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Abstract
MUMmerGPU uses highly-parallel commodity graphics processing units (GPU) to accelerate the
data-intensive computation of aligning next generation DNA sequence data to a reference sequence
for use in diverse applications such as disease genotyping and personal genomics. MUMmerGPU
2.0 features a new stackless depth-first-search print kernel and is 13× faster than the serial CPU
version of the alignment code and nearly 4× faster in total computation time than MUMmerGPU 1.0.
We exhaustively examined 128 GPU data layout configurations to improve register footprint and
running time and conclude higher occupancy has greater impact than reduced latency. MUMmerGPU
is available open-source at http://mummergpu.sourceforge.net.
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1. Introduction
Graphics Processing Units (GPUs) were originally designed for efficient data-parallel graphics
computations, such as in scene rasterization or lighting effects. However, as GPUs have become
more powerful with dozens or hundreds of stream processors, researchers have begun using
them for general-purpose (GPGPU) computations. Early attempts to exploit GPU’s high level
of parallelism for non-graphical tasks required application developers first recast their problem
into graphics primitives, and re-interpret graphical results. However, recent toolkits from both
nVidia [1] and ATI [2] have enabled developers to write functions called kernels in a restricted
variant of C that execute in parallel on the stream processors. High-level toolkits coupled with
powerful, low cost hardware have sparked huge interest in developing GPGPU versions of
data-parallel applications.

Read mapping is a data-parallel computation essential to genome re-sequencing, a rapidly
growing area of research. In this computation, millions of short DNA sequences, called reads,
obtained from a donor are individually aligned to a reference genome to find all locations where
each read occurs in the reference sequence, with allowance for slight mismatches for biological
and technical reasons. Read mapping can be used, for example, to catalog differences in one
person’s genome relative to the reference human genome, or compare the genomes of model
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organisms such as Drosophila melanogaster (fruit fly) or Arabidopsis thaliana (thale cress).
Researchers use this information for a wide variety of analyses, since even a single nucleotide
difference can have a dramatic effect on health and disease. Next-generation DNA sequencing
technologies from Illumina, 454 Life Sciences, and Applied Biosystems have recently become
extremely popular because they can create billions of bases of sequence data in a single
sequencing run at relatively low cost [3]. The DNA of James Watson, a co-discoverer of the
molecule’s structure, was recently sequenced using technology from 454 Life Sciences in just
two months. Biotechnology researchers believe that within the next several years, an individual
will be able to have his or her DNA sequenced in only a few days and for as little as $1000.
[4]. Despite their popularity, the most widely used sequence alignment programs are unable
to handle the extreme workload required by the new technology. The MUMmerGPU system
uses the highly parallel graphics cards from nVidia and their CUDA GPGPU toolkit to process
next generation sequencing reads in a fraction of the time of other programs. [5]

MUMmerGPU 2.0 uses the same suffix tree based match kernel as described in the original
version of MUMmerGPU, but we have added several significant improvements to increase
performance and capabilities for the overall application. First, we implemented a new query
streaming model in which reads are streamed past overlapping segments of the reference,
allowing us to compute alignments to Mammalian-sized reference genomes. Second, we
implemented a new GPU-based print-kernel that post-processes the tree coordinates from the
match kernel into exact alignment coordinates suitable for printing. This computation had
previously been the limiting factor in end-to-end application time for commonly used
parameters. The print kernel performs the computation via an iterative depth-first-search on
the suffix tree using a constant amount of memory and no stack. This non-traditional
implementation is required to meet the severe restrictions on kernel code, but is between 1.5-
and 4-fold faster than the previous (CPU-based) version of the routine. Popov et al recently
reported a different algorithm for traversing trees in a CUDA kernel [6] which requires
additional pointers between the leaf nodes in a kd-tree, but our technique is applicable to any
tree without additional pointers. Finally, we optimized performance for both kernels by
identifying the best organization of the DNA sequencing reads and suffix tree in GPU memory.
We explore and report on 128 variations of the data layout policy, and quantify the tradeoffs
involved for kernel complexity, cache use, and data placement. We find that optimizing these
choices can greatly accelerate performance, and mistuned choices have an equal but negative
effect on performance compared to the naïve version. Processor occupancy dominated
performance for our data-intensive application, but techniques that reduce GPU memory
latency without compromising occupancy were also generally beneficial. We describe several
techniques to reduce kernel register footprint and thus improve occupancy that are widely
applicable to GPGPU programs. Overall, MUMmerGPU 2.0 is nearly 4× faster in total
computation time than the originally published version of the code for the most commonly
encountered workloads.

