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Abstract

Background: Comparative DNA sequence analysis provides insight into evolution and helps construct a natural
classification reflecting the Tree of Life. The growing numbers of organisms represented in DNA databases challenge tree-
building techniques and the vertical hierarchical classification may obscure relationships among some groups. Approaches
that can incorporate sequence data from large numbers of taxa and enable visualization of affinities across groups are
desirable.

Methodology/Principal Findings: Toward this end, we developed a procedure for extracting diagnostic patterns in the
form of indicator vectors from DNA sequences of taxonomic groups. In the present instance the indicator vectors were
derived from mitochondrial cytochrome c oxidase I (COI) sequences of those groups and further analyzed on this basis. In
the first example, indicator vectors for birds, fish, and butterflies were constructed from a training set of COI sequences,
then correlations with test sequences not used to construct the indicator vector were determined. In all cases, correlation
with the indicator vector correctly assigned test sequences to their proper group. In the second example, this approach was
explored at the species level within the bird grouping; this also gave correct assignment, suggesting the possibility of
automated procedures for classification at various taxonomic levels. A false-color matrix of vector correlations displayed
affinities among species consistent with higher-order taxonomy.

Conclusions/Significance: The indicator vectors preserved DNA character information and provided quantitative measures
of correlations among taxonomic groups. This method is scalable to the largest datasets envisioned in this field, provides a
visually-intuitive display that captures relational affinities derived from sequence data across a diversity of life forms, and is
potentially a useful complement to current tree-building techniques for studying evolutionary processes based on DNA
sequence data.
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Introduction

As Carl Woese first demonstrated over 30 years ago, the

evolutionary history of organisms is embedded in their DNA [1].

The patterning of ancient divergences that led to present-day

forms can be reconstructed by comparing homologous sequences

from different organisms, thereby establishing a natural classifica-

tion in the form of a Tree of Life that reflects evolutionary history

[2]. Creating a Tree of Life for all organisms is a challenging task,

given there are at least 1.7 million named species of extant plants

and animals, plus innumerable fungi, protozoa, archaea and

eubacteria [3].

The general approach to extracting phylogenetic information

from DNA is the same as for morphologic analysis-arranging

organisms in nested groups defined by synapomorphies, shared

characters that represent a common evolutionary history [4] (Here

and in the following the usage of group refers to taxonomic

group.). Homologous gene sequences are aligned and the DNA

characters at each site are used to infer evolutionary relationships,

depicted as a branching tree diagram. In principle straightforward,

in practice this is a computationally intensive procedure informed

by complex models of nucleotide substitution [5]. The number of

possible branching patterns increases logarithmically with the

number of organisms [6], with the result that few trees with over

1,000 taxa have been generated (although see [7]). Alternatively,

neighbor-joining (NJ), which uses distances rather than characters,

can rapidly create phylogenies from large numbers of taxa with

reasonable accuracy, although it is limited by saturation effects

and restricted modeling of nucleotide substitution patterns [8].

The challenge of displaying evolutionary relationships among

large numbers of organisms has stimulated new approaches to

displaying and browsing trees [9,10]. Phylogenetic trees assume

branching evolutionary histories, limiting utility in some groups

such as those with high rates of horizontal gene transfer. More

generally, a tree diagram aims to express the temporal patterning

of divergences and as such does not convey relative affinities

among or within groups, such as might be due to positive or

negative selection including convergent evolution. For these
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reasons, it is desirable explore complements to tree-based methods

for analyzing and displaying DNA sequences from large numbers

of organisms.

The methods presented in this paper apply to sequential

biochemical data sets of general type. In the present exposition we

specifically consider DNA sequences. We focus on the 648

nucleotide region of cytochrome c oxidase subunit I (COI) gene,

employed as a standard ‘‘DNA barcode’’ for distinguishing animal

species [11], and utilize records in Barcode of Life Database

(BOLD) http://www.barcodinglife.org [12]. Broadly speaking, we

aim to develop mathematically optimal procedures for extracting

patterns and correlations from genetic databases. The main

emphasis is on determining the correlation structure of existing life

forms from biochemical data. From this we seek a rational

depiction of the genetic ‘‘landscape’’ in terms of a reasonable

metric. Possible past sequential states are not inferred. As shown

later, the results of the present analysis have the potential for

investigating evolutionary groups and affinities among the diversity

of life forms.

