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SUMMARY
Graphical methods for model diagnostics are an essential part of the model fitting procedure.
However, in survival analysis, the plotting is always hampered by the presence of censoring.
Although model specific solutions do exist and are commonly used, we present a more general
approach that covers all the models using the same framework. The pseudo-observations enable us
to calculate residuals for each individual at each time point regardless of censoring and provide
methods for simultaneously checking all the assumptions of both the Cox and the additive model.
We introduce methods for single as well as multiple covariate cases and complement them with
corresponding goodness-of-fit tests. The methods are illustrated on simulated as well as real data
examples. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION
Hazard regression models provide a convenient way of specifying how covariates affect the
survival time distribution. Typical examples include the multiplicative Cox proportional
hazards model [1] or the additive hazard model of Lin and Ying [2]. In the former, the hazard
function α(t|Z), for given covariates Z, is specified as

(1)

while, in the latter, it is given as

(2)

In both (1) and (2), β is a p-vector of regression coefficients and α0(t) an unspecified baseline
hazard for Z = 0. The choice of the model depends on the data in hand and for that purpose a
graphical evaluation of the data can be very helpful. There exists an abundance of methods for
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plotting in the framework of the classical regression analysis, mainly for quantitative outcomes,
but also for categorical data. The plotting of survival data, however, is hindered by its main
discerning property, i.e. the presence of censored observations. In the case of right censoring,
for example, the survival time of a censored individual will only be known to be greater than
a certain value, and therefore, plots mimicking those from the classical regression analysis can
be misleading. Instead of plotting individual values, the standard graphical methods for survival
data focus on describing the group experience, with the Kaplan–Meier estimate of the survival
function S(t)=pr(X>t) being the prime example of such practice. On the other hand, any more
specific methods [3–7], providing insight into a particular method fit, are tied to the model
specific way of tackling the censoring problems.

In this paper, we explain how assumptions of the different models can be checked within a
common framework using pseudo-observations, as introduced for regression modelling in
event-history analysis by Andersen et al. [8] and discussed for the analysis of the survival curve
in a single point by Klein et al. [9]. For a sample of size n, the pseudo-observation for the
survival indicator I(Xi>t), where i is the index running through the individuals, is defined as

(3)

In (3) Ŝ denotes the Kaplan–Meier estimate based on the whole sample and Ŝ−i denotes the
Kaplan–Meier estimate computed by having left out the i th individual (i.e. using n– 1
individuals). In the case of no censoring, this definition simply leaves us with the survival
experience of the individual i: Si (t) = I(Xi>t) is equal to 1 while the subject is still alive and
drops down to 0 when he dies (see Figure 1(a)). When censoring is present, the pseudo-
observations are still defined for all individuals and at all times; examples for two individuals
are given in Figure 1(b) and (c). As the Kaplan–Meier estimates in (3) only change at event
times and are constant in between, and the same is true for the pseudo-observations. Therefore,
the jump in Figure 1(b) occurs at the time of death and the turning point for the step function
in Figure 1(c) is the last event time before censoring.

Without censoring, I (Xi>t) is observed for all combinations of i and t and techniques for binary
data [10] could be applied for checking the assumptions of a model for the relation between
the survival function P(Xi>t)=EI(Xi>t) and covariates Zi, e.g. a model specified via the hazard
function for Xi. With censoring, I(Xi>t) is not always observed and the idea is then to replace
I(Xi>t) by the pseudo-observation Si(t) given by (3). This makes sense as, on the one hand, the
Kaplan–Meier estimator may be written as [11]

(4)

for t<τ, the last event time, and, on the other hand, when censoring does not depend on
covariates

(5)

see [8]. Note also that, although individual pseudo-observations do take on quite unusual values
and may fall well out of the (0,1) range (see Figure 1), equation (5) implies that they have the
right expectation; therefore, we can expect that with smoothing the range problems will become
less pronounced.
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In this way, by having calculated the pseudo-observations, the main problem of survival
analysis, i.e. not having values defined for all cases, is eliminated right at the starting point,
and the rest of the graphical analysis can be performed using the same logic regardless of the
model in mind.