1.1 GPGPU Programming
Recent GPUs from nVidia have up to 256 stream processors running at a core frequency of up
to 650 MHz. [7] Each stream processor has an individual arithmetic logic unit (ALU), but the
stream processors are grouped into multiprocessors such that all of the stream processors in
the same multiprocessor execute the same instruction at the same time (SIMD architecture).
The functions that execute on the stream processors are called kernels, and a single instance
of a running kernel is called a thread. Threads are launched in groups of 32 called warps that
the multiprocessor uses for scheduling, and are further organized in larger groups called thread
blocks of user specified size with the guarantee that all threads in the same thread block will
execute concurrently. A GPU has up to 1.5 GB of on-board memory, but very small data caches
compared to general purpose CPUs (only 8KB per multiprocessor). Cached memory is only
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available for read-only data and for a small number of word-aligned data types called textures.
Non-cached memory has very high latency (400 to 600 clock cycles), but multiprocessors
attempt to hide this latency by switching between warps as they stall.

Kernel code is written in a restricted variant of C and compiled to GPU specific machine code
using the CUDA compiler, NVCC. Developing kernel code can be challenging because
commonly used programming features, such as dynamic memory allocation and recursion, are
not available. Loops and conditionals are allowed in kernel code, but if different threads in the
same warp follow different branches, then the multiprocessor will automatically serialize or
stall execution until the threads resynchronize, thus cutting effective parallelism and end-to-
end application performance. Furthermore, each multiprocessor has a fixed number of registers
available for its stream processors, so the number of threads that can execute concurrently is
determined in part by how many registers each thread requires. The percent of stream
processors in a multiprocessor that execute concurrently, processor occupancy, is available in
discrete levels depending on the number of registers used by each thread, the thread block size,
and the physical characteristics of the device including the number of registers present on each
multiprocessor, the maximum number of concurrent warps, and the maximum number of
concurrent thread blocks Threads are executed in discrete units of the thread block size such
that the total number of registers used by all concurrent threads is at most the number available
on the device. For example, an nVidia 8800 GTX has 8192 registers per multiprocessor, and
can execute at most 8 concurrent thread blocks per multiprocessor and at most 24 concurrent
warps of 32 threads per multiprocessor (a maximum of 768 concurrent threads total). If the
thread block size is 256 a kernel will have 100% occupancy if it uses at most 10 registers
(allowing 3 complete thread blocks), 66% occupancy for at most 16 registers (allowing 2
complete thread blocks), 33% occupancy for at most 32 registers (allowing 1 complete thread
block), and fail to launch if each thread requires more than 32 registers because one thread
block would require more than 8192 registers Finally, kernel code cannot directly address main
memory nor other devices, so inputs to the kernel must be copied to the GPU’s on-board
memory prior to execution and outputs must be copied to main memory from on-board memory
after execution. The full details of the device capabilities and programming model are described
in the CUDA documentation. [1]

GPU accelerated versions of data parallel-applications have been developed for numerous
application domains, including molecular dynamics, numerical analysis, meteorology,
astrophysics, cryptography, and computational biology. [8–11] The most successful GPGPU
applications have generally had high arithmetic intensity, meaning processing time is
dominated by arithmetic operations with relatively few memory requests. These applications
are well suited to the numerical capabilities of the stream processors. In contrast, data intensive
applications requiring fast random access to large data sets have been generally less successful
on the GPU, because of the GPUs small data caches and relatively high latency (400–600 clock
cycles) for on-board memory accesses.

1.2 DNA Sequence Alignment
DNA is the molecule that encodes the genetic blueprint for the development and traits of an
organism. It is composed of a long sequence of four possible nucelotides or ‘base pairs’ (bp):
adenine (abbreviated A), cytosine (C), guanine (G) and thymine (T). The sequence of base
pairs in biologically active regions called genes determines the amino acid sequence and
function of biologically active molecules called proteins. Even a single nucleotide difference
in a gene between two individuals can substantially change the function of its protein product
and lead to disease. Larger insertion, deletion, or rearrangement events of several nucleotides
can have profound effect on development, such as the chromosomal duplication responsible
for Down syndrome. Numerous other human diseases and traits have been linked to both small-
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scale single nucleotide polymorphisms and larger genetic variations, and thus make DNA
sequence analysis an extremely active and important field of research. [12]

Until recently, the most widely used protocol for determining the sequence of nucleotides in
a genome used Sanger sequencing. Sanger sequencing can determine the order of ~1000
consecutive nucleotides by separating fluorescently tagged molecules based on their charge;
each sequence fragment is called a “read.” Longer regions, including full genomes, are
sequenced by sequencing random overlapping fragments, and then stitching the reads together
computationally into the original full-length sequence. [13] New DNA sequencing protocols
from Illumina, 454 Life Sciences, and Applied Biosystems sequence DNA at a much higher
rate and dramatically lower cost, but the reads are significantly shorter (30–200bp).
Nevertheless, there has been a dramatic shift towards using the cheaper sequencing protocols
and placing the burden on computational resources to analyze the result with less information
per read.

