Skip to main content
. Author manuscript; available in PMC: 2010 Jun 15.
Published in final edited form as: Arch Biochem Biophys. 2009 Jun 15;486(2):95–102. doi: 10.1016/j.abb.2009.01.018

Table-1.

Effects of resveratrol on various human cancer cells.

TUMOR MODELS CELL LINES USED MOLECULAR TARGETS CELLULAR EFFECT(S) REFERENCES
Breast cancer T47D
MDA-MB-231
MDA-MB-468
MCF-7
p53, PTEN, p27, ROS, NO, QR, p21 Apoptosis (Alkhalaf, 2007; Kim et al., 2004; Kotha et al., 2006; Lanzilli et al., 2006; Lee and Safe, 2001; Pozo-Guisado et al., 2002; Pozo-Guisado et al., 2005; Waite et al., 2005)
p70S6K, ppS6RP, Src-Stat3, pAkt, Bcl-2, NF-κB, calpain, MMP-9, cyclin D, Cdk4, ribonucleotide reductase, CYP1A1, telomerase Growth arrest Cell migration
Prostate cancer LNCap
PC-3
DU145
Colo-357
LAPC-4
Caspases 3/9, p53, p21, p27, Bax, Bak, Bid, Bad, MKP5 Apoptosis, G0/G1-arrest (Awad et al., 2005; Aziz et al., 2006; Benitez et al., 2007a; Kotha et al., 2006; Nonn et al., 2007)
PI3K, pAKT, cyclins B/D1/E, Cdk1/4, Bcl-2, Src-Stat3, ROS Proliferation rate, cell viability
Colon cancer HT-29
DLD1
HCT116
AMPK, ROS, cathepsin D, caspase-2, cytochrome c, ATF3 Apoptosis, lysosome leakage, G2-arrest (Bottone et al., 2005; Hwang et al., 2007; Liang et al., 2003; Mohan et al., 2006; Trincheri et al., 2007)
Cdk7, p34Cdc2 Cell growth
Pancreatic cancer CD18
S2-013
panc-1
MIC-1, cytochrome C, caspase-3 apoptosis (Golkar et al., 2007; Kotha et al., 2006; Mouria et al., 2002)
Src-Stat3, NF-κB Cell growth
Leukemia HL-60 Apoptosis, nuclear size, granularity (Quiney et al., 2004; Stervbo et al., 2006)
NO Cell growth
Hepatoma HepG2 Apoptosis, nuclear size, granularity (Stervbo et al., 2006)
Cell growth
B-cell Lymphoma LY1
LY8
LY18
p27, p53, CD69 Apoptosis, G0/G1-arrest (Faber and Chiles, 2006; Faber et al., 2006)
BCL6, Myc, pAKT, pp70S6K glycolysis
Osteosarcoma SJSA1 pERK1/2, pp53(Ser15) Apoptosis (Alkhalaf and Jaffal, 2006)
Cell growth
Squamous cell carcinoma A431 p21, p27 G0/G1-arrest (Adhami et al., 2001; Ahmad et al., 2001; Kim et al., 2006; Zhang et al., 2005)
Cyclins A/E/D1/D2 Cdk2/4/6, pRb, MEK1, pERK1/2, c-Jun, AP-1, HIF-1α, VEGF, Akt, E2F1-5, DP1/2
Multiple Myeloma RPMI8226
OPM-2
U266
KM3
c-fms, CD14, CD11a, 1,25(OH)2D3 nuclear receptor, Bax, Apaf-1 apoptosis (Boissy et al., 2005; Jazirehi and Bonavida, 2004; Sun et al., 2006b)
Cathepsin K, RANK, NFATc1, NF-κB nuclear translocation, Bcl-2, Bcl-x(L), XIAP, Mcl-1, MMP-2, MMP-9
Rhabdomyosarcoma S/G2-arrest (Chow et al., 2005)
Cyclin B
Ovarian Carcinoma Ovcar-3
A2780/CP70
CaOV3
ES-2
TOV112D
A1947
pCdc2(tyr15), ATM/ATR, chk1/2, pCdc25C, pH2A.X(ser139), S-arrest, autophagocytic death (Cao et al., 2004; Opipari et al., 2004; Tyagi et al., 2005)
Akt, HIF-1α, VEGF
Medulloblastoma UW228-2
UW228-3
CYP1A1 Apoptosis, differentiation (Liu et al., 2004; Zhang et al., 2006)
CYP1B1,c-Myc
Acute myeloid leukemia OCIM2
OCI/AML3
S-arrest, apoptosis (Estrov et al., 2003)
IL-1β, NF-κB
Thyroid cancer PTC
FTC
P53, p53(ser15), c-fos, c-jun, p21 apoptosis (Shih et al., 2002)
Gastric adenocarcinomas KATO-III
RF-1
G0/G1-arrest, apoptosis (Atten et al., 2001)
PKC, PKCα DNA synthesis

Upregulation and increased activities of molecular targets are represented in the upper rows, and inhibition and decreased activities in the bottom rows for each tumor model.