warrants emphasis. Detailed analysis of Figs. 5–7 reveals several interesting trends.

i. The most effective stress reduction appears in graded structures with small ratios of
beam thickness to graded layers (i.e. h2/h < 2.5). At h2/h = 2.5, the maximum stress
in a graded beam is ~17.6% lower than that of a homogeneous beam. Interestingly,
reduction of maximum stress in a graded structure increases gradually to ~18.8% as
the thickness ratio decreases to h2/h = 1.25 and then decreases slightly to ~18.7% as
the thickness ratio further decreases to h2/h = 1. The position of the maximum stress
in a graded beam shifts dramatically toward the surface for small thickness ratios (i.e.
h2/h < 2.5): from ~42% of the graded layer thickness beneath the surface for h2/h =
2.5 to ~19% and 16% for h2/h = 1.25 and 1, respectively. In addition, the bending
stress at the surface of the graded structure increases notably as the h2/h ratio
decreases, from ~37% of the homogeneous beam at h2/h = 2.5 to ~41% and ~43% at
h2/h = 1.25 and 1, respectively. A higher surface stress coupled with a maximum stress
located near the surface makes the beams with small thickness ratios (h2/h ≤ 1.25)
more vulnerable to surface processing and/or handling flaws [22].

ii. For relatively large ratios of beam thickness to graded layers (i.e. h2/h > 5), reductions
in maximum stresses in graded structures are less than 12% relative to their
homogeneous counterparts, meaning that the stress dissipation effect becomes less
significant, despite the maximum bending stresses occurring deep beneath the surface
at the graded layer/uniform core interface and the surface stresses falling below 34%
of that of the homogeneous beams. Considering all factors presented, to optimize the
load-bearing capacity, the best beam to graded layers thickness ratio (h2/h) is 1.25–
2.5.

Strengthening Y-TZP is of practical importance since Y-TZP belongs to a strong class of
ceramic, and further improvements in load-bearing capacity of Y-TZP could result in a new
breed of materials with superior flexural strength. We have presented a case study on the
fabrication of a G/Z/G sandwich structure with controlled gradients in elastic modulus at both
top and bottom surfaces using a simple glass–ceramic infiltration technique. The current
nanoindentation study shows that the elastic modulus increases from the surface to the interior
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according to a power-law relation. Our three-point bending tests show that load to fracture in
G/Z/G beams (1.2 × 4 × 25 mm3 in dimension) is approximately 28% higher than that of
homogeneous Y-TZP. However, theoretical predictions (Figs. 5b and 6) show that grading hte
elastic modulus in a 1.2 mm thick beam can only account for 12% of stress reduction. For
reference, a 1.2 mm thick graded beam yields a beam to graded layers thickness ratio of
2h2/2h = h2/h = 0.6/0.12 = 5. Such a discrepancy can be attributed to the following reasons:
(i) the glass infiltrates the surface, making the material relatively insensitive to the surface flaw
status [23]; and (ii) upon glass–ceramic infiltration, the glass penetrates the multigrain
junctions and grain boundaries and gradually separates the Y-TZP grains. This may lead to an
increase in volume at the surfaces of the graded material and introduce localized compressive
stresses at the surface [24], which can offset the maximum flexural tensile stresses. Both
reduction in flaw population and the development of compressive stresses at the surface can
improve the load-bearing capacity of G/Z/G in addition to strengthening contributed by the
elastic gradients. Definitive studies are underway to separated out the effect of the surface flaw
status and compressive stresses.

We acknowledge that the current stress analysis is based on the elastic modulus function
determined from the G/Z/G system. The optimal condition of stress dissipation varies with the
modulus profile. In principle, the effect of modulus functions on the stress dissipation can be
evaluated analytically. However, it is a labor-intensive exercise. Currently, we are generating
computer codes to search for an optimal modulus profile to further improve the load-bearing
capacity of graded sandwich beams.

The current stress analysis has significant implications in designing elastically graded beams
for optimization of load-bearing capacities. Regardless of the thickness and size of the beam,
by tailoring the ratio of beam thickness to graded layers, a marked reduction in stress can be
achieved. Our findings provide guidelines for designing load-bearing devices as small as dental
crowns and bridges and as large as construction support beams.
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Fig. 1.
Cross-section of a symmetrically graded sandwich beam of width b and thickness 2h2. h is the
graded layer thickness and h1 the distance from the neutral axis z to the graded layer/core
interface.
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Fig. 2.
Backscattered electron (BSE) image showing cross-sectional view of a G/Z/G beam (thickness
2h2 = 1.2 mm) fabricated from Y-TZP templates presintered at 1400°C for 1 h followed by
glass infiltration/densification at 1450°C for 2 h in air. Note: the glass content (dark phase)
gradually decreased as it proceeded towards the interior.

Zhang and Ma Page 13

Acta Mater. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Variations of elastic modulus as a function of the depth below the G/Z/G surface (h2 − y). G/
Z/G specimens were fabricated from presintered Y-TZP templates (1400°C for 1 h) followed
by glass infiltration at 1450°C for 2 h. The elastic modulus data was obtained by
nanoindentation. The solid curve is a semi-empirical fit to the elastic modulus data, Eg, in the

graded layers using a power-law relation , where Es = 74.6 GPa
and Eb = 240.8 GPa are the elastic moduli at the surface and in the bulk, respectively; h = 0.12
mm is the thickness of the graded layer; h2 is the half thickness of the beam; y is the distance
from the neutral axis; and (h2 − y) is the distance from the surface.
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Fig. 4.
Bar chart showing critical loads for flexural fracture of ceramic beams subject to three-point
bending. The beams were 2h2 = 1.2 mm thick and b = 4 mm wide. The loading rate was 1 mm
min−1 and the span between bearers was L = 20 mm. Ceramic beams tested were G/Z/G
(fabricated from glass infiltration of 1400°C presintered Y-TZP) and the homogeneous Y-TZP
controls.

Zhang and Ma Page 15

Acta Mater. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Bending stresses as a function of distance from the neutral axis (NA) for beams with a constant
graded layer thickness h = 0.12 mm but various total thicknesses: (a) 2h2 = 3 mm, (b) 2h2 =
1.2 mm, (c) 2h2 = 0.8 mm and (d) 2h2 = 0.4 mm. Stress distributions in homogeneous beams
of identical thicknesses are also plotted for reference. Note: stresses in graded and
homogeneous beams were calculated using Eqs. (11) and (14), respectively. Solid black curves
and gray lines represent stress distributions in graded and homogeneous beams, respectively.
The maximum loads used, for both graded and homogeneous beams, were about 90% of the
fracture loads for homogeneous beams. Vertical black and gray lines indicate the maximum
stresses σxgg-max and σxu-max in graded and homogeneous beams, respectively.
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Fig. 6.
Plots of maximum stress ratio (σxgg-max/σxu-max, black curve) and surface stress ratio
(σxgg-surf/σxu-max, gray curve) of graded and homogeneous beams as a function of the beam to
graded layers thickness ratio. The maximum stress ratio was derived from Eqs. (11) and (14),
while the surface stress ratio was computed using Eq. (15). Vertical lines indicate thickness
ratios of h2/h = 2.5 and 10.
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Fig. 7.

Plot of normalized maximum stress position ( , distance from the surface/graded layer
thickness) as a function of beam to graded layers thickness ratio. Data were generated using
Eq. (11).
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