One of the most widely performed DNA analysis tasks is to align a pair of sequences to find
regions that are similar. In the case of short sequencing reads, researchers will generally require
that the entire read aligns end-to-end to a reference sequence except for a small number of
differences, which may be real polymorphisms or sequencing errors. Modern sequence
alignment algorithms use a technique called seed-and-extend to quickly perform the alignment
by focusing the search to regions that are reasonably similar. In the first phase, the algorithms
find substrings of sufficient length called seeds that are shared between the sequences. In the
second phase, the algorithms extend the relatively short exact seeds into longer inexact
alignments using a more sensitive dynamic programming algorithm. The widely used BLAST
algorithm considers all possible fixed-length substrings called k-mers as seeds. [14] In contrast,
the popular MUMmer algorithm and our high-performance variant MUMmerGPU compute
variable length maximal exact matches (MEMs) as seeds for alignment. Both algorithms are
much faster than using the original Smith-Waterman local sequence alignment algorithm,
which requires time that is quadratic with respect to the input sequence sizes. By contrast,
MUMmer and MUMmerGPU find MEMs using a suffix tree, which requires linear space and
enables substring matching in linear time. [5,15,16] MUMmerGPU uses a very similar output
format as MUMmer, and thus one can reuse MUMmer’s components for extending the exact
seeds into longer inexact alignments.

A suffix tree is a tree that encodes all suffixes of a string on a path from the root node to a leaf.
A special character that does not occur in the original string ($) is appended to the reference
string to ensure that each suffix ends at a unique leaf node, which is labeled by the starting
position of the suffix called the leaf id. Edges of the tree are labeled with substrings of the
reference, and internal nodes have at least 2 children representing positions where repeated
suffix prefixes diverge. The path string of a node is the concatenation the edge labels along the
path from the root to that node. The string depth of a node is the length of its path string. Suffix
trees over fixed alphabets, such as for DNA nucleotides, can be constructed in linear time and
space using additional pointers called suffix links, that point from node n with path string x∂
to node n′ with path string ∂, where x is a single character and ∂ is a string. [17] Once built, a
suffix tree allows one to find occurrences of a query string or substrings of a query string in
the reference string in time proportional to the length of the query substring by matching
characters of the query along the edges of the tree. Substring matches can be extended into
MEMs by walking the suffix tree along the path of the substring matches as described below.
For a complete description of suffix tree construction and search algorithms see the
comprehensive reference by Gusfield. [18]
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2. Alignment Algorithm
MUMmerGPU computes all MEMs that are at least the minimum match length (the parameter
l) characters long between a reference sequence and a set of query sequences. The MEM
computation is divided into four phases:

1. Reference Preprocessing – Load the reference from disk and construct a suffix tree
of it.

2. Query Streaming – Load blocks of queries from disk and launch the alignment
kernels.

3. Match Kernel – Match each suffix of each query to the suffix tree to find candidate
MEMs.

4. Print Kernel – Post-processes the candidate MEMs to report all MEMs at least l
characters long.

Both the match kernel and the print kernel are executed in parallel on the graphics card, as
illustrated in Figure 2. A separate GPU thread running the match kernel processes each query.
Then for each matching suffix of each query, a separate instance of the print kernel reports
MEMs for that suffix. Suffix tree construction and I/O are executed serially on the CPU and
require a small fraction of the overall runtime for large read sets.

2.1 Reference Preprocessing
Since the reference sequence may be very large, the reference is divided into overlapping 8Mbp
segments called pages. For each reference page, the algorithm constructs a suffix tree using
Ukkonen’s algorithm in linear time and flattens the tree into a large array suitable for processing
on the GPU. Suffix tree construction time is generally a small fraction of the total runtime for
typical datasets involving millions of reads. [5] Each suffix tree node requires 32 bytes of data,
which is divided into two 16 byte structs called the node and children structs. The node struct
contains the coordinates of the reference string for the edge label into that node, the string depth
of the node, and the address of the parent and suffix nodes. The children struct contains the
address of each of the five children (A,C,G,T,$) and a flag indicating if the node is a leaf. If
the node is a leaf, then the leaf id and the character of the reference just prior to that suffix of
the reference is stored instead of the children pointers. Node addresses are stored using 24 bit
addresses to conserve space but limits the suffix tree to 16 million nodes, and the maximum
page size to 8 million base pairs. The nodes of the tree are reordered using the previously
described reordering scheme. [5] Briefly, nodes near the top of the tree are numbered according
to a breath-first-traversal to maximize locality across threads, while nodes at depth ≥ 16 are
assigned using a depth-first-traversal to maximize locality for a particular thread.