The purpose of the paper is to review goodness-of-fit examinations for hazard regression
models using pseudo-observations and to compare such methods with existing techniques,
mostly those for the Cox regression model. This paper is organized as follows: in Section 2,
we define pseudo-residuals and illustrate their usefulness for the purpose of initial graphical
diagnostics. Section 3 introduces a scatterplot providing a non-parametric estimate of the
survival function conditional on a single quantitative covariate and investigates the
transformations of this function that help in checking the goodness-of-fit of a chosen model.
Section 4 considers the multiple regression setting and proposes corrections that must be
applied to discern the effect of the covariate of interest. Any graphical analysis can also be
supplemented using formal testing; we describe these methods in Section 5. Some practical
considerations are given in Section 6 and a real data example is studied using the proposed
methods in Section 7 before the paper is concluded in Section 8.

2. PSEUDO-RESIDUALS
The pseudo-observations are defined for each individual and at each time point and can
therefore be used to construct residuals analogous to the residuals in a general linear model:
the outcome, in our case Si(t), is compared with the predicted value for this outcome based on
the model, we denote this by Ŝ(t|Zi). A raw residual can, therefore, be defined as Si(t)−Ŝ(t|Zi).
We propose to use

where the raw residual is divided by an estimate of what would be the standard error of Si (t)
without censoring. We shall use these residuals as a graphical diagnostic tool of a model fit.
In both, the Cox (1) and the additive model (2), two assumptions are made. The coefficient β
is assumed to be constant in time (the proportional hazards assumption in the Cox model and
the constant hazards difference assumption in the additive model) and the covariate effect is
assumed to be linear. If the model fits the data well, no trends should be seen in the residuals
when we plot them with respect to a covariate (or the linear predictor) at any point of time. On
the other hand, when the assumptions of the model are not met, we would like to get some
insight into the type of departures. We can expect a nonlinear effect of the covariate (we use
g(Z) to denote a more general form of the covariate effect) to result in a certain trend when
plotting the residuals with respect to a covariate. On the other hand, the effect of changing β
in time (we will use the notation β(t) to stress that it might change in time) should be seen in
the changes of this trend from time point to time point. In practice, we shall plot the residuals
with respect to the covariate at only a few chosen time points; here, we choose four
(corresponding to 20th, 40th, 60th and 80th percentile of event times). To make it possible to
detect the trends, we shall add a curve representing the smooth average through the residuals.

As an illustration of what we can expect to see, we simulate two data sets following the Cox
and the additive model, respectively, and then compare it with three different situations, where
the assumptions of the models are violated:

a. the data follow model (1) or (2) with β(t)=δ for t<τ1 and changing to β(t)=−δ for
t≥τ1, the effect of Z is linear;
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b. the data follow either of the models with a quadratic effect of the covariate Z, i.e. g
(Z) = Z2, the coefficient β is constant in time;

c. both violations are incorporated simultaneously, β(t) and g(Z), as given in the previous
two situations.

For simplicity, only one covariate was used in these simulations, it was taken to be uniformly
distributed, Z1 ~ Uni f [−1,1]. The δ was taken to be equal to 2 in the Cox model case and taken
to be equal to exp(2) in the additive model case in order to make the effects on the survival
scale similar. The change point τ1 for β was set at the expected 45th percentile of the event
times, so that we should see no changes between the first two time points and some effect later
on. Note that we can expect the fitted coefficient to be close to 0 for all the three situations.
The sample size used was n = 1000 and the censoring was exponentially distributed with the
parameter set to give 25 per cent of censored cases. The baseline hazard α0(t) was constant in
time.

The results are presented in Figure 2 and Figure 3. The residuals (grey points) tend to fall in
three different groups. The top group belongs to the individuals that are still at risk. As the
pseudo-observations for these individuals at a fixed time are equal (and increase with time, see
Figure 1(b)), their residual values seem to form a horizontal line in the rows 2–4, where the
predicted values are also very similar for all the individuals (coefficient close to 0). The group
of residual values in the middle belongs to the censored individuals—as their pseudo-
observations are positive (see Figure 1(c)), their residual values can only be larger than the
values corresponding to failures (bottom group), whose pseudo-observations are negative.

As so many points are overlapping, it is impossible to judge the trends by looking at the
residuals alone; therefore, we focus on their smoothed averages (black curves). In the highest
row of the plots, where the same model was used for simulating and fitting the data, no trends
can be observed—the four curves all seem to be rather horizontal. In situation (a) the shape of
the curves differs in time, and in situation (b), the quadratic effect of the covariate is clearly
seen. The curve in (c) implies nonlinearity and changes in time; however, the effect seems
somehow less pronounced.

