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SUMMARY
The Youden Index is often used as a summary measure of the receiver operating characteristic curve.
It measures the effectiveness of a diagnostic marker and permits the selection of an optimal threshold
value or cutoff point for the biomarker of interest. Some markers, while basically continuous and
positive, have a spike or positive mass of probability at the value zero. We provide a flexible modeling
approach for estimating the Youden Index and its associated cutoff point for such spiked data and
compare it with the standard empirical approach. We show how this modeling approach can be
adjusted to take covariate information into account. This approach is applied to data on the Coronary
Calcium Score, a marker for atherosclerosis. Published in 2007 by John Wiley & Sons, Ltd.
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1. INTRODUCTION
In recent years, the evaluation of the ability of a new diagnostic or screening marker (test) to
distinguish a diseased from a non-diseased patient has been widely discussed in the literature
[1,2]. A person is assessed as diseased or healthy depending on whether the corresponding
marker value is greater than or less than or equal to a given threshold value. Associated with
any threshold value (t) is the probability of a true positive (sensitivity = q(t)) and the probability
of a true negative (specificity = 1 − p(t)).

A frequently used summary index of marker accuracy is the Youden Index [2-7], which is
defined as

(1)
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over all threshold values t. The critical threshold value t*, which achieves this maximum, will
be referred to as the ‘optimal’ threshold. The optimal threshold is used as a criterion for
classifying subjects as healthy (diseased) if their observed marker value is less than or equal
to (greater than) t*. Greiner et al. [8] provide a recent discussion of this and other criteria for
obtaining the critical threshold value. J and t* are often seen in the applied biomedical literature
[9-12].

The Youden Index gives equal weight to sensitivity and specificity. If a researcher thinks that
different weights are appropriate (based perhaps on the cost of different types of error), a
generalized Youden Index can be used. The generalized J can be motivated from a decision
theoretic perspective. The expected loss function in classifying a subject can be written as (1
− κ) p(t) + aκ(1 − q(t)) [5,8,13], where ‘a’ denotes the relative loss (cost) of a false negative
when compared with a false positive and κ is the proportion of diseased individuals in the
population of interest (prevalence). It is easy to see that minimizing this expected loss over all
possible threshold values is the same as maximizing r(1 − p(t)) + q(t), where r = (1 − κ)/aκ.
For r = 1, this is equivalent to obtaining J. The relative cost and disease prevalence are often
difficult to assess (Greiner et al. [8] and the references cited therein). We have, for simplicity,
remained with the commonly assumed r = 1 [8], both in the theoretical development and in the
example of this paper.

In clinical practice, finding the location of the critical threshold value for discriminating cases
and controls with minimal misclassification is of central interest. A recent paper by Fluss et
al. [6] discusses the case when marker measurements are continuous and compares several
methods of estimation for both the Youden Index and the critical threshold value. In this paper,
we extend the presentation to continuous data with mass at zero. Such zero-spiked data were
presented by Schisterman et al. [5] in the context of receiver operating characteristic (ROC)
curve analysis. The ROC curve is a useful tool for displaying the discriminatory ability of a
marker measured through a diagnostic test in distinguishing between diseased and healthy
individuals. The ROC curve is a plot of q(t) versus p(t) for all possible threshold values. The
accuracy of a diagnostic test is often summarized by the area under the ROC curve (AUC)
[1].

As an example of zero-spiked data, consider the Coronary Calcium Score (CCS). Calcium in
the coronary arteries indicates the presence of atherosclerotic plaque, and the amount of
coronary artery calcification correlates with the amount of atherosclerosis (hard and soft
plaque) at autopsy. Electron beam tomography (EBT) is a sensitive, non-invasive modality for
the detection of subclinical atherosclerosis by coronary calcium measurement. CCS determined
by EBT has been shown to be directly associated with the extent of angiographic coronary
artery disease and to be predictive of coronary events [14]. A zero CCS value is interpreted as
the tested individual having no calcium in the coronary arteries. Any positive amount of
coronary calcium can be quantified continuously by EBT. Furthermore, the discriminatory
accuracy of a continuous marker may be influenced by covariate factors such as age, general
health status, sex, etc. [15,16]. Schisterman et al. [16] have shown that the AUC attained from
the CCS is a function of age and gender. Based on their findings, it is reasonable to consider
that both J and t* should be functions of these covariates. This paper aims at developing a
readily applicable methodology for estimating J and t* for zero-spiked data.