2.2 Query Streaming
Unlike previous versions of the code, which processed queries in memory across all reference
pages, queries are streamed across the reference, meaning after a query is aligned to a reference
page, the alignments are printed immediately and the query is flushed from memory. If the
reference is larger than the page size, then it will be necessary to reload the queries multiple
times from disk. This tradeoff was necessary to support aligning against very large reference
sequence or aligning a large set of reads, either of which required a prohibitively large amount
of host RAM in the previous version of the code.

2.3 Match Kernel
The match kernel is essentially the same as described in previous version of the code. Briefly,
the kernel finds the longest matching substring of the query starting at each position of the
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query, i.e. each suffix of the query is considered. Starting with the first character of the query
(i=1) and the root node of the reference suffix tree, the characters in the query are matched to
the edges of the suffix tree one character at a time until a mismatch or the end of the query is
reached. If the number of matching characters is at least l, the match is recorded in the output
buffer for position i as the id of the lowest node visited and the length along the edge to that
node. The next suffix of the query is then considered by following the suffix link from the
parent of lowest node reached. This has effect of removing the first base of the query from
consideration, and allows the next suffix to be evaluated without returning to root in the suffix
tree.

2.4 Print Kernel
The print kernel post-processes the match kernel results into potentially many MEMs per match
(see Figure 3). The match kernel reports the lowest node L in the tree that matches the ith suffix
of the query. If the query match to L is longer than l, there are multiple substrings of ith suffix
that match the reference and are at least l characters. Call node P the highest ancestor of L that
has a string depth at least l characters long. The leaves of the subtree rooted at P determine
where in the reference a substring starting at i occurs, and the string depth of the lowest common
ancestor of those leaves and L determines the matching substring length. Because the match
kernel reports the longest possible match for suffix i, all of the matches at the leaves are
guaranteed to be right maximal. However, the print kernel must be careful to not report matches
that are fully contained by matches to suffix i−1. That is, the raw matches for suffix i may not
be left maximal so the left flanking base must be explicitly checked by comparing the i−1th

character of the query to the corresponding character of the reference. The print kernel
computes this check for all candidate MEMs via a depth-first-search of the suffix tree to all of
the leaves in the subtree rooted at P.

The algorithm begins by following parent pointers from L to find node P by following the
parent pointer stored in each node, and stopping when the string depth field is < l. It also finds
the parent of P called node B. Starting at P, it attempts to traverse to the A child. If the A child
is null, it tries the C child and so forth in lexicographical order. It proceeds down the tree in
this way to the first (lexicographically smallest) leaf below P where the MEM criterion is
evaluated by comparing the i−1th character of the query to the corresponding character in the
reference string. This character is the character in the reference that is just before the suffix
ending at that leaf, and is stored in the leaf node for efficiency. If the characters are different,
the substring is a MEM and the coordinates of the substring are stored to the output buffer, as
explained below. After processing the first leaf, the kernel traverses up to the parent of the leaf,
and resumes processing with the lexicographically next child. Because leaves are always
visited in lexicographic order and because the last child visited can be determined with a pointer
comparison, the algorithm does not require a stack to determine where to search next. After
processing the $ child, the kernel traverses up the tree and continues processing
lexicographically. The algorithm ends when the current node is B.

The coordinates of a MEM depend on the leaf id of the leaf for the start position, and the
location of the leaf in the suffix tree relative to L, for the length. The length of the MEM is the
string depth of the lowest common ancestor of the leaf node and L in all cases except for the
leaves below L because the query may only have a partial match along the edge to L. Call the
path of nodes between the parent of L and P the query path. Note the lowest common ancestor
of a visited leaf must fall along the query path. When the traversal algorithm begins at P, the
substring length is the string depth of P, and by definition P is along the query path. When
traversing down the tree and the current node is along the query path, the algorithm checks if
the child node is also on the query path. Call the character of the query at the string depth of
the current node the query character. The query character determines which child of the current
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node is also in the query path. If the next node is along the query path, the matching substring
length is the string depth of that node. If the next node is not on the query path, the matching
substring length is not updated. Instead the kernel records and updates the distance to the query
path throughout the traversal. When the distance returns to 0, the current node is once again in
the query path and the algorithm resumes checking for the query child as before. Since there
may be only a partial match to node L, a special condition checks when this node is visited,
and the match length is set to the string depth of L’s parent plus the partial edge match length
reported by the match kernel.