To conclude, the plots seem to give a good initial illustration of the model fit, but the effect
may need to be rather large to be observed. Furthermore, as particular deviations from a given
model may be difficult to disentangle from graphs in the survival probability scale, it may be
advantageous to transform to the assumed scale of the linear predictor. We shall return to the
problem of model diagnostics in that scale in the following sections.

3. SCATTERPLOTS FOR A SINGLE COVARIATE
For both quantitative and binary outcome variables, Yi, a scatterplot of Yi versus a covariate,
Zi, is very useful for assessment of how E(Yi|Zi) varies with Zi. For binary outcomes,
superposition of a scatterplot smoother to such a plot is essential and in order to assess a given
link function, such as the logistic link, a transformation of the smooth curve using the
corresponding link is usually performed.

For survival data we will introduce a similar scatterplot of the pseudo-observations, Si(t) versus
a covariate Zi (and versus t) to study how the survival probability S(t|Zi) = E(I(Xi>t)|Zi) varies
with Zi.

As an illustration we consider again a data set following the Cox model, simulated as described
in the previous section (uniform covariate, β=−1). Calculating the pseudo-observations and
smoothing them with respect to time and a chosen covariate results in the plot presented in
Figure 4(a). As the three-dimensional plots are usually hard to read, we propose that instead
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only the profile curves, representing S(tk|Z) at some chosen time points tk, are plotted against
the covariate Z, see Figure 4(b).

A plot providing similar information can be attempted using the Beran [12] estimator that
calculates a Kaplan–Meier estimate of groups of individuals defined by the nearest neighbours
with respect to the covariate. An example is given in Figure 4(c), the neighbourhood for each
individual is set to be 10 per cent of the closest values of Z1 in each direction. The curves are
evaluated at each distinct value of Z1 and can be smoothed if a less jagged impression is
preferred. The plots in Figure 4(b) and (c) are very similar, but as the pseudo-observations
enable us to have an outcome defined for each individual regardless of the covariate values,
we can also use them to derive individual residuals as exemplified in Section 2 and for
regression purposes, which is worked out in Section 5.

Turning to checking model specific assumptions, we first consider the Cox model (1). The
survival function given the covariates, i.e. S(t|Z)=pr(T>t|Z), equals

Hence, a cloglog transformation of the survival function results in an expression that is linear
in the covariates:

(6)

This implies that in the single covariate case (p=1), the cloglog transformed estimate of S(t|
Z) plotted with respect to Z provides a simple diagnostic tool for checking the Cox model
assumptions: if the data follow the Cox model, the resulting profile curves at chosen time points
should be parallel straight lines with the slope β. The A0 term in (6) denotes the cumulative

baseline hazard function, . As this is a monotonically increasing function of
time, the intercept of each next chosen time point is expected to be higher. Figure 5 illustrates
two examples, one with no effect of the covariate (a) and the other with an effect of β=−1 (b).

The survival function corresponding to the additive hazard model (2) is given by

and an expression that is linear in the covariate can be obtained by the logarithmic
transformation:

(7)

Therefore, the plotting procedure we propose for checking the additive model is to smooth the
pseudo-observations, transform them with the logarithm and plot them at chosen time points
divided by those chosen time values. If the data follow the additive model this should, as in
the Cox model case, result in parallel lines with the slope β. Two examples of data following
the additive model, with no effect (β=0) and with a constant negative effect (β=−1), are given
in Figure 6(a) and (b), respectively. The reason the lines are now not separated as in the Cox
model, but rather overlapping, lies in the different intercept form in (7). The value of A0(t)/t is
not bound to increase with time, but can vary in any direction. In our simulated examples,
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where the baseline hazard α0(t) is constant in time, the intercepts are the same for all the time
points.

If the coefficient β in (6) or (7) changes in time, the slope of the lines can be expected to differ.
On the other hand, if the covariate Z is replaced by a more general function g(Z), we shall see
curves instead of straight lines.

To illustrate the results we are likely to get when the assumptions of either of the models are
violated, we simulate the data following the same three situations (a)–(c) described in Section
2, but let the coefficient size be smaller, i.e. δ is equal to 1 in the Cox model case and exp(1)
in the additive model case.

Figure 7 and Figure 8 present the results. In situation (a) the curves seem rather straight, but
the slope changes in an obvious way thus implying that the effect is linear but changing in time.
On the other hand, the curved shape in Figure 7(b) and Figure 8(b) clearly implies the quadratic
effect of the covariate that remains the same throughout the time interval. In the last situation
(c), the curves again show a positive quadratic effect at the early time points, but we also
observe how this effect changes in time and finally becomes negative.