Results

The first example considers COI sequences with M~100
randomly drawn sequences from three BOLD projects represent-

ing different groups of animals: birds, fish, and butterflies.

Indicator functions vB, vF , and vH were constructed for these

sequence sets as described in Material and Methods. Indicator

vectors are a consequence of an optimization procedure which

seeks a unit vector which is maximally correlated with a designated

group, and simultaneously minimally correlated with the remain-

ing groups under consideration. In general the results are collected

together in the structure matrix

S~ vi,vj

� �
, ð1Þ

the elements of which furnish the correlation coefficients between

groups. A false color representation of the structure matrix

provides a visual display of correlations among groups (Figure 1).

These calculations indicated that fish and bird vectors were well

correlated, as might be expected for two classes of vertebrates, and

both were poorly correlated with the butterfly vector, consistent

with more distant evolutionary relationships.

This indicator vector analysis was based on randomly choosing

M~100 representatives for each of the base group matrices. This

left a set of 4332 ‘‘test’’ sequences, i.e. those not used to construct

indicator vectors (roughly 1600 bird, 1200 fish, and 1500 butterfly

sequences). We then examined how well these test sequences were

correlated with the indicator vectors. More specifically, each test

sequence was translated into a vector as above, and correlations to

the indicator vectors were determined. In all cases sequences from

the test set were most highly correlated with the respective

indicator vector for their group (Figure 2).

A second example considers COI sequences of North American

birds. Only those species for which at least 5 sequences were

considered; 122 species were in this admissibility set. The resulting

122|122 structure matrix, S, with vectors arranged alphabeti-

cally by species name is shown (Figure 3A). If instead the species

are ordered according to accepted taxonomy [13] Figure 3B

results, which shows harmony of the DNA-based indicator vector

analysis with established phylogenetic relationships. The taxo-

nomic ordering produces a relatively smooth mapping, with

maximum correlation among neighboring species, and decorrela-

tion among more distant species.

The test set for this framework contained 173 sequences and the

122 indicator vectors made correct species assignment in all cases.

Discussion

In this paper we present a mathematical and graphical method

for analyzing and displaying affinities among organisms based on

DNA sequences. This approach has several desirable character-

istics suggesting further study will be of interest. First, it is

computationally efficient. Sequences are transformed into digital

vectors and correlations among vectors are then calculated, with

computations proportional to the number of input sequences (see

Materials and Methods for details). Second, it is scalable in ability

to incorporate large numbers of organisms, as above, and in that it

can be applied to analyze correlations among sets of sequences at

Figure 1. Correlation among group-level indicator vectors. A
false-color map depicting correlations among indicator vectors vB, vF ,
and vH for COI sequences of birds, fish, and butterflies, respectively, is
shown. The numerical correlation values are indicated.
doi:10.1371/journal.pone.0007051.g001

Figure 2. Correlation of test sequences with group-level
indicator vectors. False-color map of 4,332 COI test sequences
compared to the indicator vectors depicted in Figure 1. In all cases, the
test sequences showed highest affinity with their respective group
vector.
doi:10.1371/journal.pone.0007051.g002
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different taxonomic levels, as in the species and class examples

shown. Third, it presents a visually-intuitive, condensed display of

affinities among sequences in the form of a false-color map. A

single figure can display information from at least 104 vectors,

each of which can represent an unlimited number of sequences.

Fourth, it provides a diagnostic approach in the form of ‘‘indicator

vectors’’ which can be used to classify test sequences from

unknowns. Finally, because the vectors preserve site-specific

information, it is possible to recover the actual characters, both

in individual and group-level vectors.

It is useful to consider our approach in the context of other

methods for mining taxonomic information from DNA or protein

sequences. In addition to those aimed at deeper phylogenetic

reconstruction, these include tree-based techniques for species

delimitation and statistical assignment of test sequences [14,15];

non-tree search algorithms BLAST [16] and BLAT [17] which

permit rapid, quantitative alignment of selected inputs to very

large databases of tabulated sequences; and non-tree techniques

for extracting diagnostic characters from sets of sequences [18,19].