3. Data Policies
MUMmerGPU 1.0 organized data on the GPU according to the few “best practices” that existed
at the time. However, those best practices, such as whether or not to use texture memory, were
developed for arithmetically intensive applications. In MUMmerGPU 2.0, we have revisited
our decisions for seven possible boolean data organization policies and exhaustively tested all
128 possible combinations of choices. The policy choices are as follows.

1. Two-dimensional reference – store the reference string in a two-dimensional array
instead of in linear memory.

2. Query texture – store the query strings in texture memory instead of global memory.

3. Reference texture – store the reference string in texture memory instead of global
memory.

4. Tree texture – store the tree in a pair of textures instead of global memory.

5. Two-dimensional tree – store the tree in two-dimensional arrays instead of linear
memory.

6. Tree reordering – reorder the nodes of the tree to improve locality instead of the
node numbering determined by the construction algorithm.

7. Merged tree – for a given node, store the node and children structs adjacent in
memory, instead of two parallel arrays.

MUMmerGPU 1.0 stored the reference in a two-dimensional texture, the queries in linear
global memory, and the tree in parallel two-dimensional textures after reordering the nodes.
The texture cache in G80 series GPUs is described as being optimized for two-dimensional
locality, so the node reordering was designed to exploit a two-dimensional cache block.
Textures were selected for the reference and tree after preliminary testing suggested this
selection had better performance. The tree structs were placed in parallel arrays to simplify
addressing. In the following discussion, the naïve control configuration disables all
optimization: no query texture, no reference texture, 1D reference, no tree texture, 1D tree, no
tree reordering, and parallel arrays for the node and child structs.

We evaluated MUMmerGPU under each of the 128 possible combinations of policy choices
on several workloads. Each workload constitutes a small slice of the input a life sciences
researcher would provide to MUMmerGPU when mapping reads to a reference genome. The
first workload, HSILL, represents a human resequencing project using next generation Illumina
technology. The second workload, CBRIGG, represents a large eukaryotic resequencing
project using traditional Sanger sequencing technology. The last two workloads, which we call
SSUIS and LMONO, represent typical inputs for resequencing bacteria using next generation
sequencing technologies from Illumina and 454 Life Sciences. All four workloads are
comprised of genuine (non-simulated) sequencing reads, and is large enough to constitute a
representative slice of work from the project, but terminate quickly enough to permit testing
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all 128 configurations. Table 1 presents the additional details about the reference sequences
and read sets for each workload.

In a resequencing project, reads from a donor organism are aligned to a reference genome.
Errors in the sequencing reads along with genuine variations between the donor and the
reference genome will prevent some reads from aligning end-to-end without error.
MUMmerGPU allows users to control the amount of error to tolerate by allowing users to
specify the minimum match length (l) to report. The full details for choosing a proper value
for l are beyond the scope of this paper, but the choice of l can have a dramatic impact the
running time, including determining which CUDA kernel dominates the computation, since
smaller values of l produce more MEMs for the print kernel to report. For HSILL, we have
chosen l to allow at most 1 difference in an alignment between a read and the reference, 2
differences for SSUIS, and numerous differences for LMONO and CBRIGG.

4. Policy Analysis
For MUMmerGPU 2.0, we looked for a set of policy choices that universally reduced running
time, as opposed to workload specific improvement. Ideally, a single configuration would be
optimal for all workloads, otherwise, we desired configurations that improve HSILL, since we
expect human resequencing projects using short reads will constitute the majority of the read
alignment workloads in the near future. To this end, we executed MUMmerGPU with all 128
possible policy combinations on all 4 workloads. The test machine was a 3.0 GHz dual-core
Intel Xeon 5160 with 2 GB of RAM, running Red Hat Enterprise Linux release 4 update 5 (32
bit). The GPU was an nVidia GeForce 8800 GTX, using CUDA 1.1. The 8800 GTX has 16
multiprocessors, each with 8 stream processors (128 stream processors total), and 768 MB of
on-board RAM, with 8 KB of texture cache per multiprocessor. The data that follows is for the
HSILL workload and excludes time spent reading from or writing to disk, as this time was
identical within the workload, and only obscures the impact of different policy choices. In the
figures, we have isolated the policy choice in question, and each bar represents the percent
change in running time for enabling that policy while keeping the policy configuration
otherwise the same. A positive value indicates the running time increased after enabling that
policy, and negative values indicate the running times decreased. The bars are clustered by
which textures are enabled, and are labeled by their non-texture policy choices. The label
control indicates the default configuration without any non-texture policies enabled. The full
results table for all workloads is available online at http://mummergpu.sourceforge.net.