The standard methods for checking the Cox model assumptions include Schoenfeld [3] and
martingale residuals [4]. Although plotting the smoothed average of the Schoenfeld residuals
in time results in a curve that follows the behaviour of β(t) in time, the martingale residuals
plotted against the covariate Z give an idea about its true functional form. Either of the methods
assumes the other assumption to be met and might be misleading when the opposite is true. To
get an idea whether the trends seen in the curves are important, one can add a plot of cumulative
sums of these residuals together with some simulated residual patterns [13].

As an example, we look at the same three situations (a)–(c), using the existing functions in R
[14] when available (packages survival and timereg). Figure 9(a) illustrates well how β(t) in
situation (a) changes in time and Figure 11(b) follows well the true form of the covariate effect.
On the other hand, the coefficient in Figure 9(b) seems to stay constant in time, which is in
tune with (b), where only nonlinearity is violated, and we could argue similarly in Figure 11
(a). However, in situation (c), both the Schoenfeld residuals diagnostics (Figure 9(c)) and the
martingale residuals (11c) are misleading. As the best linear fit for the quadratic curve is close
to 0 regardless of the true parameter value for the quadratic effect, the Schoenfeld residuals
are unable to detect the violations of the assumptions, a similar argument holds also for the
martingale residuals case. This is also confirmed on Figure 10; we can see that while the trend
is obvious in situation (a), the violations cannot be noticed in situations (b) and (c).

A method that allows for checking both assumptions simultaneously was introduced by Sasieni
and Winnett [5]. They propose using martingale difference residuals, and we use this approach
to explore the three situations in Figure 12. Apart from not being bound to having different
intercepts, the resulting curves are very similar to those in Figure 7 and the interpretation is
the same for both methods in all the presented situations.

No similar methods are available in the additive model case. However, fitting the non-
parametric version of the model and plotting the cumulative B(t)=∫ β(u)du in time can give us
a reasonable insight into the constant β(t) assumption [6] provided that the covariate is linear,
see Figure 13. Furthermore, using the cumulative martingale residuals, we can check the
linearity of the covariate effect [7], Figure 14 presents the results. We can see that the observed
cumulative residuals in Figure 14(b) fall out of the area implied by the 50 random realizations
of the model and therefore signal problems with the linearity of the covariate effect, although
they behave within limits in situation (a). However, in situation (c), where both assumptions
fail simultaneously, the plot does not seem to give indications of problems as it should.
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To conclude, in the Cox model case, the plots using pseudo-observations can provide us with
the same information as the more standard methods using Schoenfeld or martingale residuals.

As it checks for both assumptions simultaneously, this method is more general and the results
compare closely with those given by the martingale difference residuals plots. The main
advantage of using the pseudo-observations is their generality—we can use the same idea also
for checking the additive or any other hazard regression model by specifying a different link
function.

However, all of the above only holds in the single covariate case, the case of more covariates
is explored in the following section.

4. SCATTERPLOTS FOR MULTIPLE COVARIATES
Let the survival probability be affected by covariates Z1,…,Zp, where p>1, and say we are still
interested in the effect of the Z1 covariate. Without loss of generality, let p=2. Ordering in the
Z1 direction and smoothing with respect to Z1 give a non-parametric estimator of S(t|Z1)

where f(.) denotes the covariate density. In the additive model case with two independent
covariates, i.e. f (Z2|Z1)=f (Z2), the term containing Z1 can be taken out of the integral unaffected
by Z2.

(8)

Therefore, ignoring the Z2 covariate still leaves us with an additive model in Z1; all that gets
affected is the intercept term. The logarithmic transformation can be expected to be linear in
Z1t and the plots described in the previous section still provide a valid insight into the model
fit.

However, when covariates in the additive model are dependent, the term f (Z2|Z1) also contains
Z1, and the model is no longer bound to be additive when considering Z1 only, implying that
the logarithmic transformation no longer needs to be linear in Z1t. Furthermore, in the Cox
model case, the term containing the covariate Z1 cannot be extracted in the same form even
when the two covariates are independent [15,16].