These are all character-based methods with a relatively narrow

taxonomic focus. In contrast, our approach seeks macroscopic [20]

relations among diverse groups of life forms. The digital

transformation of sequential data employed is well suited to this

sort of global analysis, whereas character-based search tools and

diagnostics do not naturally lend themselves to this task, as it is

problematical to generate a ‘‘mean’’ sequence representing a

group of sequences using characters.

A potential application of this method might be in the

construction of a hierarchical tree using the correlation matrix,

although this possibility has not been examined. In the absence of

a hierarchical tree, as in the analyses presented here, this method

may be particularly useful for groups of organisms lacking

established taxonomy including viral types and subtypes, and

groups with reticulated evolutionary histories due to horizontal

gene transfer, such as archaea and eubacteria. Importantly, the

analysis as presented relies on existing taxonomic classification. It

will be of interest to explore the potential for a bottom-up,

sequence-based ‘‘classification’’ based on natural discontinuities in

vector space, as suggested by Figure 3B.

The significance of relative affinities among indicator vectors is

uncertain. In some cases, these were consistent with evolutionary

relationships, as with finding of high correlation between birds and

fish as compared to butterflies. In this comparison, there was

greater correlation between butterflies and fish (albeit still very

low) than between butterflies and birds (Figure 1). This latter

observation might have a simple or trivial explanation, such as

biases in AT vs. GC content or chance occurrence related to taxon

sampling. On the other hand, it might be relevant that butterflies

show greater affinity to fish, a relatively ancient lineage among

vertebrates, than to birds, which arose more recently. Further

study will help determine what sequence features underlie the

patterns of correlation among indicator vectors and their possible

biological significance. In this study we focused on COI because of

the availability of a large number of sequences from diverse

organisms. It will be of interest to compare results using other

genes, individually or in combination, for which there is a large

representation in public databases, e.g., nuclear genes for large

and small subunit ribosomal RNA, ITS, chloroplast genes rbcL and

matK, and mitochondrial genes other than COI. So far, there are

sequences in GenBank from fewer than 160,000 of the 1.7 million

named species of multicellular plants and animals, and genetic

documentation of other eukaryotic lineages (fungi, protozoa) and

the vast diversity of archaea and eubacteria is sparse. As

representation grows, methods for exploring and displaying

relationships among large numbers of sequences will be increas-

ingly important. The mathematical and graphical approach

presented here may be a useful addition.

Materials and Methods

Nucleotide sequence data were downloaded from ‘‘Published

Projects’’ section of BOLD as aligned fasta files. Although the

Figure 3. Correlation among species-level indicator vectors. A false color map depicting correlations among indicator vectors for 122 species
of North American birds is shown in (A) where order is alphabetical by species name. Blocks of high correlation on the diagonal reflected affinity
among species within genera. The large squares of highly-correlated birds in the upper left hand corner indicated close affinities among species in
several genera of ducks and geese (Aix, Anas, Athya, Branta, Bucephala). In (B) the ordering follows established taxonomy, reflecting phylogenetic
relationships [13].
doi:10.1371/journal.pone.0007051.g003
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amino acid sequence of COI is highly conserved across diverse

forms of life, there are insertions of 1 or more amino acids in some

species, necessitating the introduction of gaps into the alignment.

Examination of downloaded records revealed that terminal

regions of the approximately 650 nucleotide segments had

relatively high numbers of ambiguous and/or missing nucleotides,

presumably reflecting incomplete sequencing runs. To reduce this

uninformative ‘‘noise’’ we restricted attention to nucleotides in

positions 100 through 600. This 501 nucleotide span contained

167 complete codons.

The aligned, trimmed sequences have been stored in MATLAB

mat files which will be available along with relevant MATLAB

code on our website.

Data Transformation
Under the four letter genetic code a COI sequence in the above

defined admissibility range translates to a vector of 501

components with entries A,T,C, and G. For quantitative purposes

such a vector will be elaborated into vector of length 2004 having

entries of 0 or 1 according to the convention

A? 1,0,0,0½ �
C? 0,1,0,0½ �
G? 0,0,1,0½ �
T? 0,0,0,1½ �

ð2Þ

In schematic form

ATTC . . .? A,T ,T ,C, . . .½ �?
1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0, . . .½ �

ð3Þ

For the totality of sequences there were approximately 0:03%
hyphen gaps, 0:04% missing bases, N, and 0:0006% ambiguous

missing data (R, Y , etc.). Gaps were initially encoded as 0,0,0,0½ �.
Missing bps were encoded either as modal or as average values.