To evaluate the critical threshold value and the Youden Index of CCS, we examined a
prospective cohort study of 10 377 asymptomatic individuals [14] who were referred by their
primary care physicians between 1996 and 2000 for coronary calcium screening with EBT.
Patients with a history of coronary disease (i.e. a history that included admission to the hospital
for chest pain, acute coronary syndrome, or myocardial infarction (MI), as well as prior
coronary angiography and revascularization) were excluded. Patients in our cohort who had
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an MI within two years from the EBT test were classified as being in the diseased group and
otherwise were considered to be in the healthy group.

Schisterman et al. [16] showed that this marker has poor discriminatory ability for females.
Consequently, in this paper we consider only the 4122 males. Figure 1 provides a histogram
for the frequency distribution of CCS by disease status for our sample of males. Note that the
CCS has a spike (mass) at zero and the positive CCS marker values have a skewed distribution.
The percentages of zeros for the diseased and healthy samples are 18 and 61 per cent,
respectively.

Estimation of J and t* follows the estimation of the sensitivity and specificity functions in (1).
Both parametric and non-parametric approaches have been suggested for estimating sensitivity
and specificity [1]. These procedures differ by using various methods for estimating the
cumulative distribution functions (cdfs) of the marker values, based on samples taken from
both the healthy and diseased groups. Using these estimated cdfs, the estimation of p(t) and q
(t) and consequently J and t* follows. The most common non-parametric method, which we
will refer to as the empirical method (EMP), estimates the cdf of the marker with the empirical
cdf of the sample. Parametric approaches are based on making distributional assumptions, such
as normality on the marker values, and can be quite sensitive to the form of the assumed
distributions. A more robust approach (TN) assumes that a monotone transformation exists
such that the transformed marker values follow the normal distribution. After estimating the
transformation using the Box–Cox power transformation procedure, it is applied to the data
and estimation based on normal assumptions is used. This approach has been found useful
when dealing with ROC curves [17-20]. Recently, for continuous markers, Fluss et al. [6]
compared a number of procedures for estimating J and t* and found that in many cases the TN
approach performed well. Schisterman et al. [16] showed how the TN approach could be
generalized to estimate the AUC for spiked data. In Section 2, we discuss the TN and EMP
approaches for estimating J and t* for spiked data. In Section 3, an extensive simulation study
comparing these two approaches is presented. Section 4 shows how the TN approach can be
adjusted to account for covariate information. Applications to the CCS data are given in Section
5, while Section 6 provides a concluding discussion.

2. ESTIMATION OF J AND t* FOR SPIKED DATA
2.1. Notation

Following Schisterman et al. [16], let Z and W represent the random variables for the diagnostic
test markers on the diseased and healthy populations, respectively. Furthermore, let FZ and
GW denote their respective cdfs. Consequently, q(t) = 1 − FZ (t) and p(t) = 1 − GW (t). Suppose
the diagnostic test results Z1,..., ZM and W1,..., WN are available with M = m0+m and N = n0 +
n, where m0 and n0 represent the number of observations taking the value zero for the diseased
and healthy samples, respectively. Let x1,..., xm and y1,..., yn represent the non-zero values in
these samples.

2.2. The non-parametric EMP approach
Standard methods [1] provide non-parametric estimations of p(t) and q(t) based on the
empirical cdfs for FZ and GW, which are denoted by F̂Z (t) and ĜW (t), respectively. Thus, from
(1),

(2)
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where t ranges over the observed values of Z and W.