The profile curves no longer need to be parallel and linear in order for the model to fit well;
instead, we have to predict what they should look like if the model is correct. Therefore, we
fit the desired model (using all the covariates) to the data and calculate the predicted survival
Ŝ based on the estimated parameters. This leaves us with a predicted value for each individual
at each event time. We then smooth these values with respect to time and the Z1 covariate,
perform the desired transformation, and plot the resulting curves against Z1 at chosen values
of event times. Although these curves would be parallel lines in the one covariate case, they
might take any other form with more covariates present. The final plot is obtained by
subtracting these values from the values of the original observed curves. Any remaining effects
observed must be due to the violation of the model assumptions. To make the plots more
comparable to those of the martingale difference residuals, the β1Z1 term can be added to the
resulting curves.
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This approach is strongly related to standard graphical techniques for linear regression and
can, in fact, be adapted quite easily to generalized linear models. In standard linear regression,
residuals Yi – Ê(Yi|Zi1, Zi2) may be plotted against Zi1 to see whether any structure, e.g. due to
mismodelling of the effect of Zi1, is present. A scatterplot smoother may be added to the plot.
A similar graph may be obtained by plotting Yi versus Zi1 and smoothing, plotting Ê(Yi|Zi1,
Zi2) versus Zi1 and smoothing and then subtracting the two smoothers. The latter plot is
equivalent to what we suggest here (except for the additional difficulty involved with dealing
with time, t) and this can be extended to generalized linear models (with links other than the
identity) by adding an extra step in the procedure that transforms the smoothed curves by the
link function before subtraction.

An example of this procedure for the Cox model case is shown in Figure 15. We simulated the
data as in previous examples, using a uniformly distributed covariate Z1 and an additional
binary variable Z2 (Z2~Bin(0.5)), the coefficients used were β1=1 and β2=3. Although the
curves in Figure 15(a) correspond to the observed data, Figure 15(b) represents the predicted
curves under the model. The difference between the two graphs is given in Figure 15(c).

As shown in (8), omitting an independent variable in the additive model presents no problem.
As an example for the additive model case, we therefore use the same simulation design as
above but let the covariates be dependent with cor(Z1, Z2)=0.5. As we can see in Figure 16(b),
this causes a nonlinear effect in Z1. The curves estimated from the observed data (Figure 16
(a)) roughly follow the same shape, therefore, no particular effect can be seen in Figure 16(c).

To conclude, when more than one covariate is suspected to affect survival, the plots described
in Section 3 can be insufficient and should be corrected using the predicted values calculated
using the desired model. The resulting plots can then be interpreted in the same way as in the
previous section.

5. TESTING THE PARAMETERS
All the plotting methods in Section 4 can be supplemented by estimation of the model
parameters in (1) or (2). As introduced in [8], this may be done using generalized estimating
equation methods modelling

(9)

and

(10)

respectively. The purpose of this estimation is not to compete with the standard fitting methods,
but rather to obtain parameters that directly correspond to the plotted curves—to this end, the
same time points could be chosen for both plotting and fitting.

To get a formal evaluation of the goodness-of-fit supplementing the visual impression implied
by the curves, we simply allow more parameters to the model. We study three basic options
for testing—we replace the right-hand side of (9) and (10) by

i. a(t)+β(t)Z: By allowing a different coefficient β(t) at each chosen time and testing
H0:β(t1)=⋯=β(tk), we are checking the proportional hazards assumption in the Cox
model and the constant hazards difference assumption in the additive model case,
both under the assumption of linearity. (For simplicity, we refer to this assumption
for both models as ‘PH’ in Table I–Table IV.)
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ii. a(t)+βg(Z): By replacing Z with a more flexible function of the covariate, we can test
the linearity assumption assuming proportional hazards or constant hazards
difference, respectively. In our examples, we set g(Z1) to be a restricted cubic spline
with three degrees of freedom (i.e. we introduce two new parameters).

iii. a(t)+β(t)g(Z): By allowing the functional form of the covariate to be nonlinear and
change at each time point, we can test both assumptions simultaneously.

As an example, we analyse the data sets presented in Figure 15 and Figure 16. We fit two
models for each data set (with and without Z2) and compare the parameter estimates as well
as the p -values for checking the goodness-of-fit assumptions using the three above-described
tests (i–iii). The results (evaluated at three time points) are given in Table I. When using both
covariates in the model, the estimated coefficient β1 is close to its true value (β1=1) and all the
tests return high p-values. On the other hand, when the covariate Z2 is omitted, both the estimate
and the goodness of fit are affected.

To investigate the performance of the described tests, we conducted several simulations. First,
the size of tests under the null hypothesis was studied. The data were simulated using two
covariates following the Cox and the additive model, respectively. In Table II we report the
results obtained using either a uniformly (Z1~Unif[−1,1], β1=1) or a normally distributed
covariate (Z1~Norm(0,0.5), β1=1). The covariate Z2 is always simulated as a Bernoulli variable
(Z2~ Ber(0.5), β2=3) and independent of Z2. The censoring degree is set to 25 per cent and the
baseline hazard is constant, α0(t)≡1. For each situation 1000 simulation runs were performed.