4.1. Two-dimensional reference
Storing the reference string in a two-dimensional layout instead of a one-dimensional string
consistently increased the total computation time, but only by an insignificant. 4% on average
(data not shown). We suspect the extra instructions necessary for addressing 2D memory
slowed the overall performance relative to any potential gains by 2D locality. Consequently,
only configurations that use a one-dimensional layout for the reference string were considered
further. The following sections describe the remaining 64 policy configurations.

4.2. Query Texture
Configurations that placed the queries in a texture increased the print kernel time by 6.% and
the match kernel time by 3% on average. When the tree texture is not used, the match runtime
consistently decreased except in 2 exception cases with dramatically increased running time
due to increased register footprint and decreased occupancy (Figure 4). When the tree texture
is enabled, we observe what appears to be a small amount of cache competition in the match
kernel which tends to slow down those configurations. The print kernel had similar results.
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4.3. Reference texture
Configurations that placed the reference string in texture memory instead of global memory
had significantly different match kernel running times (−12% to +35% change), but had
essentially identical print kernel running times. This is as expected, since the print kernel does
not access the reference string. Placing the reference string in a texture improved running time
for the match kernel by up to 12% (without changing register usage), but only when the tree
was not in texture memory as well (Figure 5). We speculate that the tree, queries, and reference
negatively compete for the texture cache in those cases, leading to overall lower performance.
The two large increases (35%) in match kernel running time observed when the query texture
was also used is a result of an increase in register usage and corresponding decrease in processor
occupancy.

4.4. Suffix tree texture
Storing the tree in a texture instead of global memory improves print kernel performance in
almost all configurations and by 8% on average. The impact of this policy is more complicated
for the match kernel (Figure 6). On average, using a texture for the tree improves match kernel
performance by 11%, presumably because the cache lowers effective memory latency. In some
configurations, though, the tree competes for the cache with the queries or reference and those
configurations are generally slower than the equivalent configuration that uses global memory
for the tree.

Interestingly, cache competition does not always result in an overall slowdown, especially
when the register footprint was improved. In the match kernel, two configurations with multiple
data types in texture requires 18 registers, yielding 33% occupancy. However, if these
configurations are altered such that the tree is placed in a texture, the match kernel requires
only 16 registers, achieving 66% occupancy and an overall speedup. In the print kernel, the
control configuration uses 17 registers, and only 16 registers when the tree is placed in a texture
and thus has improved occupancy and cache use. We also observed the opposite effect: for
some configurations, placing the tree in a texture increased the print kernel register footprint,
dropped occupancy, and slowed the overall computation.

4.5. Two-dimensional tree
Configurations that placed the suffix tree in two-dimensional arrays were on average 15%
slower than the configurations that used one-dimensional arrays for total computation time
(Figure 7). Placing the tree in a texture appears to mitigate some of the negative impact of using
a two-dimensional array for the tree, but not using the 2D layout was faster overall. In addition,
some configurations using a two-dimensional tree array increased the register footprint in the
print kernel across the threshold from 66% to 33% occupancy and had drastically reduced
performance (52% worse).

4.6. Tree reordering
In HSILL, configurations that reordered the suffix tree nodes in the GPU memory run
significantly and universally faster than the equivalent configurations that do not (between 1%
and 11% faster, 5% on average) (Figure 8). This is perhaps the most surprising finding from
our benchmark tests, since the reordering is only supposed to improve running time for
configurations that use (cached) texture memory for the suffix tree. Furthermore, the node
reordering is entirely performed on the CPU, and the GPU kernels are bit-for-bit identical when
reordering is enabled over the equivalent configuration with the reordering disabled. However,
the actual number of instructions executed by a multiprocessor can vary between invocations
based on the access pattern of the kernel. A G80 multiprocessor may serialize execution of
threads in a warp if the memory accesses made by threads have significantly different latencies.

Trapnell and Schatz Page 9

Parallel Comput. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



nVidia offers a profiler that counts events during a kernel execution such as the number of
global memory loads and the number of instructions executed. For HSILL, profiling shows a
decrease in total instruction count and in the number of instructions due to warp serialization
when reordering is enabled.