Following Fluss et al. [6], we examine two approaches for estimating t*: (a) the observed
marker value where the maximum in (2) was found; (b) merge the sampled maker values for
both the diseased and healthy groups and sort them in ascending order, denoting the resulting
values by d1,..., dm+n. Suppose that J is obtained at dj. Since the value of K̂(t) is constant for
the interval [dj, dj+1), any value in this range is a reasonable estimate of t* and we take (dj +
dj+1)/2. In our simulation, we found a slight difference between these two methods with a small
preference to approach (b). For brevity, we report only on the second approach.

2.3. The TN approach
For completeness, we review the discussion in Schisterman et al. [16] on sensitivity and
specificity for zero-spiked data. Consider the random variable Z ≥ 0 to be a mixture having a
positive probability πZ at the point Z = 0 and otherwise (with probability 1 − πZ) having a
continuous distribution with cdf FC defined over the positive real line. Thus,

Conditional on the marker values being non-zero, x1,..., xm can be considered to be a random
sample from FC. We denote the corresponding (non-zero) random variable by X. In parallel,
for the healthy population

with y1,..., yn being a random sample on the variable Y having a cdf GC. For any fixed threshold
value t, the sensitivity becomes

(3)

while 1−specificity is

(4)

Schisterman et al. [16] used this spike model to estimate the area under the ROC curve. In the
following, we focus on estimating the Youden Index along with the corresponding critical
threshold.

Using the above notation, let

(5)
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while

(6)

Following Schisterman et al. [16], we assume that the ‘continuous’ part of the marker
distribution can be modeled using the Box–Cox power transformation family. More
specifically, we define

(7)

and further assume that . Y(λ) is similarly defined with . Note that
this transformation is applied only to the non-zero marker values.

Since these transformations are monotonically increasing

(8)

where

Φ denotes the standard normal cdf and

(9)

Now, K(t) can be written as

(10)

where

(11)

and

(12)
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We follow the convention that larger marker values are more associated with disease and would
thus generally expect that μD>μH and πW>πZ.

In order to carry out (6), under the assumption that μD − μH>0 and πW − πZ>0, we first compute
h′ (k), the first derivative of h(k), set it to zero and solve the resulting quadratic equation. If
there is no real solution, then J, the maximum of K(t), is obtained as J = πW − πZ, with t* = 0,
where a real solution exists, the root

(13)

can be shown to maximize h(k). The corresponding t* will be obtained for any given λ by
substituting k* into (12) and solving for t. For the special case of πZ = πW = 0, this reduces to
the standard solution for continuous normal data [6]. The maximum of K(t) will then be
obtained as either h(k*) or πW − πZ depending on which is greater and t* will be chosen
correspondingly.

For the estimation of J and t*, we replace the unknown parameters πW, πZ, λ, μD, μH, σD, and
σH with estimates based on sample data from the healthy and diseased populations and carry
out the optimization procedure described above.

The probability mass at zero can be estimated immediately from the data as  and
.

Based on the non-zero sampled observations on the diseased and healthy subjects, the
appropriate likelihood function can be constructed [21] and maximized, resulting in , the
maximum likelihood estimator of λ. The sample means and standard deviations calculated from
the data transformed according to (7) using  give , , , and .

2.4. Estimation for the CCS marker
The distribution of the non-zero marker values (see Figure 1) shows considerable skewness
for both the healthy and diseased male subjects. This is confirmed by Q–Q plots. The Box–
Cox procedure results in , which is quite close to 0, suggesting a log transformation.
It needs to be emphasized that this transformation is applied only to the non-zero marker values.
Applying it to the zero values would only result in the spike being moved from zero to another
value. Since the percentage of zeros is substantial for our data (18 per cent for the diseased and
61 per cent for the healthy), including the zeros in the transformation will necessarily result in
strongly non-normal and non-symmetrical distributions. Histograms for the positive marker
value after the log transformation are given in Figure 2. These indicate an improvement in
symmetry and the data appear more normal like. This is confirmed by Q–Q plots, which are
omitted for brevity. As pointed out by a referee, the histogram for the diseased group after
transformation is still not symmetric or normal like, although it has certainly improved on the
pre-transformed data. Figure 3 shows that the ROC curves estimated by both the EMP and TN
approaches are quite similar, indicating some robustness for the TN procedure. In various ROC
contexts, using the TN procedure for data generated from distributions that are not in the power
family has been found to be effective [6,19,22].Hanley [23,24] has also emphasized the
robustness of the binormal model to the normality assumption.