Although testing for each assumption separately seems to be reliable already at small sample
sizes, the size of the overall test (iii) depends not only on the sample size but also on the
distribution of the covariates; the more outliers we are likely to get, the larger sample we need
for the test to give satisfactory results.

We then considered the performance of the tests, when the assumptions of the two models are
violated. In addition to the three situations (a)–(c) described in Section 2, we also look at

(d) the data that follow the model with two covariates, but Z2 is omitted when fitting the
model;

(e) the data are simulated to follow the additive model and checked with the Cox model
procedure or vice versa.

The Z1 in all the simulations is uniformly distributed on [−1,1], all the other parameters remain
as defined above. The δ in all the situations is set to 1 for the Cox model and to exp(1) in the
additive model case. If we used an equal value in both models, this would result in a smaller
effect on survival in the additive model, and that would in turn seem as if we had less power
in the tests for the additive model case. The results for the sample size 250 are given in Table
III. The power is best in situations (a) and (b) that were tailor made for the tests (i) and (ii). As
both tests require the other assumption to hold, their power is greater than the power of the
overall test. When both violations occur simultaneously (c), the power gets lower. Situations
(d) and (e) deal with misspecified models, and the power in such cases is hard to predict. As
the two covariates are independent, the power in situation (d) for the additive model must be
close to the nominal level of 0.05.

The power of any test can of course be expected to increase with the sample size and the size
of the covariate effect, situations (a)–(c) are further explored in Table IV. We can see that at
sample size 1000 (25 per cent censoring), the power is high also for the overall test.

A somewhat similar general method for testing the goodness of fit for both the Cox and the
additive model has been proposed by McKeague and Utikal [17]. They compare the doubly
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cumulative hazard function (over time and covariate) predicted by each of the models with its
non-parametric estimator. They propose formal tests as well as accompanying plots. However,
the method is not intended to be informative about the direction of the departures from the
model assumptions.

6. SOME PRACTICAL CONSIDERATIONS
When trying out the presented methods in practice, several options arise. In this section, we
describe the methods we used in this paper and comment shortly on some other possible
options.

The smoothing was performed using local polynomial regression fitting, using the R [14]
routine loess [18]. In Section 2, it was performed over the covariate of interest at chosen time
points; in all the other sections, it was performed in two steps—first over the time and then
over the covariate (at chosen time points). This speeds up the process considerably without
any apparent differences to simultaneous smoothing in both directions. The degree of
smoothing was left to the defaults of the R function. Changing it, however, can have quite an
impact on the visual impression and should be taken into account when interpreting the results.
Similarly, one has to be aware of a poorer reliability of the splines in the tails of the covariate
distribution.

The positioning of the time points was chosen to follow the percentiles of event times. Most
of the examples in this paper include nine points, set at the 10th to 90th percentile of the
observed event times. The choice of the number of time points used in plotting seems to be
rather unimportant; however, early and late time points can yield smoothed averages that fall
out of the (0,1) region. This can be due to either too few or too many events happening in a
certain time interval to the individuals within certain ranges of the covariates. Therefore, the
stronger the effect of the covariate, the more likely we are to get undefined values (and, because
of smoothing, strongly curved lines approaching them) of the log or cloglog transformation;
hence, the curves representing early or late percentiles should be either interpreted with caution
or avoided altogether.

When interpreting the Cox model plots, one needs to be aware of the fact that the curves cannot
cross, as the difference of the intercept from one curve to the next can only be positive. When
the effect changes the sign, as, for example, in Figure 7(a), the curves corresponding to later
time points, therefore, cannot be expected to show a very strong trend. If we would increase
the effect of β in that example, the lines corresponding to later times would get more curved,
even though the effect is linear in Z1.

The choice of the number of time points when fitting seems to be rather more delicate. The
performed simulations imply that an increased number of parameters to be tested
simultaneously increase the Type I error if the sample size is not sufficient. This seems to
depend also on the distribution of the covariate—although the size of the tests for a uniformly
distributed covariate seems to be satisfactory already with 200 events, a larger sample is needed
in the case of the normal distribution.

