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Abstract
We present a framework for hypothesis testing of differences between groups of DTI fiber tracts.
An anatomical, tract-oriented coordinate system provides a basis for estimating the distribution of
diffusion properties. The parametrization of sampled, smooth functions is normalized across a
population using DTI atlas building. Functional data analysis, an extension of multivariate
statistics to continuous functions is applied to the problem of hypothesis testing and
discrimination. B-spline models of fractional anisotropy (FA) and Frobenius norm measures are
analyzed jointly. Plots of the discrimination direction provide a clinical interpretation of the group
differences. The methodology is tested on a pediatric study of subjects aged one and two years.

1 Introduction
The diffusion properties of white matter tracts measured by DTI provide a novel and
important source of information for group comparison and regression in clinical
neuroimaging studies. Significant challenges remain in the development of an automatic
framework for testing significance of group differences in a manner which provides
clinically relevant results. Previous work has shown the importance of modeling the
diffusion properties of a fiber tract as functions sampled by arc length along the axis of the
bundle [1,2]. The major challenge in applying this type of analysis is the need for a
consistent parametrization of fiber bundles across a large population of images. Deformable
registration has been proposed as a method of mapping a population to a reference atlas
coordinate system [3,4,5]. Most of the analysis using atlas building has focused on
independent voxelwise tests, which can be challenging to interpret and require sophisticated
multiple comparison correction. Most studies have also analyzed fractional anisotropy (FA)
or mean diffusivity (MD) values independently. We propose to combine the anatomically
relevant coordinate system of tract statistics with the population coordinate system provided
by atlas building. The combination of the tract coordinate system with atlas building
provides an automated, clinically interpretable framework for understanding group
differences. The closest related work has been done using nonlinear registration and
projection onto a skeleton representation of FA [6]. Another proposed approach uses fiber
clustering to compute correspondence across a population [7].

We use deformable registration to estimate and remove shape variability in a population of
images. Analysis of shape normalized fiber bundles is performed in an anatomically relevant
coordinate system based on fiber tractography. The atlas normalized diffusion measures are
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treated as a continuous smooth function of arc length, and statistical tests are applied for the
joint analysis of the orthogonal FA and Frobenius norm measures. The framework provides
a single multivariate hypothesis test between groups eliminating the need for multiple
comparison correction and incorporating the joint information of tensor anisotropy and size.
Visualization of the linear discriminant provides a clinically meaningful interpretation of the
group differences as shown in an example study of pediatric images. Fig. 1 shows an
overview of the analysis procedure.

2 Atlas Parametrization and Fiber Extraction
Atlas building based on diffeomorphic registration estimates a set of transformations such
that each image in the population can be mapped into the atlas coordinate system. In the DTI
atlas building framework, each tensor image Ii is mapped into a common atlas space by a
transformation Ti with inverse  using appropriate measures to account for reorientation
and interpolation of tensors. For the study presented here, the procedure of Goodlett et al.
based on the atlas building procedure of Joshi et al. is applied [4,8]. In our framework,
images from two groups are combined to produce a single pooled atlas. Our assumption is
that the overall topology of the images in the two groups are similar enough to allow all
images to be combined into one atlas, but differences may occur in the diffusion properties
of fiber tracts. Thus, we use registration to normalize the image shapes and perform statistics
on the diffusion properties of the normalized fiber bundles. The set of tensor images are
averaged in atlas space to produce an atlas tensor image with improved signal-to-noise ratio
(SNR). The average tensor volume allows reliable extraction of tracts even in populations of
images with low SNR such as pediatric images. The diffeomorphic transforms guaranteed
by the atlas building procedure allow atlas tracts to be mapped back into each individual
subject.