For the CCS data, both the EMP and the TN procedures result in the same estimates of the
Youden Index and the optimal threshold, namely Ĵ = 0.431 and t̂* = 0. The estimated specificity
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and sensitivity at this point are 0.61 and 0.82, respectively. Thes results do not take into account
a possible age effect, which will be considered in Section 5. Figure 4 provides a plot of K(t)
as estimated by the TN method for various levels of the threshold t. This clearly indicates the
peak obtained at t = 0 and the falloff of the curve for larger t values.

3. SIMULATION STUDY
We carried out a simulation study to compare the EMP and TN estimators in terms of bias and
root mean-square error (RMSE) for both J and t* via an extensive simulation study. Our
simulation considers a variety of distributional shapes and probabilities for observing zero,
each for several choices of J and with M = N = 100, 200, 2000. A sampling of these distributions
is presented in Figure 5. For a given N, M, πW, and πZ, the number of zero values n0 and m0
was generated from the appropriate binomial distributions. Then, samples of size N − n0 and
M − m0 were generated, respectively, for the continuous part of the distribution. In order to
obtain various shapes for this continuous part, the Box–Cox model (7) was used to generate
data using λ = −2, −1, −0.5, 0, 0.5, 1, and2. The values of μD, μH, σD, and σH were chosen to
provide the specified choice of J. The distributions in Figure 5 are standardized to give J = 0.8,
πW = 0.4 and πZ = 0.15. The rectangles representing the spikes at zero have been constructed
to have areas 0.4, and 0.15. For comparing bias and RMSE, 1000 simulations were carried out
for each scenario.

Tables I and II summarize the results for J, whereas Tables III and IV provide those for t*. As
expected, both bias and RMSE decrease with larger sample sizes. For both J and t* estimation,
the TN procedure usually has lower bias and RMSE. For estimating the Youden Index, EMP
can have an RMSE as much as 25 per cent larger than that of TN. For the optimal threshold
estimation, the RMSE of EMP can be more than double that of TN. Note that for threshold
estimation the EMP procedure can exhibit a bias substantially higher than TN even for large
sample size. The overall superiority of TN in estimating both J and t* is clear.

4. ADJUSTING FOR COVARIATES
For the CCS data, information on the age for each subject is available. Such explanatory factors
(covariates) may influence the ROC curve, the Youden Index, and the optimal threshold value
of the marker of interest. Faraggi [15] and Smith and Thompson [25] considered adjustments
for continuous covariates, while Tosteson and Begg [26] considered ordinal test results.
Schisterman et al. [16] discussed how the TN approach for estimating the ROC curve and its
AUC for spiked data could be adjusted for covariates using standard linear and logistic
regression methods.

We briefly review their methodology and apply it to adjusting Ĵ and t̂* for covariates. Generally,
they assume that the the (possibly transformed) non-zero marker values X and Y depend linearly
on p1 − 1 and p2 − 1 explanatory variables, respectively. Set

(14)

where X̃ = (x1, x2,..., xm)′, Ỹ =( y1, y2,..., yn)′, and βD and βH are column vectors of unknown
parameters of sizes p1 and p2, respectively. Let Z ̃D be an m × p1 matrix where the elements of
the first column are all 1's and the other elements are the values of the explanatory variables
for the diseased sample. Z ̃H is similarly defined for the healthy sample. εD and εH are column
vectors of size m and n, respectively, which are assumed to be composed of independently
distributed normal variables with expectation 0 and variances  and , respectively. The
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covariates for the diseased sample are not necessarily identical to those of the healthy sample.
Standard regression modeling techniques need to be used in order to decide on which covariates
to include. The adequacy of the model should be examined using residual analysis.