The generalized estimating equations in Section 5 were fitted using the geese routine available
from the geepack [19] package. This function allows for fitting using either the log or the
cloglog link function and encounters no problems with individual values falling out of the (0,1)
region. The error structure used was Gaussian and the correlation structure was set to be
independent. Choosing other correlation structures seems to have no important effect on either
the size or the power of the tests. This is in line with [20].
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An R function for hazard models diagnostics using the methods described in this paper is
available from the internet,‡ SAS users can calculate the pseudo-observations using the SAS
macros described in [21].

7. AN EXAMPLE FROM PATIENTS WITH PBC
To illustrate our approach, we consider the multi-centre clinical trial conducted on patients
with the liver disease primary biliary cirrhosis (PBC). In a randomized study, 349 patients were
treated with either Cyclosporin A or placebo and the purpose of the trial was to study the effect
of treatment on the survival time, which was defined as time until either death or liver
transplant. During the follow-up 88 events occurred, which is less than in all the simulated
examples presented so far. Several covariates entered the final Cox model [22], among them
the effect of bilirubin will be of interest for this example.

Figure 17 uses the pseudo-residuals to present an initial illustration of the Cox model fit with
bilirubin as the only covariate. As the distribution of the bilirubin values is very skewed, the
predicted survival of some patients is very close to either 0 or 1 and therefore the standardized
residuals get rather large values. The limits of the presented plot were chosen to be [−3,3] and
12–14 residuals fell out of the region of each plot. Judging from Figure 17, the model does not
seem to fit well. Although the most obvious feature seems to be the changing of the curve in
time, this might not be that important, as there are only few individuals with large values of
bilirubin. On the other hand, the part of the curve corresponding to lower values of bilirubin
seems to stay rather constant in time but its linearity is more questionable.

We therefore turn to using the methods described in Sections 3–5 that should provide us with
a more detailed information about the Cox model assumptions. Figure 18(a) and (b) explores
the Cox model fit when entering bilirubin and log bilirubin, respectively. Owing to the small
sample size, three time points, representing the 25th, 50th and 75th percentile of the observed
event times, have been chosen for both plotting and testing. Figure 18(a) confirms that the
linearity of the covariate seems to be severely violated and all the three tests give significant
results (plin<0.01, pPH=0.04 and poverall=0.02). The logarithmic transformation yields better
results and while the curves in Figure 18(b) still seem nonlinear, the goodness-of-fit tests imply
that allowing a more general form of the curves does not considerably improve the model fit
(plin=0.30, pPH=0.28 and poverall=0.43)—this disagreement between the graphical impression
and the test results can probably be attributed to the small sample size. The final model that
was fitted to the data included treatment, age, sex and albumin. Taking these covariates into
account and performing a correction as explained in Section 4 result in Figure 18(c). The
interpretation of this plot is very similar to the one covariate case and the same is true for the
p-values given by the tests: plin=0.96, pPH=0.12 and poverall=0.25.

These results compare well with the results of the standard methods. Figure 19 presents the
cumulative martingale residuals plots checking the linearity assumption. We can see that while
linearity seems severely violated in Figure 19(a), this could not be claimed in Figure 19(b) and
(c).

8. CONCLUSIONS
The presence of censoring is the main problem when plotting survival data and the main
advantage of using pseudo-observations is that a value can be estimated for each individual at
all times regardless of censoring. An initial graphical check can be performed using the pseudo-
residuals. The plots are related to those for binary data, with the exception that we have time

‡http://www.mf.uni-lj.si/ibmi-english/biostat-center/programje/pseu.r.
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as an additional dimension. A smoothed average is therefore an essential addition to each plot.
This method is very general as any model could be used for calculating the predicted values
in the residuals.

Although the pseudo-residuals are useful in signalizing possible departures from the model
assumptions, more specific model diagnostics can be performed on the assumed scale of the
linear predictor of a chosen model. We have shown that using the proper link function, the
assumptions of both the Cox and the additive model can be checked and interpreted in the same
way. Similarly, the extensions to multiple covariate case are applied using the same logic. An
important feature of this examination that is advantageous to most of the standardly used
methods is that the assumptions are checked simultaneously and therefore misspecifying one
assumption does not obscure the information about the other.

The main purpose of this paper was to introduce graphical methods for checking the goodness
of fit of different hazard regression models using the same framework. However, the fact that
we have individual values available, enables simple testing procedures directly corresponding
to the plots.