Fiber tracts are extracted in the average tensor image using a standard Runge-Kutta
streamline integration technique based on the principal eigenvector field. Source and target
regions are manually developed to extract each bundle of interest. For each subject, the data
within the fiber bundle is modeled as a sampled function of arc length using a method
similar to that described in Corouge et al. [1]. The result of the procedure is a set of sampled
functions parametrized by arc length tj ∈ [−a, b] from the atlas fiber tract. The atlas-
normalized parametrization of the curves is possible because of the smooth, invertible nature
of the transformations Ti, . That is the samples from each subject are obtained by
FAi(Ti(tj)) for each sample point tj in the atlas tract. A sampled function is created for each
tensor scalar measure such as fractional anisotropy, mean diffusivity (MD), Frobenius norm
∥D∥, etc. For the purpose of this work we chose FA and the Frobenius norm as orthogonal
anisotropy and size measures respectively [9]. Fig. 2 shows the sampled curves extracted for
the genu fiber bundle for our example study.

3 Functional Data Analysis
Image sampling as well as the fiber tract extraction process create a sampled representation
of the fiber bundle diffusion properties. However, there exists a continuous underlying
biology which generates these samples. Therefore, statistical analysis of the sampled
diffusion functions must account for the underlying continuity and spatial correlation of the
samples. We compute statistics of the diffusion curves as an infinite-dimensional extension
to multivariate statistics known as functional data analysis [10]. The simplest extensions of
ordinary statistics to the functional setting are the sample mean function f̄(t) and the sample
variance-covariance function υ(s, t), which is the bivariate function given by
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(1)

The diagonal of the function, υ(t, t), is the pointwise variance. Hypothesis testing and
discriminant analysis of the space of functions has an inherent high dimension low sample
size problem, because of the infinite dimensional space of continuous functions.
Regularization methods are, therefore, essential in the computation of functional statistics.
To enforce regularity, B-spline fitting and functional principal components analysis (PCA)
is used for data driven smoothing where the number of retained PCA modes acts as a
smoothing parameter.

In order to make computations tractable smooth basis functions are fit to the sampled
diffusion curves. B-splines were selected as basis functions due to the nonperiodic nature of
the data, the compact support of the B-spline basis, and the ability to enforce derivative
continuity. A large number of B-spline bases are first fit to the sampled functions using a
least squares approach. The number of basis functions is chosen subjectively to maintain
local features while providing some smoothing. Computation of the mean function is
computed by the sample mean of the B-spline coefficients. Computation of the variance-
covariance function requires accounting for mapping between basis coefficients and
function values. Let fi(t) be the B-spline function fit to the samples from subject i. In matrix
notation we express all functions fi(t) as a matrix of coefficients C times the basis functions
ϕ

(2)

Similarly, the variance-covariance function of f(t) can be written as

(3)

Principal component analysis (PCA) of the functions fi(t) decomposes υ(s, t) into the
orthogonal unit eigenfunctions ξ(t) which satisfy

(4)

The B-Spline basis is not orthonormal resulting in a non-symmetric eigenvalue problem to
solve (4). As shown in Ramsay and Silverman [10], this minimization can solved by the
symmetric eigenvalue problem for the basis coefficients b, with the change of variable
W1/2u = b as

(5)

where W is the matrix of basis function inner products with entries

(6)
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In our analysis we consider jointly the analysis of FA and tensor norm functions with basis
coefficients C1 and C2 respectively. We therefore compute PCA from the eigenanalysis of
Σ, where

(7)

Hypothesis testing and discriminant analysis is performed on the projection into the first K
PCA modes, where K serves as a smoothing parameter. Let xi and yi be the projection of the
curves from the two population of functions fi(t) and gi(t) into the PCA space. In this space
the basis mapping has already been incorporated and standard multivariate analysis can be
applied. The normal parametric hypothesis test for mean differences is the Hotelling T2

statistic,

(8)

where S is the pooled covariance matrix. In order to relax the normality assumptions
associated with the parametric test, we apply a permutation test based on the T2 statistic to
compute the p-value.

The T2 statistic is proportional to the group mean differences projected on the Fisher linear
discriminant (FLD),

(9)

The linear discriminant, therefore, provides a direction for interpreting the group
differences. The coefficients of the discriminant can be expanded into the original function
basis so that FLD(t) = ϕ(t)ω is a function whose inner product with the original data
provides maximal separation between the groups.