Neither produced any significant effect. In addition there were

about 0:03% bps which were misaligned, and many of these were

corrected manually. This also proved to be virtually insignificant.

Thus each sequence has a unique representation in the chosen

vector space, and a Hamming distance [21] may be applied

immediately.

Indicator Vectors
We considered the existence of a distinguishing vector which is

indicative of a specific group of organisms, determined on the basis

of its contrast with vectors of other sets of organisms. A narrow,

but perhaps illuminating view of the procedure is that we seek an

objective and automated algorithm for inclusion/exclusion of a

sequence as a member of a specific group within a set of groups, by

means of correlations with the sought after indicator vectors.

The process of constructing indicator vectors can be carried out

following the levels of the traditional hierarchical taxonomic

classification, e.g. phyla, classes, species, etc. However the

procedure as presented is robust and can be applied across non-

traditional boundaries. In the first example, we considered COI

sequences for three groups of animals which we informally titled

‘‘birds’’, ‘‘fish,’’ and ‘‘butterflies.’’ COI sequences utilized for these

three groups were drawn from ‘‘Published Projects’’ section in

BOLD [12], namely ‘‘Birds of North America -Phase II [22]

‘‘Barcoding of Canadian freshwater fishes’’ [23], and ‘‘Hesperidae

of the ACG 1’’ [24]. The second example considers the species

contained within the North American bird project. In all cases we

only consider sequences with sufficient length, and we exclude

those containing excessive blanks.

The range M~10,20,50,100,200,500,1000 for the Birds/Fish/

Butterflies case, was examined for efficiency and timing on the

basis of Matlab code and a modest desktop machine. No test set

errors occurred for M§50. Computational times varied roughly

linearly from 7 sec at M~100 to 24 sec at M~1000. The

discrepancy in calculating indicator vectors on passing from

M~50 to M~1000 is less than :1%. In addition we performed a

trial calculation involving 12 groupings with M~500, which took

roughly 30 sec.

Mathematical Methods
Consider a collection of N groups Gkf g k~1, . . . ,N. Explicitly

in the first example we consider GB,GF and GH the groups of

(North American) Birds, (Canadian) Fish and (butterflies) Hesper-

idae. For each group Gk a fixed number M of representative

sequence vectors sj kð Þf g, j~1, . . . M are selected at random and

the base group matrices

Gk~

s1 kð Þ ?

s2 kð Þ ?

sM kð Þ ?

2
64

3
75,k~1,::,N ð4Þ

are formed. Thus for the first example case we form GB,GF and

GH .

For the lth group we seek its indicator vector v, defined to be of

unit length

vk k2
~1 ð5Þ

and such that it extremizes the criterion functional

C~ Glvð Þk k2
{S Gmvð Þk k2Tm=l , ð6Þ

where STm=l is the average over all m except m~l, is maximal. In

more detailed form

C~ Glv,Glvð Þ{ 1

N{1ð Þ
X
m=l

Gmv,Gmvð Þ ð7Þ

where ,ð Þ indicates the appropriate inner product.

In words the optimization seeks the indicator vector v which, if

all within-group members were identical, would have a unit

correlation coefficient with the M member sequences of Gl and a

zero correlation coefficient with members of all other groups

Gk, k=l. (A similar approach has been used to reveal cortical

organization contained in optical imaging: [25,26].)

A standard variational argument leads to the eigenvalue

problem

G
{
l Gl{

1

N{1

X
k=l

G
{
kGk

 !
v~lv: ð8Þ

It is at least intuitively obvious that the maximal eigenvalue is

positive, and under reasonable hypotheses this may be proven.

Thus the eigenvector corresponding to the maximal eigenvalue

yields the indicator vector for the lth group. This and the
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eigenvalue are denoted by

ll ,v
l

� �
: ð9Þ

This procedure is carried out successively for each group.

The residual sequences not used in constructing the base

matrices Gmf g then furnish a test set for evaluating the accuracy of

the procedure.
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