To conclude, the pseudo-observations present a general tool for checking the fit of hazard
regression models. Although its generality enables us to apply it to many different problems,
we can expect, as with any general tool, that certain specific tests can have a better performance
or power. In addition, there will be situations in which the approach should not be used, in our
case that would be, for example, the case when censoring depends on covariates. When
comparing with the existing methods for the Cox model, we have seen that there are no
substantial differences, the important advantage of our approach is that it can be used for a
whole range of models.
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Figure 1.
The pseudo-observations in time. (a) The pseudo-observations for an individual with Xi=1 in
a data set with no censoring; (b) the pseudo-observations for an individual from a censored
data set, who experienced an event at time Xi=1; and (c) the pseudo-observations for an
individual, censored just after Xi=1.

Perme and Andersen Page 14

Stat Med. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The smoothed average (black curves) through standardized residuals (grey points) with respect
to covariate Z evaluated at four different time points: t1=20th, t2=40th, t3=60th and t4=80th
quantile of event times. The four rows of plots represent four different simulated data sets, see
text. The data were simulated and fitted using the Cox model
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Figure 3.
The smoothed average (black curves) through standardized residuals (grey points) with respect
to covariate Z evaluated at four different time points: t1=20th, t2=40th, t3=60th and t4=80th
quantile of event times. The four rows of plots represent four different simulated data sets, see
text. The data were simulated and fitted using the additive model.
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Figure 4.
A simulated example with a negative effect (β=−1) of the covariate Z: (a) the pseudo-
observations smoothed in time and covariate; (b) the profile curves representing S(tk|Z) at
chosen percentiles of event times; and (c) the profile curves calculated using the Beran
estimator.
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Figure 5.
Two simulated examples following the Cox model with (a) β=0 and (b) β=−1.
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Figure 6.
Data following the additive model with (a) β=0 and (b) β=−1.
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Figure 7.
Examples of violated Cox model assumptions: (a) non-constant β(t); (b) nonlinearity in Z; and
(c) nonlinearity in Z and non-constant β(t).

Perme and Andersen Page 20

Stat Med. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Examples of violated additive model assumptions: (a) non-constant β(t); (b) nonlinearity in
Z; and (c) nonlinearity in Z and non-constant β(t).
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Figure 9.
Examples of violated Cox model assumptions in situations (a)–(c), explored using the
Schoenfeld residuals.
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Figure 10.
Examples of violated Cox model assumptions in situations (a)–(c), explored using the
supremum-type test with cumulative sums of Schoenfeld residuals.
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Figure 11.
Examples of violated Cox model assumptions in situations (a)–(c), explored using the
martingale residuals.
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Figure 12.
Examples of violated Cox model assumptions in situations (a)–(c), explored using the
martingale difference residuals.
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Figure 13.
The cumulative coefficient B(t) in the additive model for the situations studied in Figure 8.
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Figure 14.
The tests of the linear covariate effect for the situations studied in Figure 8.
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Figure 15.
Simulated data following the Cox model with two covariates. (a) The cloglog transformed
smoothed pseudo-observations; (b) the cloglog transformed smoothed predicted survival
(based on the model fit using both covariates); and (c) the remaining effects.
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Figure 16.
Simulated data following the additive model with two dependent covariates: (a) the log
transformed smoothed pseudo-observations; (b) the log transformed smoothed predicted
survival (based on the model fit using both covariates); and (c) the remaining effects.
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Figure 17.
Checking the Cox model fit to the PBC data using the pseudo-residuals. The only covariate
used in the model is bilirubin. The three chosen time points are representing the 25th, 50th and
75th quantile of event times.
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Figure 18.
Checking the Cox model fit to the PBC data using smoothed scatterplots of transformed
pseudo-observations: (a) bilirubin; (b) log bilirubin; and (c) log bilirubin taking into account
the effect of treatment, sex, age and albumin.
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Figure 19.
Checking the Cox model fit to the PBC data using the cumulative sum of martingale residuals:
(a) bilirubin; (b) log bilirubin; and (c) log bilirubin taking into account the effect of treatment,
sex, age and albumin.

Perme and Andersen Page 32

Stat Med. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Perme and Andersen Page 33

Table I
Estimated values of β1 and the p-values for goodness-of-fit tests for a model
without and with taking Z2 into account.

Model β1 PH assumption Linearity Overall

Cox

  Z1 only 0.44 <0.01 0.14 <0.01

  Z1 and Z2 0.93 0.42 0.81 0.36

Add

  Z1 only 2.22 0.34 <0.01 <0.01

  Z1 and Z2 1.03 0.91 0.67 0.86
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