4 Pediatric Data Application and Validation
We have tested the methodology on a study of pediatric DTI images. A population of 22 one
year old subjects and 30 two year old subjects were chosen from a database of pediatric DTI.
In this example we expected to find large differences between the two groups, and the
purpose of this study is to illustrate the methodology rather than to determine clinical results.
Each image was acquired with 2x2x2mm3 isotropic voxels, 10 repetitions of a six direction
protocol, and a b-value of 1000s/mm2. We selected as representative fiber bundles the genu
of the corpus callosum and the left motor tract. An atlas was computed from the combined
set of 52 images, and tractography was performed to extract the two tracts.

Sampled functions of FA and tensor norm parametrized by atlas-normalized arc length were
computed in the genu and left motor tracts. For the genu curves, a B-spline basis with 60
basis functions was used to provide preliminary smoothing and smooth curve estimation.
For the motor tract, 80 basis functions were used. Functional joint PCA of FA and Frobenius
norm was then estimated for the whole population. The number of PCA modes was selected
to retain 90% of the total variance. For this study 7 and 11 PCA modes were retained for the
genu and motor tracts respectively. The mean function plus the first two principal modes for
the genu tract are shown below in Fig. 3.
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The Hotelling T2 statistic was then computed in PCA space. The genu tract test was
extremely significant with a T2 statistic of 133.1 and parametric p-value of 3.3e-8. The
motor tract was also extremely significant with T2 statistic of 93.8 and a parametric p-value
of 2.7e-6. In this case there was such a large difference between groups that the permutation
test did not result in any permutations with a statistic greater than the original. The p-values
are uncommonly low because of the strong differences in the test data and the relatively
large sample size. Visualization of the discriminant direction provides an interpretation of
the detected differences and is shown in Fig. 4. The discriminant direction for the genu tract
shows the difference from one to two year old groups is caused by an overall increase in FA
and correlated decrease in Frobenius norm. Furthermore, the increased value of FA in the
center of the tract indicates the central region of the tract provides more discriminative
power between the two groups. These results are similar to differences which have been
found between neonates and one year old subjects in the same tract [11]. The results in the
motor tract indicate a similar constant increase in FA across the whole tract, and the
Frobenius norm increases towards the inferior region of the tract, and decreases at a specific
location in the superior region of the tract.

5 Conclusions and Discussion
Computing fiber tract statistics as a function of arc length provides a sensitive mechanism
for detecting and understanding changes in fiber tract properties between populations. Our
framework avoids the problems of multiple comparison correction by providing a single
nonparametric hypothesis test for each fiber bundle. Furthermore, the discrimination
information contained within the hypothesis test can be visualized to provide a clinically
relevant interpretation of the group differences. The framework presented here is closely
related to previous work on shape analysis using PCA, and we intend to explore in more
detail how tools from shape analysis can be applied to this problem. We are currently
applying the methodology to a study of Schizophrenia in adults.
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Fig. 1.
Schematic overview of the tract analysis procedure
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Fig. 2.
(a) Genu tract extracted from the tensor atlas colored by FA value. The diffusion values are
sampled along the atlas-normalized arc length for each individual in the study for FA and
Frobenius norm values. The sampled FA and Frobenius norm functions for the two groups
are shown in (b) and (c) respectively. The one year old subjects are the dashed red lines and
the two year old subjects are the solid blue lines. The spikes in the center of the Frobenius
norm functions are likely partial voluming with the ventricles.
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Fig. 3.
Visualization of the PCA modes for the joint analysis of FA and Frobenius norm in the genu
tract. The (a) mean functions for the combined population are shown with (b) the first and
(c) second PCA modes. The first PCA mode accounts for a large percentage of the
variability and shows an overall constant change in FA and an anti-correlated constant
change in norm.
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Fig. 4.
Linear discriminants from one to two years for the (a) genu and (c) left motor tracts
expanded into original functional basis. These are the functions integrated with the original
data that maximally separate the groups. In the genu tract the FA values increase from one to
two years, and the Frobenius norm values decrease. For the motor tract, the results are
similar for FA, but the norm increases at the base of the tract and decreases towards the top.
The projection of the (b) genu and (d) motor tract curves onto the discrimination direction
shows the strong separation between the groups.
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