4.7. Merged tree
Merging the two suffix tree arrays into a single array places the two halves of a single tree node
adjacent in GPU memory. This policy was originally conceived to exploit a common access
pattern in the match kernel where the halves are sequentially accessed. This should have
improved cache performance from the increased spatial locality. However, merging the arrays
also required slightly more complicated kernel code for addressing nodes. This had a more
significant impact by altering the register footprint of both the match and print kernel.

In the print kernel, using a merged array increased running time by 6% on average, including
some extreme changes in caused by increasing or decreasing the register footprint. (Figure 9).
Configurations that placed the suffix tree in a texture or used a two-dimensional array generally
suffered when using a merged array. The other configurations saw a reduced footprint, and for
a few configurations that reduction boosted the occupancy to 66%. The impact on match kernel
time was less dramatic though occupancy differed for some configurations when merged arrays
were enabled.

4.8 Comparison to MUMmerGPU 1.0
Based on the above discussion, the new default policy configuration in MUMmerGPU uses a
reordered one-dimensional texture for the suffix tree, global linear memory for the queries and
reference, and splits the tree into parallel arrays. This configuration is optimal for HSILL and
creates a nearly four-fold speedup in total GPU compute time over MUMmerGPU 1.0. For
other workloads, it is not optimal, but this configuration consistently outperforms
MUMmerGPU 1.0. For example, in LMONO, CBRIGG and SSUIS, reordering suffix tree
nodes generally degrades performance, although a few configurations enjoy a modest speedup.
Surprisingly, none of the configurations with increased performance placed the tree in texture
memory. In general, the impact of reordering appears very sensitive to the specific access
pattern of the kernels for a given input and choice of parameters. However, in all workloads,
the new configuration speeds up the match kernel by at least 20%, and the new print kernel is
between 1.5× and 4× faster than the CPU based print procedure of MUMmerGPU 1.0 (Table
2). To reach as broad a user base as possible, MUMmerGPU also implements tuned, optimized
versions of the matching and print procedures that run on the CPU. For HSILL, MUMmerGPU
2.0’s GPU kernels run 13-fold faster than these CPU-based routines.

5. Discussion
Our exhaustive policy analysis shows occupancy is the single most important factor for the
performance of data-intensive applications. This is because higher occupancy allows for more
threads to be executed concurrently. Higher occupancy has the added benefit that memory
latency can be better hidden with more threads. As such we attempted to improve occupancy
of all configurations by reducing their register footprint. In several configurations, we
successfully reduced register use to reach 66% occupancy by making small adjustments to the
kernel code, such as moving variable declarations to the tightest possible scope, and using bit
masks instead of named fields within structs. We also used more aggressive techniques such
as using goto’s to intentionally disable some compiler optimizations with some success. The
CUDA compiler NVCC is actively being developed, and as its register allocation and
optimization routines improve, it should be easier to achieve higher occupancy.
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Our analysis finds proper use of the texture cache is also critical. Haphazardly placing data in
texture memory in the hopes of reducing latency is dangerous. The texture cache is limited to
8KB per multiprocessor, so cache competition can easily hurt overall performance.
Furthermore, using textures instead of global memory can reduce occupancy and slow
execution. Conversely, proper use of cache that places the most important data in textures can
greatly improve performance.

Data reordering can also greatly improve performance. Our results show that it universally
improved performance when aligning short reads to a large reference, which we expect to be
the most common read mapping use case. For this type of workload, data reordering
unexpectedly reduced divergence and warp serialization. Normally used to increase locality
and reduce latency, data reordering also is a promising avenue for reducing thread divergence.
We plan to explore other reordering strategies in future versions of MUMmerGPU. However,
reordering should be used with caution and careful measurement. In MUMmerGPU, it was
used to improve cache hit rate in two-dimensional textures, but storing the tree in two-
dimensions turned out to be a universally bad choice, despite the claims that the texture cache
is optimized for 2D locality. Similarly, merging the node and children halves into the same
array was supposed to improve data locality and thus cache performance, but this improvement
was lost in most configurations to increased register footprint and reduced occupancy from the
more complicated addressing.

These conclusions reflect properties and design decisions concerning the current nVidia
graphics processing line, and may fail to hold in the future as the hardware and CUDA evolve.
A policy analysis such as the one presented here can help identify high performance policy
configurations, and can help “future-proof” an application against rapidly evolving hardware.
Ideally, MUMmerGPU would be able to self-tune its policies for an individual system, and we
are considering such functionality. In the short term, MUMmerGPU’s instrumentation and
alternate policy implementations remains in the code, so the application can adapt to new
nVidia hardware and CUDA versions as they appear.