These linear regression models apply only to the non-zero part of the mixture distribution of
the marker. The probability that the marker is zero (for the diseased or healthy subjects) can
also be affected by covariates. A logistic model can be used to model these probabilities. For
the diseased and healthy groups, respectively, we set

(15)

where γD and γH are p3 and p4 dimensional column vectors of unknown parameters, whereas
VD and VH are column vectors of sizes p3 and p4, respectively, having 1 as the first element.
VD and VH represent the covariates on which the probability of a zero marker value is
dependent. These are not necessarily the same as the covariates used in (14).

The formulae in Section 2.3 for sensitivity, specificity, J, and t* remain the same, but now
πZ, πW, μD, and μH are to be interpreted as functions of given covariate values. Confidence
intervals for J and t* can be readily obtained using the bootstrap [27].

5. AGE ADJUSTMENT FOR THE CCS DATA
For the CCS marker data, information on each subject's age is available. The linear regression
models (14) after a log transformation, using age as a possible explanatory variable, were
examined. For both the healthy and diseased groups, age was found to be statistically significant
(p = 0.0001, 0.001 for the healthy and diseased, respectively). Residual analysis showed no
reason to reject the normal assumption for the log-transformed marker data. We examined the
addition of a quadratic term in age to the linear models and it was found not to be significant.
The logistic models (15) were also applied and age was found to be necessary for the healthy
group and not significant (p = 0.131) for the diseased group. These models were then used to
estimate J and t* as a function of age. The results are presented in Figure 6. The point-wise
confidence intervals are computed using the percentile bootstrap method. The estimated
Youden Index falls with increasing age. At age 30, Ĵ = 0.76 (specificity = 0.94, sensitivity =
0.82), at age 56, Ĵ = 0.43 (specificity = 0.61, sensitivity = 0.82), while at age 70, Ĵ = 0.14
(specificity = 0.58, sensitivity = 0.57). The Ĵ = 0.431 obtained when ignoring age (see Section
2) corresponds to an age of 56 and gives a wrong impression of the effectiveness of the marker.

Figure 6(a) demonstrates how ignoring age gives an incorrect picture of the marker
effectiveness. Clearly, the marker is better for younger men and is less effective with increasing
age. Figure 6(b) indicates that the estimated optimal threshold remains at zero for most of the
age range and is greater than zero for higher ages for which the marker is not very useful. This
seems to suggest that the detection of the presence or absence of calcium captures most of the
information in this marker.

6. DISCUSSION
This paper deals with the estimation of the Youden Index and its associate threshold or cutoff
value for marker data that has a mass at zero but can be considered continuous on the positive
real line. We combine a parametric mixture approach along with the use of a Box–Cox
transformation. The estimates of the Youden Index and its associated threshold value obtained
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through this TN approach were shown by simulation to perform better than the commonly used
non-parametric empirical procedure. In addition, the TN approach is shown to be readily
generalizable to permit adjustment of the estimates for explanatory variables. A referee has
pointed out that a mass at another point (with the remaining values greater than that point)
could be handled similarly simply by a translation of the marker values. A mass at some other
point in the midst of the data would require more complicated procedures since formulae (3)
and (4) for sensitivity and specificity would no longer hold.
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Figure 1.
Histograms of CCS data. The first cell in the histograms represents the frequency of just the
value zero, while the other cells represent intervals.
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Figure 2.
Histograms of log(CCS) for positive marker values.
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Figure 3.
Empirical and TN ROC curves for CCS data.
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Figure 4.
The K function estimated by the TN method.
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Figure 5.
Distributions used in the simulation study.
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Figure 6.
(a) Youden Index and (b) optimal threshold with 95 per cent confidence intervals for the CCS
marker.
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