6. Conclusions
MUMmerGPU 2.0 is a significant advance over MUMmerGPU 1.0, featuring improved
functionality and higher performance over previous versions of the code. With the new query
streaming data model, MUMmerGPU 2.0 can map reads to genomes as large or larger than the
human genome. The new GPU-based print kernel post-processes the suffix tree matches into
full MEMs, and provides a major performance boost, between 1.5× and 4×, over the serial
CPU version in MUMmerGPU 1.0. This kernel required a non-traditional stackless
implementation of a depth-first-search of the suffix tree. Its tree-walking technique is
applicable to essentially any common tree data structure, and thus we expect many data
processing tasks could benefit from running on the GPU. In the future, we plan to extend
MUMmerGPU with a second post-processing GPU kernel that computes inexact alignments.

Both the match and print kernels benefited from our exhaustive analysis of seven data
organization policies. The impact of individual policies is often surprising and counterintuitive,
and we encourage other GPGPU developers to carefully measure their applications when
making such decisions. Our analysis shows occupancy is the main determining factor of data-
intensive kernel performance. We are optimistic that new versions of the CUDA compiler will
simplify reaching high occupancy, but currently, it is imperative that developers monitor their
register footprint, and reduce it when possible. The next most important factor is proper use of
the textures. The texture cache is very small, and haphazard use of textures will quickly
overwhelm it. Instead, applications should only use textures for the most important data. Data
reordering can be used to improve locality and cache hit rate, but since different workloads
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may have different access patterns, developers should select a reordering that is appropriate
for the most common workload. Reordering also affects thread divergence, and we recommend
that developers consider reordering strategies that reduce divergence, even when not using
cached memory.

Data-intensive applications are believed to be less well suited than arithmetic-intensive
applications. Nevertheless, our highly data-intensive application MUMmerGPU achieves
significant speedup over the serial CPU-based application. A large part of this speedup is due
to tuning techniques that may be used in any GPGPU application. The enormous volume of
sequencing reads produced by next generation sequencing technologies demands new
computational methods. Our software enables individual life science researchers to analyze
genetic variations using the supercomputer hidden within their desktop computer.
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Figure 1.
Aligning the query “ATAT” against the suffix tree for “ATATCAT”. MUMmerGPU will
report a match at position 1 in the reference, provided that the minimum match length l ≥ 4.
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Figure 2.
MUMmerGPU constructs suffix trees for overlapping sections of the reference string. Reads
are first matched to the suffix tree in the match kernel. Tree coordinates are passed from the
match kernel to the print kernel to convert tree coordinates to alignment coordinates in the
reference string.
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Figure 3.
The query matches to the suffix tree along the bold path from the root to L. The print kernel
post-processes this information to consider MEMs at the leaves by a stackless depth-first-
search starting at P to leaves 1,2,3 & 4 shown by dashed arrows. The match length at leaf 1 is
the string depth of Q, the match length at 2 and 3 is the string depth of Q plus the partial edge
match to L, and the match length at leaf 4 is the string depth of P.
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Figure 4.
Using the query texture with the match kernel generally improves the runtime, except when
there is cache competition from the tree texture.
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Figure 5.
The reference string competes with the suffix tree for the texture cache. Configurations only
benefit from placing the reference in texture memory when the tree is not also in texture
memory.
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Figure 6.
Placing the suffix tree in texture memory is not universally beneficial, presumably due to cache
competition in some configurations.
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Figure 7.
Placing the suffix tree in a two-dimensional array universally slows overall computation time.
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Figure 8.
Reordering the tree nodes in GPU memory improves running time not only for configurations
that place the tree in cached texture memory, but all configurations.
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Figure 9.
(top) The print kernel’s register footprint (y axis) depends on whether a configuration uses
merged arrays for the suffix tree. In some configurations, only 16 registers are used, increasing
occupancy to 66% and dramatically reducing running time (bottom).
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Table 1

Description of the workloads used for testing.

Workload/Organism Reference size (bp)
Minimum match Length

(bp) Read type # of reads

HSILL H. sapiens 16,000,000 14 Illumina (29bp) 500,000

CBRIGG C. briggsae 13,000,000 100 Sanger (~700bp) 500,000

LMONO L. monocytogenes 2,944,528 20 454 (~120bp) 1,000,000

SSUIS S. suis 2,007,491 10 Illumina (36bp) 1,000,000
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